Bad Design

Boyce-Codd Normal Form

Design Theory for Relational Databases ‘
Third Normal Form

Normalization . :
Minimal Cover and 3NF Synthesis

The Many Other Normal Forms

Guillaume Raschia — Polytech Nantes; Université de Nantes MVD's and 4NF
Last update: January 16, 2024

[Source : J. Ullman, Stanford]

Relational Schema Design

Goal of relational schema design is to avoid anomalies and redundancy.

Bad Design .
g - Update anomaly: one occurrence of a fact is changed, but not all occurrences
- Insertion anomaly: related facts are required when a tuple is inserted

- Deletion anomaly: valid fact is lost when a tuple is deleted

Example of Bad Design

Drinkers(name, addr, beersLiked, brewery, favBeer)

‘ name ‘ addr beersLiked ‘ brewery ‘ favBeer
Alice | Nantes | Trompe Souris | La Divatte | Titan
Alice | ??? Titan Bouffay 277
Bob Rennes | Titan 77 Titan

Data is redundant, because each of the ???'s can be figured out by using the FD’s
name — addr favBeer and beersLiked — brewery

Bad Design: Update Anomalies

‘ name ‘ addr beersLiked brewery favBeer
Alice | NantesVannes | Trompe Souris | La Divatte Bouffay | Titan
Alice | Nantes Titan Bouffay Titan
Bob Rennes Titan Bouffay Titan

- If Alice moves to Vannes, will we remember to change each of her tuples?

Bad Design: Deletion Anomalies

‘ brewery ‘ favBeer ‘

‘ name ‘ addr ‘ beersLiked
Alice | Nantes | Titan Bouffay Titan
Bob Rennes | Titan Bouffay Titan

- If nobody likes Trompe Souris anymore, we lose track of the fact that La
Divatte brews Trompe Souris

Bad Design: Insertion Anomalies

‘ name ‘ addr ‘ beersLiked ‘ brewery ‘ favBeer ‘
Alice Nantes | Trompe Souris | La Divatte | Titan
Alice Nantes | Titan Bouffay Titan
Bob Rennes | Titan Bouffay Titan
Charlie | Nantes | Mistral Aerofab Mistral

- If Charlie comes into play, one must know beers s/he likes and their
breweries, otherwise null values

BCNF

Boyce-Codd Normal Form

Definition (BCNF)

We say a relation R is in BCNF if whenever X — Y is a nontrivial FD that holds in
R, X is a superkey

- Remember: nontrivial means Y is not contained in X

- Remember: a superkey is any superset of a key (not necessarily a proper
superset)

Example: BCNF

Drinkers(name, addr, beersLiked, brewery, favBeer)

- FD's:
- name — addr favBeer
- beersLiked — brewery

- Only key is {name, beersLiked}
- In each FD, the left-hand side is not a superkey

- Any one of these FD’s shows Drinkers is not in BCNF

Another Example

Beers(name, brewery, brewAddr)

- FD's:
- name — brewery
- brewery — brewAddr

- Only key is {name}

- name— brewery does not violate BCNF, but brewery— brewAddr does

Decomposition into BCNF

Given: relation R with FD's F

1. Look among the given FD’s for a BCNF violation X — V
- If any FD following from F violates BCNF, then there will surely be an FD in F
itself that violates BCNF
2. Compute X+
- Not all attributes, or else X is a superkey

Decompose R Using X — Y

3. Replace R by relations with schemas:
- R = Xt
0 RZ:R—(XJF—X):FUX
4. Project given FD's F onto the two new relations

Decomposition Picture

Ry g

R-X+* X X*+-X

J. Ullman

Example: BCNF Decomposition

Drinkers(name, addr, beerslLiked, brewery, favBeer)

F ={name— addr, name — favBeer, beersLiked — brewery}

1. Pick BCNF violation name— addr
2. Close the left-hand side: {name}t = {name, addr, favBeer}

3. Decomposed relations:

- Drinkersi1(name, addr, favBeer)
- Drinkers2(name, beerslLiked, brewery)

Example (cont'd)

We are not done; we need to check Drinkers1 and Drinkers2 for BCNF

- Projecting FD’s is easy here

- For Drinkersi(name, addr, favBeer), relevant FD's are name— addr
and name— favBeer

- Thus, {name} is the only key and Drinkers1 is in BCNF

Example (cont'd)

- For Drinkers2(name, beerslLiked, brewery), the only FD is
beersLiked— brewery, and the only key is {name, beersLiked}

- Violation of BCNF
- beersLiked* = {beersLiked, brewery}, so we decompose Drinkers?2 into:

- Drinkers3(beerslLiked, brewery)
- Drinkers4(name, beerslLiked)

Example — Concluded

The resulting decomposition of Drinkers

- Drinkersi1(name, addr, favBeer)
- Drinkers3(beerslLiked, brewery)

- Drinkers4(name, beersLiked)

Notice: Drinkers1 tells us about drinkers, Drinkers3 tells us about beers, and
Drinkers4 tells us the relationship between drinkers and the beers they like

3NF

Third Normal Form — Motivation

There is one structure of FD’s that causes trouble when we decompose
-AB—CandC—B
- Example: A = street address, B = city, C = zip code
- There are two keys, {A,B} and {AC}

- C— B is a BCNF violation, so we must decompose into AC, BC

We Cannot Enforce FD’s

The problem is that if we use AC and BC as our database schema, we cannot
enforce the FD AB — C by checking FD’s in these decomposed relations

A = street, B = city, and C = zip

street zip zip city
R =| 50 Otages | 44000 S =| 44000 | Nantes
50 Otages | 44100 44100 | Nantes

{street, zip} is key in R, {zip} is key in S

An Unenforceable FD

street city zip
R » §=| 50 Otages | Nantes | 44000
50 Otages | Nantes | 44100

R % S joins tuples with equal zip codes

Although no FD's were violated in the decomposed relations, FD street city — zip
is violated by the database as a whole

- 3rd Normal Form (3NF) modifies the BCNF condition so we do not have to
decompose in this problem situation

20

3rd Normal Form

Definition (3NF (C. Zaniolo, 1982"))
Every FD X — A satisfies one of those three conditions:

1. X— Ais trivial

2. Xis a superkey
3. Alis prime (more flexible than BCNF)

- An attribute is prime if it is @ member of any key

In other words, a nontrivial FD X — A violates 3NF if and only if X is not a
superkey, or A is not prime

"Equivalent to (E.F. Codd, 1971).

21

Example: 3NF

- In our problem situation with FD's AB— C and C— B, we have keys AB and AC

- A, Band Care each prime
- Although C— B violates BCNF, it does not violate 3NF (B is prime)
- One can decide not to decompose to BCNF, still being 3NF

22

What 3NF and BCNF Give You?

Two important properties of a decomposition

1. Lossless Join: it should be possible to project the original relations onto the
decomposed schema, and then reconstruct the original

2. Dependency Preservation: it should be possible to check in the projected
relations whether all the given FD’s are satisfied

23

3NF and BCNF (cont'd)

- We can get (1) with a BCNF decomposition

- We can get both (1) and (2) with a 3NF decomposition
- But we can’t always get (1) and (2) with a BCNF decomposition
- street-city-zip is an example

24

Testing for a Lossless Join

- If we project R onto Ry, Ry, .., R,, can we recover R by rejoining?
- A projected fragment: R; = wx,(R)
- Does Requalto Ry X Re ™ ... x R,?
- Any tuple in R can be recovered from its projected fragments
- RC Ry ™ Ry X ...x R, isobvious
- So the only question is: when we rejoin, do we ever get back something we
didn’t have originally?

- RD Ry x Ry x...x R, mustbe proved

25

The Chase Test

- Suppose tuple ¢ comes back in the join

- Then ¢ is the join of projections of some tuples of R, one for each R; of the
decomposition

- Can we use the given FD's to show that one of these tuples must be ¢?

26

The Chase - (cont'd)

Procedure

1. Start by assuming t = abc. ..

2. For each i, there is a tuple s; of R that has q, b, ¢, ... in the attributes of R;
3. s; can have any values in other attributes

4. We'll use the same letter as in ¢, but with a subscript, for these components

27

Example: The Chase

- Let R(A, B, C, D) and the decomposition be Ry (A, B), R2(B, C') and R3(C, D)
- Let the given FD's be F = {C — D, B — A}
- Suppose the tuple ¢t = abed is the join of tuples projected onto AB, BC, CD

28

The Tableau

Let's build an instance of R from tuple ¢ = abed in mop(R) X mpc(R) X wep(R)

R | A B C D
from AB part of ¢ a b ¢ d
fromBCpartoft |aza b ¢ dgd
from CD partoft | a3 b3 ¢ d

- Use B— A to state ap must be a

- Use C— D to state dy must be d

We've proved the second tuple must be ¢ = abced; then
(map(R) x mpc(R) ® mep(R)) € R!

29

Summary of the Chase

Build the Tableau, then

1. If two rows agree in the left side of a FD, make their right sides agree too

2. Always replace a subscripted symbol by the corresponding unsubscripted
one, if possible

3. If we ever get an unsubscripted row, we know any tuple in the project-join is
in the original table (the join is lossless)

4. Otherwise, the final tableau is a counterexample

30

Example: Lossy Join

- Same relation R(A, B, C, D) and same decomposition AB, BC, CD
- But with only the FD C— D

31

The Tableau

R |A B C D

tl = a b @il d1
th=1|a b ¢ dgd
t3=1|as by ¢ d

- Use C— D to state dy must be d, and that's all
These three tuples are an example of R that shows the join is lossy:

- abced is not in R, but we can project and rejoin to get t = abed

#[AB] x t[BC] w t3[CD] = abed

32

3NF Decomposition

There is always a lossless-join and dependency-preserving 3NF decomposition
How to achieve 3NF?

1. Perform the iterative binary decomposition process up to 3NF only

2. Use the 3NF Synthesis
- Need a minimal basis for the FD's

33

Minimal Cover and 3NF Synthesis

also known as minimal basis or even canonical cover
A set of FD’s is a minimal cover iff

1. rhs’s are single attributes
2. No redundant FD, ie FD that can be discarded
3. No extraneous attribute in lhs, ie that can be removed from the lhs

34

Constructing a Minimal Cover

Given a set of FD's F
Finding a minimal cover F,,;, requires:

1. Split rhs’s

2. Repeatedly try to remove an FD X — A and see if the remaining FD's are
equivalent to the original

3. Repeatedly try to remove an attribute B from a [hs BX— A and see if the
resulting FD's are equivalent to the original

4. Iterate 2-3 up to stable

35

Constructing a Minimal Cover — for Real

How to achieve Step 2: 7 — {X — A} = F?

& F—{X— A} E X — A? (to prove F — {X — A} implies F)
& Checkfor A e Xt wrt F—{X — A}

How to achieve Step 3: (F — {BX — A} U{X — A}) = F?

< Fimplies (F — {BX — A} U{X — A})

- The other way round is obvious since X - A= BX — A
S FEX—-A
& Checkfor A € X+ wrt F

36

Example: Minimal Cover

Given the FD's F = {ABC — CD,A — B, C — A}

- Step1: F1 ={ABC — C,ABC — D, A — B,C — A}
- Step2:
- remove (trivial) ABC — C to get Fo = F; — {ABC — C}
- cannot remove ABC — D, since D ¢ ABCjLQ—{ABCﬁD} = ABC
- cannotremove A — B,since B¢ AL, g =4
- cannot remove C' — A, since A ¢ C;r{(HA} =C

37

Example: Minimal Cover (cont’d)

Given the FD's F = {ABC — CD,A — B, C — A}
Step 1-2 yields to F, = {ABC — D, A — B, C — A}

- Step 3:
- remove A in ABC — D since D € BCY, = BCAD. Define F;
- remove Bin BC — Dsince D € Cf = CABD. Define F,
- cannot remove C in C' — D (singleton in [hs)
- nothing to do for 4 — B and C — A (singletons in (hs)

Finally, Frin = F1a={C — D,A — B, C — A}

38

Properties of Minimal Cover

Given a set of FD's F

- FD's in Fpin are irreducibles
« Fmin = F thatis equivalent to 71,
* Fuin 1S NOt Unique

- depends on the nondeterministic choices in Steps 2-3

—

- Fmin IS required for the 3NF synthetis algorithm

39

3NF Synthesis

1. Create one relation for each lhs of FD’s in the minimal cover
- Schema is the union of lhs and set of rhs’s

2. Discard relation R(X) if S(XY) exists
3. If no key is contained in an FD, then add one relation whose schema is some
key

40

Example: 3NF Synthesis

Relation R(A, B, C, D, E) with FD's F = {AB — C,AB — D,C — B,E — B}
Assume F is a minimal cover
Decomposition

1. ABCD, CB and EB
2. Then, remove CB since CB C ABCD
3. And add AE for a key

|

Example: 3NF Synthesis (cont’d)

Resulting decomposition is R1(ABCD), Ry(EB) and R3(AE)

- Ry Ry and R3 are 3NF
- Ry is not BCNF by C— B

42

Why It Works?

3NF Synthesis

- Preserves dependencies: each FD from a minimal cover is contained in a
relation, thus preserved

- Lossless Join: use the chase to show that the row for the relation that
contains a key can be made all unsubscripted variables

- 3NF: hard part, a property of minimal covers

43

The Many Other Normal Forms

First Normal Form

The very baseline of Relational Database Design
INF

Relation has (a) a key and (b) atomic columns and (c) no repeating groups of
columns

- Sets or tuples or tables are not allowed as attribute values

- (beerslLiked;, beersLikeds, BeersLikeds) is not allowed as a subset of columns

4t

Second Normal Form

2NF

INF and every non-prime attribute is fully functionally dependent on keys

- Remind: non-prime attributes are not key attributes
- FD X— Ais full iff A doesn't depend on a proper subset of X
- 2NF is not so relevant in DB design

45

Example: 2NF

Drinkers(name, addr, beerslLiked, brewery, favBeer)

FD’s are name — addr favBeer and beersLiked — brewery

- Drinkers is INF: (a) key, (b) atomic values (c) non-repeating attributes
- Drinkers is not 2NF
- name beersLiked — addr is not full, since name — addr holds

- Drinkers cannot be 3NF either

46

Normal Forms: Best Practices

TINF < 2NF < 3NF < BCNF

- Always try to decompose up to BCNF
- When one cannot get dependency preserving BCNF, may decide to stop to 3NF

- Denormalize below 3NF only for good reason (performance) or data model
shift?

nested relations, document db, key-value stores, ...

47

More Stringent Normal Forms

Beyond Functional Dependencies
- Multi-Valued Dependencies: 4NF
- FD + Join Dependencies: ETNF (H. Darwen et al., 2012)
- JD: 5NF, 6NF

- Domain and Key constraints: DKNF

MVD’s and 4NF

48

Running Example Basic Proposal

Either we ignore the normalization...

Class Book

Title Author Publisher Keyword
title FoD S.Abiteboul Addison-Wesley Database
set of authors FoD R.Hull Addison-Wesley Database
publisher FoD V. Vianu Addison-Wesley Database

FoD S. Abiteboul Addison-Wesley Logic
set of keywords FoD R.Hull Addison-Wesley Logic

FoD V.Vianu Addison-Wesley Logic

- Straightforward to model in any programming language

- Tricky in relational database!

- Key: (Title, Author, Keyword)
49 - Not in 2NF, given Title — Publisher 50

Intermediate State

..Or we go to 3NF, BCNF

Title Author Keyword
FoD S. Abiteboul Database
Title Publisher FoD R.Hull Database
) FoD V. Vianu Database
FoD Add -Wesl . .
© ddison-Wesley FoD S. Abiteboul Logic
FoD R. Hull Logic
FoD V.Vianu Logic

- But we still ignore the multivalued dependencies...

51

MVD'’s are full constraints on relation®

Definition (Multi-Valued Dependency)

Let R be a relation of schema {X, Y, Z}; X — Y holds whenever (z, y, z) and
(z,t,u) both belong to R, it implies that (z,y, v) and (z, t, z) should also be in R
Informally

X — Y holds if for any value of X, there exists a well-defined set of values of YV
and a well-defined set of values of Z , independant one with the other.

3All the attributes are necessarily involved.

52

MVD’s (cont'd)

A—>B|C

a bhoa
ay bl (&)
ay b2 C1
ap b2 (6))
ag bl C1
as b1 C3

MVD’s from Physics:

- Department {Building} {Employee {Telephone}}

- MVD's = {Dpt — Bding | Emp, Tel ; Dpt, Emp — Tel | Bding}
53

Properties of MVD'’s

Inference System [FoD 1994, Theorem 8.3.5 p. 172]
Let U a given set of attributes and X, Y, Z are subsets of U,

- Complementation: if X — Y, then X — (U - Y)

- Reflexivity: if Y C X, then X — Y (trivial)

- Augmentation: if X — Y, then XZ —» YZ

- Transitivity: if X - Y and Y — Z then X — (Z - Y)

- Conversion: if X — Y, then X - Y

- Interaction: if X - Y and XY — Z,then X — (Z - Y)

Armstrong’s Axioms (both on FD's and MVD’s) constitute a sound and complete
inference system for the FD+MVD closure computation

54

4th Normal Form

Definition (4NF)
For every non trivial MVD X — Y in R, then X is a superkey

Straightforward extension of BCNF to MVD's.

Losseless-join decomposition of R(X, Y, Z)

Decomposition (X, Y) and (X, Z) is losseless-join iff X — Y holds in R

55

Back to the Class Book Running Example

Title Author Keyword
FoD S.Abiteboul Database
Title Publisher FoD R.Hull Database
FoD V. Vianu Database

FoD Addison-Wesley

FoD S. Abiteboul Logic
FoD R.Hull Logic
FoD V.Vianu Logic

List of MVD's:

- Title — Author | Keyword

56

The Ultimate Schema

..Up to the 4NF

Title Author

)) Title Keyword
Title Publisher FoD S, Abiteboul - -
FoD Addison-Wesley FoD R. Hull

FoD V. Vianu

FoD Database
FoD Logic

57

- 3NF/BCNF design
- must have
- best trade-off between redondancy vs. decomposition
- a priori BCNF, except on dependency loss, then design choice
- 4NF design
- requires many joins in queries (performance pitfall)
- and loses the big picture of class book entities
- INF relational view
- eliminates the need for users/apps to perform deadly joins
- but loses the one-to-one mapping between tuples and objects
- has a large amount of redundancy
- and could yield to insertion, deletion, update anomalies

58

