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A B S T R A C T

Almost 30 years ago, Bayesian networks (BNs) were developed in the field of artificial intelligence as a

framework that should assist researchers and practitioners in applying the theory of probability to

inference problems of more substantive size and, thus, to more realistic and practical problems. Since the

late 1980s, Bayesian networks have also attracted researchers in forensic science and this tendency has

considerably intensified throughout the last decade. This review article provides an overview of the

scientific literature that describes research on Bayesian networks as a tool that can be used to study,

develop and implement probabilistic procedures for evaluating the probative value of particular items of

scientific evidence in forensic science. Primary attention is drawn here to evaluative issues that pertain to

forensic DNA profiling evidence because this is one of the main categories of evidence whose assessment

has been studied through Bayesian networks. The scope of topics is large and includes almost any aspect

that relates to forensic DNA profiling. Typical examples are inference of source (or, ‘criminal

identification’), relatedness testing, database searching and special trace evidence evaluation (such as

mixed DNA stains or stains with low quantities of DNA). The perspective of the review presented here is

not exclusively restricted to DNA evidence, but also includes relevant references and discussion on both,

the concept of Bayesian networks as well as its general usage in legal sciences as one among several

different graphical approaches to evidence evaluation.

� 2011 Elsevier Ireland Ltd. All rights reserved.

Contents lists available at ScienceDirect
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1. Introduction

This review aims at compiling, summarizing and discussing
literature, published mainly in forensic science journals, on the
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construction and implementation of graphical probabilistic
models, that is Bayesian networks, for the assessment of the
probative value of forensic DNA profiling evidence. The presenta-
tion is placed into a more general context by including also
relevant references on the concept and definition of Bayesian
networks as well as their study as a framework for reasoning about
evidence in legal settings. Section 2 provides a general introduction
to the concept of Bayesian networks as an approach developed in
etworks for evaluating forensic DNA profiling evidence: A review
/j.fsigen.2011.06.009
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the early 1980s for coherent reasoning in situations of uncertainty,
which presents a major characterizing feature of many areas of
theoretical and applied research (e.g., artificial intelligence, clinical
diagnosis). More technical aspects and definitional issues are
confined to Appendix A and Appendix B. On the basis of these
general considerations on the principal aspects and properties of
Bayesian networks, Section 3 will allow to pursue the discussion of
Bayesian networks as a framework for evaluating scientific
evidence in legal settings. It is in this part that a detailed overview
is provided of the research and applications reported over the last
two decades. The various topics and references to literature are
organised in a broad thematical form rather than a strict
chronological order. The aim is to provide an informed guide to
further reading and to point out the general rationale behind
Bayesian network guided probabilistic inference modelling for
forensic DNA profiling evidence. This is further pointed out in a
discussion presented in a concluding Section 5. Not covered in this
review are more distinct topics in their own right, such as available
software, additional analyses (e.g., parameter sensitivity analyses)
to investigate the performance of Bayesian network models and
ways to obtain required probability assignments (e.g., by expert
elicitation).

2. Bayesian networks

Based on elements of graph and probability theory, Bayesian
networks can roughly be defined as a pictorial representation of
the dependencies and influences (represented by arcs) among
variables (represented by nodes) deemed to be relevant for a
particular probabilistic inference problem. Since the early 1980s,
Bayesian networks have gained increased acceptance in the field of
expert system technology.1 Notably through their ability to
coordinate bidirectional2 probabilistic inferences, Bayesian net-
works are now considered to be a general representation scheme
for uncertain knowledge [2–7]. Although graphical approaches to
represent probabilistic information have already been discussed
by Wright [8,9],3 for example, it is generally agreed that the works
of Pearl [11] have initiated the development of the formalism
known today as Bayesian networks.

The name ‘‘Bayesian networks’’ (BNs) is among the most
frequently encountered designations and will be used throughout
this paper. One of the earliest uses of this term can be found in Pearl
[12]. According to the field of application, a variety of other terms –
although some with posssible nuances in definitional details – may
be encountered. Among these terms are ‘Bayes nets’, ‘Bayesian
belief networks’, ‘Bayesian expert systems’, ‘graphical probabilistic
1 According to Cowell et al. [1], an expert system consists of a knowledge base

and an inference engine. The knowledge base encodes domain-specific knowledge

about a problem whereas the inference engine provides a means for processing the

contents of the knowledge base.
2 The term ‘bidirectional’ refers to the arcs (directed edges, see also Appendix A)

of a graph and is interpreted here as the capacity to deal with the processes of, on

the one hand, evaluating the probability of obtaining particular evidence given the

truth of certain propositions of interest, and, on the other hand, of drawing

inferences about propositions of interest, based on particular evidence. This

property stimulated particular interest in Bayesian networks in areas that study

deduction and induction through probability. Further details on such probability

calculus in Bayesian networks are given later in Appendix B.
3 The main focus of these works are models for statistical data with an emphasis

on continuous random variables. Bayesian networks can also cope with continuous

variables, but not without several constraints. Among the principal constraints is

that the present state of technical development only allows one to handle

conditional Gaussian (i.e., Normal) distributions. Another constraint, a structural

one, forbids the conditioning of a discrete variable by a continuous variable. Notice

that when continuous variables are used in the same model along with discrete

variables, the resulting networks are sometimes called ‘hybrid’ [10] or ‘mixed’ [1].

One possibility for avoiding limitations due to continuous variables is to make their

range of values discrete (see also Appendix A).

Please cite this article in press as: A. Biedermann, F. Taroni, Bayesian n
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networks’, ‘probabilistic influence diagrams’, ‘probabilistic net-
work models’, ‘causal networks’ or, more generally, ‘knowledge
maps’. For example, the term ‘belief’ in ‘Bayesian belief networks’ is
sometimes emphasised in order to clarify that the probabilistic
assignments used in a given model reflect degrees of personal
belief of the individual that conducts a probabilistic modelling and
inference process. In turn, the descriptor ‘influence diagram’ makes
reference to an extension of Bayesian networks to elements of
decision theory,4 in particular nodes for representing decisions and
utilities [4,17]. Broadly speaking, utility refers to an individual’s
valuation of a consequence.5 In yet other contexts, the notion of
‘causality’ is sometimes used. This stems from the fact that the
links between the nodes of a Bayesian network can be interpreted
as causal relationships, even though the definition of Bayesian
networks does not refer to causality and there is no requirement
that the links represent causal impact [4,18,19]. More generally,
‘causality’ is a philosophically subtle and tricky concept [20] and
will be avoided in this paper.

Scientific literature reports a vast number of applications for
Bayesian networks in virtually any field where probabilistic data
analysis plays a central role [21]. Areas of application range, for
example, from such fields as information retrieval [22] to
meteorology [23]. A review by Goméz [24], covering more than
one hundred references, lists fields such as agriculture and
livestock management, economy, environment impact and natural
resources management, industry, medicine, risk analysis, software
development (information systems design, user interfaces, multi-
agent systems, web applications, etc.) and strategy formulation. A
common aspect of these latter areas of application is their reliance
upon probability theory as a measure of uncertainty and the use of
domain experts’ knowledge for model specification. Although
there may be many situations in which the number of variables
involved is rather limited so that the resulting degree of
technicality remains manageable, this does not typically hold
for applications that aim to address real-world (and possibly large
scale) inference problems. When applying the probability appara-
tus to real-world situations, the number of parameters may
increase rapidly and the required probability calculus may become
very difficult to cope with. This was one of the reasons, for
example, why the feasibility of developing substantial applications
with probability theory in fields such as artificial intelligence has
long been regarded with skepticism [1].

Similar observations have been made in discussions about the
relevance of probabilistic reasoning in legal contexts. In his
Chapter ‘‘Probability’’ in Aitken and Stoney [25], Lindley [26, p. 37],
for example, notes that ‘‘sometimes the calculations are horren-
dous and cannot at the moment be done (. . .)’’. This was not
intended, however, as an advice against probability because the
same author6 went on to argue that this ‘‘(. . .) is a technical
difficulty that adequate research will, one hopes, overcome’’ [26, p.
37]. Almost fifteen years later, Lindley changed his argument
slightly. Although he still notes that ‘‘(. . .) the accumulation of
4 Decision theory represents an emerging concept in forensic science [13–16],

but it is beyond the scope of this paper.
5 A consequence is defined as the combination of a particular state of nature

(which may typically be unknown to a reasoner or decision maker) and a given

decision. As an example, consider a legal actor’s decision to ‘individualise’ a suspect

as the source of a crime mark when the true state of nature is that the latter

individual is in fact the source of that mark [15,16]. This is a particular consequence

which may also be termed a ‘correct identification’.
6 A similar viewpoint is due to Friedman [27, p. 1818]: ‘‘If applied to take into

account all the information we have about a situation, Bayesian analysis requires

unrealistically complex calculations, but this does not suggest a problem with the

theory. On the contrary, the complexity is in the world surrounding us, and the

theory would have limited value if it could not in principle represent that

complexity. Probability is a flexible template. It can take into account as much

complexity as its user is able to handle.’’

etworks for evaluating forensic DNA profiling evidence: A review
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10 In this case, Bartolomeo Vanzetti and Nicola Sacco were found guilty of payroll
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Fig. 1. Bayesian network proposed by Aitken and Gammerman [46]. The nodes are

defined as follows: A: ‘X’ committed the murder; B: ‘Y’ committed the murder; E:

eyewitness evidence of a row between ‘X’, ‘Y’ and the victim some time before the

crime was committed; F: fibres from a jacket similar to one found in the possession

of ‘X’ are found at the scene of the crime; H: ‘Y’ drives the car of ‘X’ regularly; T: ‘Y’

picks up fibres from jacket of ‘X’. [Reproduced with permission from Elsevier Limited

(Journal of the Forensic Science Society)].
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simple rules can produce complicated procedures’’ [28, p. xxiv], he
now acknowledges that ‘‘methods of handling sets of evidence
have been developed; for example, Bayes nets (. . .)’’ [28, p. xxiv].
These models – Bayesian networks (defined in further detail in
Appendix A) – have an underlying probabilistic architecture and
reflect the dependencies among variables deemed to be relevant
for a particular inference problem. The graphical representation
expresses the conditional independence7 assumptions that one
may meaningfully impose in a probabilistic calculus in order to
reduce its dimension to more tractable levels. It was felt that the
incorporation of such assumptions is a way ahead to make
probabilistic manipulations in real-world applications technically
feasible and substantively acceptable [1].

3. Representational schemes for reasoning about evidence in
legal sciences

3.1. General legal applications

The study of representational schemes for assisting reasoning
about evidence in legal contexts has a remarkably long history.
According to scholars in the field of fact analysis, such as Schum
[29] or Robertson and Vignaux [30], the charting method
developed by Wigmore [31,32] can be taken to be a predecessor
of modern network approaches to inference, and ultimately,
decision analyses. Wigmore developed a detailed, however
essentially non-probabilistic, graphical apparatus for structuring
large and complex masses of evidence. A reworked presentation of
this approach can be found, for example, in the mongraphs of
Anderson, Twining and Schum [33,34]. More generally, a special
issue of Law, Probability and Risk (Volume 6, Numbers 1–4, 2007)
contains a rich collection of papers (some of which include sections
with historical reviews) on the topic of graphic and visual
representations of evidence and inference in legal settings.

Graphical approaches that incorporate genuine means for
coping with uncertainty, notably through probability theory,
began to stimulate legal researchers only about two decades
ago. Examples include decision trees8 and a modification of these
known as ‘route diagrams’ [35,36]. Despite the rigour of their
representational capacity, these concepts were not developed to
substantive practical applications. Notably for problems involving
an increased number of (possibly multiply valued) variables and a
complex dependency structure, the compact and economical
representation, with a thorough computational architecture, of
Bayesian networks was found more advantageous. Subsequently,
Bayesian networks advanced to a preferred technique of research-
ers and practitioners engaged in the joint study of probability and
evidence in judicial contexts.

Since the early 1990s, both lawyers and forensic scientists have
shown increased interest in Bayesian networks for studying issues
that relate to evidence evaluation. While lawyers have been more
concerned with structuring cases as a whole, forensic scientists
focused primarily on the evaluation of selected items of scientific
evidence. Many of the studies with an emphasis on general legal
applications rely on Bayesian networks as a method for the
retrospective analysis of complex and historically important causes

célèbres. Edwards [37], for example, provided an alternative
analysis of descriptive elements, such as car and hair colour,
7 Conditional independence describes, broadly speaking, a setting in which the

truth or otherwise of a proposition would not affect one’s belief in another

proposition, given that a third proposition is already known.
8 Broadly speaking, decision trees are a kind of graphical model in which separate

nodes are used for representing the different outcomes of the same variable.

Probabilities, useable for various calculations, are assigned to edges that link nodes

of different variables.
9 People v. Collins, 68 Cal. 2d 319, 438 P. 2d 33, 66 Cal. Rptr 497 (1968).

Please cite this article in press as: A. Biedermann, F. Taroni, Bayesian n
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presented in the Collins case.9 Schum [29] and Kadane and Schum
[38] worked on a probabilistic analysis of the Sacco and Vanzetti
case10 with an emphasis on the credibility and relevance of
evidence given by human sources, that is, testimony. Similarly,
probabilistic analyses have been proposed for the Omar Raddad
case11 [39] and, more recently, for the O.J. Simpson case12 [41].

An important contribution to the discussion of Bayesian
networks for structuring and analysing legal arguments has been
provided by Robertson and Vignaux [30]. Although not working on
a cause célèbre, these authors present Bayesian networks as a new
development in the field of fact analysis and point out the
advantages of Bayesian networks over previously proposed
methods, such as Wigmore charts or route diagrams.

Another contribution to the discussion of Bayesain networks in
a judicial context has been provided by Fenton and Neil [42].
Besides their primary field of work, that is software reliability,
these authors have used Bayesian networks to describe a
previously unreported pitfall of intuition, called ‘jury fallacy’. This
kind of fallacy applies to situations in which a prior similar
conviction by the defendant is revealed after the jury returns a not
guilty verdict. Using Bayesian networks with rather conservative
assumptions, the authors show that it is fallacious to argue that a
prior similar conviction should decrease the belief that jury was
correct with their not guilty verdict. This analysis has later been
discussed in the legal literature by Jowett [43,44].

3.2. ‘Early’ uses of Bayesian networks in forensic science and

formative approaches for DNA evidence

According to Dawid and Evett [45], Aitken and Gammerman
[46] were the first to suggest the use of directed acyclic graphs (i.e.,
Bayesian networks) for probabilistic reasoning in the assessment
of forensic evidence. Based on a hypothetical murder scenario (see
Fig. 1), these authors have shown how a network approach might
be applied to cases involving several, possibly complicated,
interrelated issues. They provide a detailed discussion on how
(i) relevant propositions can be extracted from a scenario, (ii)
robbery resulting in the murder of Frederick Parmenter and Alessandro Berardelli in

South Braintree, MA, on April 15, 1920.
11 The Raddad trial was held in Nice, France. Omar Raddad was charged and

convicted in 1994 with murder and robbery of his employer, Mrs. Ghislaine

Marchal.
12 O.J. Simpson was accused of the murder of his ex-wife, Nicole Brown Simpson,

and her friend, Ron Goldman. Elements of the O.J. Simpson case, in particular a

mixed DNA crime stain, have also been discussed – using Bayesian networks – in

Mortera et al. [40] (see also Section 4.1).

etworks for evaluating forensic DNA profiling evidence: A review
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Fig. 2. Bayesian network for ‘one-trace’ cases involving transfer from the offender

[49]. The definition of the variables is as follows: H: the suspect is the offender; G:

the crime stain came from the offender; F: the crime stain came from the suspect; E:

the suspect’s blood sample matches the crime stain. [Reproduced with permission

from Elsevier Limited (Forensic Science International)].
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relationships between propositions are represented qualitatively
in terms of a directed graph, and (iii) subjective beliefs are
incorporated as probabilities and used for inference.

Aitken and Gammerman [46] have also mentioned that
graphical probabilistic models, besides being used for representing
evidence and propagating its effect, could also be an excellent tool
for discussing disagreements over probability values that different
experts may have. Their opinions, possibly diverging, can be
modelled separately and their effects can be compared. This
argument now is probably more timely than ever, since many
academically and commercially available software tools allow
Bayesian networks to be readily implemented in a computerised
format.

In a further study, Aitken et al. [47,48] have investigated the
potential of Bayesian networks for specific case analysis, also
known as ‘‘offender profiling’’. This approach differs from the
previously discussed study (i.e., [46]) in the sense that it is not
directly concerned with scientific evidence (e.g., fibres found on
the crime scene), but merely with aspects of the offender, the
victim and characteristics of the crime. Based on a dataset covering
the details of several hundred cases13 of sexually motivated child
murders and abductions, the authors propose different graphical
models to relate the key parameters of a case. These models may be
used to revise the probability of offender characteristics, given
information about the victim and the crime. The study proposes
practical examples on how investigators should revise their belief
in the proposition that the offender is (i) living with a partner, and
(ii) known to the victim, given information on the victim (e.g., age
and sex) and the crime (e.g., method of killing). A second major
difference between the studies of Aitken and Gammerman [46]
and Aitken et al. [47,48] can be observed when comparing the
nature of the knowledge incorporated into the graphical models.
The numerical specification of the Bayesian networks described in
Ref. [46] is largely based on personal assignments of probability,
whereas more data driven assessments are used in the models
described in Refs. [47,48].

The discussion on the use of graphical probabilistic models for
evaluating forensic evidence, initiated in Ref. [46], has been
continued in 1997 by Dawid and Evett [45]. These authors discuss
an example which is more complex than the one in Ref. [46]
because it involves two kinds of scientific evidence (i.e., fibres and
blood), as well as the testimonies of two persons. A particular
emphasis is made on the various dependence and independence
properties implied by a graph structure. It is also emphasised how
these relationships may assist the evaluation of different items of
evidence within a complex framework of circumstances. Further-
more, it is shown how a graphical structure can aid in reducing the
number of variables necessary for deriving relevant likelihood
ratio formulae. From a more general point of view, this paper can
be considered as the first that is focusing on Bayesian networks and
DNA evidence, because it presents an example involving blood
staining.

The previously discussed studies by Aitken and Gammerman
[46] and Dawid and Evett [45] both incorporate either one or
several items that may be referred to as ‘scientific evidence’,14 such
as fibres or blood. In both studies, these items of scientific evidence
are discussed in the context of individual case scenarios. As a
consequence, the described graphical procedures involve consid-
erable structural differences that reflect the particular case
circumstances.
13 The cases relate to incidents reported in Great Britain since 1960.
14 This designation stems from the nature of these items, as they would typically

involve a forensic scientist performing some sort of analysis, such as the

microscopic comparison of fibres or the examination of blood staining.
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A different approach has been followed in Garbolino and Taroni
[49]. These authors do not primarily focus on a particular scenario.
On the contrary, they use Bayesian networks to approach what
they call a ‘‘(. . .) standard analysis of patterns of inference
concerning scientific evidence (. . .)’’ [49]. The authors address
some more generic and fundamental issues that forensic scientists
should account for if they seek to evaluate their evidence in the
light of propositions that are of judicial interest. For example, one
of the proposed Bayesian networks can be used for evaluating ‘one-
trace’ cases involving transfer15 (see Fig. 2). It incorporates
parameters such as:
� the random match probability of the compared characteristics

among members of the relevant population,
� the possibility that the stain would have been left by the suspect

even though he was innocent of the offence, or
� the relevance16 of the crime stain for the case.

The model shown in Fig. 2 is applicable for DNA evidence (i.e.,
transfer material left on a crime scene) and thus represents, after
the study of Dawid and Evett [45], a further instance of the use
Bayesian networks for evaluating DNA evidence.

In order to underline the appropriateness of the graph structure
and the associated probability assessments, the authors in Ref. [49]
show that the properties of their network are such that they agree
with Evett’s [52] formula for the relevance term. This demonstra-
tion is essential for the discussion of Bayesian networks for
evaluating scientific evidence because it allows one to argue that
one can, through Bayesian networks, accurately represent existing
and accepted probabilistic solutions for forensic inference
problems. As such, the proposed generic graphical models in
Ref. [49] can serve as building blocks, useable in combination with
other network fragments in order to provide elements of a solution
for larger problems.

At about the same time as Garbolino and Taroni [49], an
application of Bayesian networks to cases involving small
quantities of DNA was reported by Evett et al. [53]. To a certain
extent, this study can be taken as a continuation of the study by
Dawid and Evett [45]. While the study in Ref. [45] focused
primarily on the discussion of Bayesian networks as a concept
itself, the more recent study by Evett et al. [53] addresses issues
more specifically related to the evaluation of DNA evidence. As
these authors have observed, the considerable increase in the
sensitivity of DNA analyses has initiated a tendency of courts to
shift from questions of the kind ‘whose DNA is this?’ to ‘how did
15 Note that the kind of transfer considered here only concerns one direction. A

detailed account on the use of Bayesian networks for approaching cross-transfer

(i.e., from the victim to the criminal and vice versa) is given in Aitken et al. [50].
16 According to Stoney [51], material collected on a crime scene is ‘relevant’ if it

has a true connection with the offender. The relevancy of evidence is probabilistic in

nature, as it ‘‘(. . .) may range from very likely to practically nil (. . .)’’ [51].
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Fig. 3. Representation of a genotype, node gt, with pg and mg denoting the alleles

inherited from the father, and the mother, respectively.
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this DNA get there?’. With regard to such challenges, the authors
show that Bayesian networks are a powerful tool that usefully
supplements the evaluation of evidence based on an already
established approach, known as the ‘hierarchy of propositions’.17

The paper discusses two case work examples, the first of which
involves the outcomes of DNA analyses on a cigarette end
recovered near the point of entry of a burgled home. The proposed
Bayesian network accounts for questions of the following kind: Is
the suspect the person who smoked the cigarette? Did the person
who smoked the cigarette leave sufficient DNA to give a profile?
Did DNA from the suspect enter the process by innocent means?
Did DNA from some third person enter the process? These
propositions are modelled as independent binary nodes that point
towards a common descendant, termed ‘outcome’, with states
‘match’, ‘mixture/match’, ‘different’ and ‘no profile’.

In order to study the sensitivity of the outcome to changes in the
truthstate of the parental variables (that is the uncertain
propositions), Beta probability distributions have been used to
generate values at random for these parameters. From all the
studies on forensic applications of Bayesian networks discussed
until now, the paper of Evett et al. [53] is the first to suggest
simulations of this kind. The authors have shown that these
operations can be used as part of case pre-assessments.18 Evett
et al. [53] provide a second example for which they propose an
analysis using Bayesian networks. The scenario pertains to
outcomes of DNA analyses performed on samples taken from
different areas of a watch (suspected to be worn by the offender)
found on the crime scene. This case is somewhat more complex
than the first one, as more intermediate propositions are
considered. In addition, the hypotheses according to which the
suspect is or is not the offender have been included. On the whole,
the example clearly illustrates that Bayesian networks allow
probabilistic analyses to be made over a large number of variables
along with different interrelated issues. The authors conclude that
Bayesian networks thus provide valuable support in cases where a
full algebraic solution would appear to be extremely difficult [53].

4. Bayesian networks and the analysis of genetic markers:
advanced modelling approaches

4.1. Network structures focusing on individual genes and genotypes

In publications quoted so far in this review, a single discrete
node is generally used for representing the outcomes of DNA
analyses (e.g., the event that the crime and suspect sample
‘correspond’ with respect to their DNA profile). In the simplest
case, this perspective amounts to a two-node network fragment in
which knowledge about the state of an observational variable, call
it E (short for ‘DNA match’ as, for example, in Fig. 2), is used for
drawing an inference on propositions at the source level (i.e., ‘the
‘matching’ suspect is (is not) the source of the crime stain’). If the
latter propositions are represented by F, the corresponding
network fragment is F ! E.

Following these formative and rather coarse modelling
approaches, considerable research has been devoted to the
application of Bayesian networks to inference problems involving
the results of DNA analyses. An important contribution to this area
17 The ‘hierarchy of propositions’ describes an interpretative framework according

to which evidence is evaluated by considering at least two competing hypotheses

[54–57]. Usually, the propositions that are of interest to the courts are referred to as

the ‘Offence level’ (e.g., ‘The defendant killed Mister Y’). Other levels are the ‘Activity

level’ (e.g., ‘The defendant is the person who smashed the window’) and the ‘Source

level’ (e.g., ‘The crime stain comes from the victim’).
18 A case pre-assessment involves the evaluation of the probability distributions

of the likelihood ratio given each of the competing hypotheses [55]. Usually, this is

done before performing any analyses.
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of application has been provided by Dawid et al. [58,59]. These
authors have shown how appropriate graphical structures for
Bayesian networks can be derived from initial pedigree repre-
sentations of forensic identification problems. Part of their
approach are basic representational schemes, useable as repeat-
able modules in analogous situations. These sub-models are more
fine-grained network fragments focusing on individual genes,
rather than full genotype representations. An example of this is
shown in Fig. 3. Here the node gt, representing a genotype, is
modelled as a logical combination of the alleles inherited from the
mother and father respectively. These parentally inherited genes
are represented by the nodes mg and pg, to be read ‘maternal gene’
and ‘paternal gene’, respectively.

A gene, A for instance, can take one of several different forms,
also called alleles. Suppose there are n alleles at gene A. These
alleles may be denoted A1, A2, ..., An. In the Bayesian network shown
in Fig. 3 the states A1, A2 and Ax are assumed for the nodes mg and
pg. The third state, Ax, is an aggregation of all remaining alleles A3,
. . ., An. The possible states of the genotype node gt may then be
defined as A1A1, A1A2, A1Ax, A2A2, A2Ax, and AxAx.

In order to illustrate this modelling approach for evaluating the
results of analyses of genetic markers, consider a typical case of
disputed paternity [59]. A certain male, denoted as the putative
father pf, is supposed to be the father of a certain child c. DNA
profiles are available on the mother m, the putative father pf and
the child c. The parameter of interest is the likelihood ratio for the
proposition that the putative father pf is the true father tf, noted
tf = pf ? , given knowledge about the genotypes of the child (cgt),
the putative father (pfgt) and the mother (mgt). The paternity
pedigree19 corresponding to this inference problem is shown in
Fig. 4(i). Dawid et al. [59] have proposed a representation of this
disputed paternity case in terms of a Bayesian network, which is
shown in Fig. 4(ii). There would be a Bayesian network of this kind
for each genetic marker that has been analysed. These networks
can be analysed separately, and the resulting likelihood ratios
combined subsequently. An alternative way of proceeding could
consist in combining the single-locus networks within a single
‘top-level’ network, in the context also called a ‘super-network’.

The paternity network depicted in Fig. 4(ii) allows one to obtain
the same results as with classic arithmetic calculus of Essen-Möller
[60] under the Hardy–Weinberg assumption of independence. One
might thus be tempted to conclude that there is no real gain by
working with Bayesian networks. As noted by Dawid et al. [59],
there is indeed no need to develop new methods for problems that
can be solved by simple algebra. These authors add, however, that
the aim of proposing the network shown in Fig. 4(ii) is different: it
provides a solid basis for evaluating DNA evidence and serves as a
starting point for approaching more complex problems that
accompany the evaluation of forensic DNA evidence. In order to
illustrate this point, Dawid et al. [59] pursue an analysis and
discussion of the following topics:

� Missing data: In some cases, the profiles of one or more target
individuals may not be available. In such scenarios, indirect
evidence (i.e., information on close relatives) may be used to
infer something about the allelic configuration of the target
19 Note that squares represent males and circles females.
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Fig. 4. Different representations of a case of disputed paternity [59]: (i) paternity pedigree (with squares representing males and circles females, pf denotes the putative father,

tf the true father, m the mother and c the child) and (ii) a Bayesian network. For the Bayesian network, tfpg, tfmg, mpg and mmg denote the paternal p and maternal m (in

second place) genes of the true father tf and the mother m (in first place); cpg and cmg denote the child’s paternal and maternal genes, respectively; pfpg and pfmg denote the

putative father’s paternal and maternal genes, respectively; pfgt,mgt and cgt denote the genotypes of the putative father, the mother and the child, respectively, and tf = pf ?

takes two values in answer: ‘yes’ or ‘no’ as to whether the true father is the putative father. [Reproduced with permission from John Wiley and Sons (Scandinavian Journal of

Statistics)].

20 A more general discussion on conventional (i.e., not object-oriented) Bayesian

networks and sub-population effects is given in Taroni et al. [62].
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individuals. This analysis is discussed on the basis of two
paternity cases.
� Mutation: This problem occurs when there are profiling results

that are ‘incompatible’ with a particular proposition of a familial
link. Again, this complication is discussed on the basis of a
disputed paternity case.
� Inference of identity: Based on a fictional criminal case, the

authors model the inference of identity of a mutilated murdered
body on the basis of profiles available from living individuals.

The general modelling approach of Dawid et al. [59] has
subsequently been used in further works that concentrated on
aspects of the assessment of forensic DNA evidence. Mortera et al.
[40,61], for example, have studied Bayesian network models for
evaluating mixed DNA traces, including a discussion of issues such
as missing individuals and silent alleles, along with a reference to
the O.J. Simpson case. The book by Taroni et al. [62] proposes
models for situations in which (i) the alternative proposition is that
a sibling of the suspect left the crime stain (in agreement with a
probabilistic approach previously described by Evett [63]), or (ii)
multiple propositions need to be considered (e.g., that the crime
stain comes from a brother of the suspect or an unrelated member
of the suspect population). A further topic approached in Taroni
et al. [62] through Bayesian networks is that of partial matches,
that is a situation in which a suspect matches a crime stain only
partially and when a proposition of interest is that a close relative
of the suspect, such as a brother, is the source of the crime stain.

More generally, Bayesian network models can be used as an
integral part of larger IT-environments, including, for instance,
connections to operational DNA databases. Bruijning-van Dongen
et al. [64], for example, describe a system architecture in which
Bayesian networks are used for kinship analyses based on DNA
profiles. A primary feature of such an implementation consists of
its capacity to deal with the analyses of a large set of cases. This
may be of interest for processes such as victim identification in
case of a large disaster.

4.2. Object-oriented Bayesian networks

Despite the various compelling capacities of the Bayesian
network formalism, the manual model construction may often be a
painstaking process, in particular for larger applications. For
example, it may be that a model may need to incorporate certain
repetitive sub-models. These may be implemented by ‘copy and
paste’ procedures, but whenever the specification of the sub-model
of interest requires changes, all of the sub-models of the same type
Please cite this article in press as: A. Biedermann, F. Taroni, Bayesian n
and guide to literature, Forensic Sci. Int. Genet. (2011), doi:10.1016
would need to be reviewed as well. This may thus hinder an
efficient model construction, maintenance and reconfiguration.

As a means to overcome such difficulties, Bayesian networks
have been extended to ‘object-oriented Bayesian networks’. The
idea behind this approach is to define generic ‘classes’ of networks,
particular nodes of which (so-called ‘instances’) can be used, as
required, in place of nodes in other networks. The object-oriented
Bayesian network language thereby allows one to describe
inference problems in terms of inter-related objects. Without
entering into any further details, it is solely noted here that an
‘object’ may either be a standard random variable (as defined in
Appendix A), or consist of a set of attributes, each of which is an
object. More detailed theory of object-oriented Bayesian networks
is given, for example, in Koller and Pfeffer [65], Laskey and
Mahoney [66], Bangsø and Wuillemin [67], Neil et al. [68] and
Kjærulff and Madsen [17]. The object-oriented approach to
Bayesian networks allows one to structure problems hierarchically
and with different levels of abstraction. This is often regarded as a
convenient property because humans tend to think naturally in
terms of hierarchies of abstractions, in particular where it is
difficult to mentally capture all aspects of a problem simulta-
neously.

This practical complication in probabilistic modelling is also
encountered in forensic contexts [69], and DNA profiling results
provide an illustrative example for this. In fact, in recent years,
considerable research has been devoted to the application of
object-oriented Bayesian networks for approaching various
evaluative aspects relating to DNA profiling results. The main
contributions are the following:

� Dawid et al. [70,71] present object-oriented Bayesian networks
as an improved probabilistic modelling approach for the broad
scope of evaluative situations (e.g., criminal identification or
relatedness testing) and problems (e.g., mutation or silent
alleles) they have addressed in their earlier paper in 2002
[59]. In the particular area of paternity testing, Hepler and Weir
[72] provide an object-oriented extension that allows one to
account for allelic dependencies.20

� The papers by Dawid [73] and Vicard et al. [74] rely on object-
oriented Bayesian networks for estimating mutation rates.
� The work by Cowell et al. [75] uses object-oriented Bayesian

networks for developing a more refined approach to interpreting
DNA-mixture evidence. While previous research on Bayesian
etworks for evaluating forensic DNA profiling evidence: A review
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Fig. 5. (i): Representation of a gene at a given locus in terms of a class network ‘gene’ consisting of a single output node. (ii): Expanded representation of an instance of the class

network ‘gene’. (iii): Class network ‘genotype’ with nodes gtmin and gtmax representing, respectively, the minimum and maximum of the two input gene nodes pg (‘paternal

gene’) and mg (‘maternal gene’). (iv): Class network ‘founder’ containing instances of the class networks ‘gene’ and ‘genotype’. (v): Object-oriented Bayesian network for a

one-stain one offender scenario. Further definitional details are given in the text. [Reproduced with permission from Elsevier Limited (Forensic Science International)].

22 For example, when considering 8 alleles for the locus TH01 (considering data
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networks for DNA mixture analysis did not take into account the
quantity of DNA [40], the methodology proposed in Ref. [75]
focuses more specifically on the use of quantitative peak area
information. In Ref. [76], Cowell et al. extend their application to
two independent mixture samples that have DNA from the same
set of contributors in order to evaluate the improvement in
correct genotype assignment. More recently, they have reported
an extension of their approach in order to account for artifacts
such as allelic dropout, stutter bands and silent alleles [77].
� The study by Cavallini and Corradi [78] describes object-oriented

Bayesian networks for database search settings,21 including an
extension to propositions that consider that the source of a crime
stain is a member of the families of the analysed database
members.
� Green and Mortera [81] developed object-oriented Bayesian

networks for studying the effect of assumptions about founding
genes (e.g., uncertainty about allele probabilities).

As an illustration of the object-oriented Bayesian network
approach proposed by Dawid et al. [71], let us start by considering
a model for a gene at a given locus, typically inherited either
paternally or maternally (Fig. 5(i)). That gene is represented by a
single node gene which contains the full repertory of allele values
(for a given locus) along with their population proportions. The
bold gray border and the solid outer contour line indicate that this
node is defined as a so-called ‘output’ node. This makes this one-
node network a ‘class network’, which means that it can be invoked
(possibly repeatedly) as an instance in some other network which
may, depending on the level of hierarchy, also be referred to as the
‘master’ network.

Fig. 5(ii) provides an expanded representation of how the class
network, called ‘gene’ here, would appear in some other network.
This is further illustrated in Fig. 5(iv), which contains two instances
of the network class ‘gene’: one is shown, in expanded form, as the
top left-hand network fragment (i.e., node pgin) and another one is
shown as the top right-hand network fragment (i.e., node mgin, in
contracted form). These nodes, pgin and mgin, represent, respec-
tively, an individual’s paternally and maternally inherited genes at
a given locus. The bottom node gt in Fig. 5(iv) is an instance of the
class network ‘genotype’, whose internal structure is shown in
Fig. 5(iii). This latter class network contains the two nodes gtmin

and gtmax, which are defined as the minimum and maximum of
the two input gene nodes pg (short for ‘paternal gene’) and mg

(short for ‘maternal gene’). This represents an alternative way for
specifying an individual’s genotype. That is, instead of having a
single node gt (as shown earlier in Fig. 3) which contains the
collection of possible genotypes at a given locus (as a function of
21 Taroni et al. [62,79] discuss a Bayesian network without object-orientation for

approaching database search settings in agreement with the likelihood ratio

procedure described in Evett and Weir [80].
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the specified set of alleles), distinct nodes are used in Fig. 5(iii) for
representing an individual’s allelic configuration. This latter
representation may be preferable because the size of the
probability table of the node gt in Fig. 3 may grow rapidly
whenever the specified set of alleles increases.22 Let us further
mention that the bold gray border and dashed outer line of the
nodes pg and mg indicate that they are interface nodes of type
‘input’. This means that they act as placeholders (or, stated
otherwise, instances) of identical nodes in another network (e.g., in
a ‘master’ network). This is illustrated in Fig. 5(iv), where the nodes
pg and mg connect to the input nodes pg and mg of gt. The direct
connection is not visible, however, because gt is shown in
contracted form.

The network shown in Fig. 5(iv) is a class called ‘founder’, which
is repeatedly invoked in the object-oriented Bayesian network
shown in Fig. 5(v). This network models a situation in which one
seeks to evaluate whether a suspect s or some alternative source as

is the source of a crime stain cs. This latter node is an instance of the
class ‘query’ [71], whose internal structure is not shown in further
detail here. The main proposition at the source level is represented
by a regular Boolean node H.

4.3. Miscellaneous applications

Besides the main applications in DNA evidence evaluation, that
is inference of source and relatedness testing as discussed in the
previous paragraphs, Bayesian networks have also been developed
for the study of a variety of further topics that gravitate around the
evaluation of forensic DNA analyses.

One such topic is that of DNA cross-transfer evidence. In fact, all
works on stain ‘identification’ evidence quoted so far in this review
consider only so-called unidirectionally transferred DNA stains
(e.g., a stain from the victim transferred to an offender, or a stain
left by an offender on a crime scene). In practice, however, there
may well be cases in which a cross-transfer of DNA evidence
occurred. For example, DNA evidence may be collected on both, a
victim and a suspect in an assault case. Evaluating DNA evidence
meaningfully in such situations may require a discussion of
probabilities of transfer, persistence and recovery, innocent
acquisition, relevance and innocent presence. Aitken et al. [50]
studied these aspects through Bayesian networks.

A further topic largely unconsidered in DNA evidence evalua-
tion is that of error rates. Usually, attention is solely drawn to the
conditional profile probability. A probabilistic approach to account
for the potential of error is given, for example, by Thompson et al.
from, for example, Butler et al. [82]), this would imply [8(8 + 1)]/2 = 36 distinct

genotypes for the node gt. Along with 8 states for each of the two parental gene

nodes pg and mg, the probability table for the node gt would then have

8 � 8 � 36 = 2304 entries.
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23 Let us notice that the term ‘unconditional’ refers here only to the absence of an

explicit conditioning upon other variables (nodes) in the network. Strictly speaking,

one should also consider a probability of the kind Pr(A) as conditional because there

is always contextual information, habitually denoted by I, which is used when

quantifying Pr(A). This would also imply that Pr(A) should be written more correctly

as Pr(A|I), but I is often omitted in order to reduce notational burden.
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[83]. An implementation of this approach in terms of Bayesian
networks is described in Taroni et al. [62,79].

The applications described so far also have in common that they
almost exclusively focus on autosomal DNA profiling results. The
use of Bayesian networks for evaluating profiling results of X- and
Y-chromosome short tandem repeats is presented in, respectively,
Hatsch et al. [84] and Taroni et al. [62].

Besides, applications for Bayesian networks have also been
described for addressing the issue of a wrongful designation of a
heterozygous genotype as a homozygote, which may lead to a false
exclusion [85], as well as the evaluation of likelihood ratios when
multiple propositions need to be considered [86].

A different approach for constructing Bayesian networks for
inference from genetic markers has been described by Cowell [87].
This author has developed a software tool, called finex (Forensic
Identification by Network EXpert systems), where inference
problems based on DNA evidence can be expressed through the
syntax of a graphical specification language. The program finex
then uses an algorithm for automatically constructing an
appropriate representation in terms of a Bayesian network.
Compared to general purpose software, finex allows one to save
time in setting up networks and reduces the potential for error
while completing large probability tables. In addition, evidence
from several markers to evaluate likelihoods can readily be
combined.

5. Discussion and conclusions

Despite some technical and representational differences, most
current practices for constructing Bayesian networks share some
basic assumptions. Among these are, notably, independence
within and across markers. Furthermore, it is assumed that all
founders in a pedigree, including unrepresented individuals, are
considered to be drawn randomly from the same homogenous
population. It has been reported that future works in this area will
aim to relax these assumptions [59].

A particular aspect of Bayesian networks for inference from
genetic markers concerns the rationale behind their construction.
Building appropriate graphical structures can largely be guided by
Mendelian laws of inheritance and the logical relationships
between genes and genotypes. Basic inferential structures, as
shown in Fig. 3, can thus be combined in a clearly defined way. This
may in part explain why graphical structures with large topologies
are more common in the context of DNA evidence. Indeed, the
Bayesian networks for more classic kinds of evidence (e.g., fibres
[62,79] or toolmarks [88]) have rather local structures as they
involve fewer variables. A main reason for this seems to lie in
limitations of available knowledge about the structural dependen-
cies among the different aspects of the inferential problems at
hand. Usually, there is no generally applicable law, such as the law
of inheritance in the context of DNA evidence, that may provide a
clear indication as to how nodes ought to be combined. Therefore,
the construction must essentially be based on logical consider-
ations, which is a difficult task whenever the number of variables
increases.

But there are also differences between the Bayesian network
approaches for DNA evidence as discussed throughout this paper.
This may become apparent when comparing the nature of the
target questions these models seek to approach. The networks
proposed by researchers such as Dawid et al. [59] are essentially
concerned with drawing inferences on the source of a certain item
of DNA evidence, or with identifying individuals in a certain
pedigree. On the other hand, the more general networks proposed
by Garbolino and Taroni [49], for example, address the question of
whether the source of a certain crime stain (e.g., a suspect) could be
the offender. This latter inference step requires further consider-
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ations of general patterns of reasoning, such as evidential
relevance [51].

In summary, Bayesian networks represent one of the more
recent graphical approaches that have been proposed for the
evaluation evidence in judicial contexts. Compared with most
previously developed graphical methods, the use of Bayesian
networks offers the additional advantage of incorporating
probability theory as a coherent measure of uncertainty. Moreover,
computerised systems currently exist that can perform calcula-
tions over a number of variables with varying dependency
structure. More recent developments, in particular the extension
to object-orientation, have further increased the capacity of
Bayesian networks to deal with the level of complication that is
associated with real-case settings involving DNA evidence.
Bayesian networks thus are a valuable tool in the hands of
forensic scientists. They represent a complementary contribution
to the body of analytical techniques that are needed to approach
inference problems in accordance with probability theory, both
conceptually and practically.
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Appendix A. Definition and properties of Bayesian networks

In Bayesian networks, graph theory is used to provide a qualitative

model structure, whereas probability theory is used to characterise

the nature and strength of the relations that reign within a model.

This has concisely been formulated in the Preface of [89], where

graphical models have been described as a marriage between graph

theory and probability theory. More formally, a Bayesian network

covers the following elements [4, e.g.]:

� A finite collection of random variables that are represented by
nodes. Each of these nodes has a finite set of mutually exclusive
states (sometimes also called ‘outcomes’).
� A set of directed edges that connect pairs of nodes.
� The set of variables and the set of directed edges are combined in

such a way that a directed acyclic graph is obtained, that is, a
graph where no loops are permitted.
� Node probability tables are associated with each variable of the

network: the probability table of a variable A that receives
entering edges from variables B1, ..., Bn contains conditional
probabilities Pr(A|B1, ..., Bn), , whereas a variable A with no
entering edges from other variables contains unconditional23

probabilities Pr(A).

The nodes of a Bayesian network represent propositional variables

of interest, that is – very generally speaking – statements or assertions

that such-and-such is the case (e.g., an outcome or a state of nature). It

is assumed that personal degrees of belief can be assigned to them.

Propositions are basic (intellectual) attributes formed by an

individual during the course of a reasoning task. A proposition can

be thought of as referring to states of affairs, although, most often, the

actual state may not be known with certainty. For example, there may

be uncertainty about the truth or otherwise of the proposition
etworks for evaluating forensic DNA profiling evidence: A review
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according to which a crime stain has been left by the offender.

Within a Bayesian network, such a proposition is conceptualised in

terms of a node, whose states represent, respectively, the truth and

the falsity of that proposition. The degree of belief maintained in

each of these states is expressed numerically, that is, in terms of

probabilities. These probabilities are organised in that node’s

probability table.

The mutually exclusive states of a variable are also referred to as

the ‘domain’ of the variable. The domain of a variable may take one of

different forms which will determine that variable’s subtype.

Examples include {red, green, blue} for a labeled variable, {T, F} for

a Boolean variable (with ‘T’ and ‘F’ denoting ‘true’ and ‘false’,

respectively), {� 2, 1, 4, 5, 7.34, 8} for a numbered variable or

{) � 1 ; 0], ]0 ; 10], ]10 ; 100]} for an interval node. Note that the

latter node type is used for specifying the intervals over which a

continuous quantity can be discretised.

It is common to say that, if there is a link from a node A to a node B

(i.e., a network fragment of the kind A ! B), that A is a ‘parent’ of B,

whereas B will be said to be a ‘child’ of A. In analogy to the notions of

‘parents’ and ‘children’, terminology of kinship is used to denote

various other relationships in a graph [90]. The meaning of

‘ancestor’ and ‘descendant’ is thus intuitively understandable.

Some awareness is required, however, when modelling inferences

from genetic markers (e.g., in forensic contexts of disputed

paternity). Here, terms such as ‘parent’ and ‘child’ denote real

familial relationships. As proposed by Cowell [87], the terms

‘graphical parent’ and ‘graphical child’ should thus be used to clarify

that a discussion is focusing on a structural property of a Bayesian

network. A similar distinction is made, for instance, by Lauritzen and

Sheehan [91], who refer to ‘graph parent’ and ‘bio parent’. Variables

that have no entering edges from other nodes are sometimes

referred to as ‘root’ or ‘source’ nodes. They can be used, for example,

to represent a proposition (or hypothesis) that one seeks to

establish. In judicial contexts, propositions of this kind have also

been termed ‘ultimate probanda’ [30].

The arrows in a Bayesian network represent relationships that

correspond to a property that a reasoner assumes to hold within the

context of the inference problem at hand. If a network is properly

constructed, then a directed edge from a node A to a node B signifies

that A has a direct influence on B. As an intuitively appealing way of

presentation, the links between nodes are sometimes interpreted as

‘causal relationships’, but, as mentioned earlier in Section 2, it is

important to note that the definition of Bayesian networks does not

refer to causality and there is no requirement that the links represent

causal impact.

Bayesian networks make use of nodes and edges in much the same

way as other kinds of graphical models. A more distinctive feature of

Bayesian networks are, however, node probability tables. They allow

probability theory to be implemented as a formalism for interpreting

the nature and the strengths of the relationships between different

graphical constituents. The node tables can be allowed to accommo-

date probabilities from a variety of different sources. Among the most

common are subjective estimates from human experts, (statistical)

data (e.g., from databases) or literature. Node probability tables can

thus be considered as a means of interfacing a model to data [89].

Notice also that probability tables can be completed through the use

of mathematical expressions by exploiting various variable subtypes

as described above.

As mentioned so far in this Section, an important property of

Bayesian networks is the encoding of collections of conditional
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independence assumptions. Apart from this, there is a further

important property of the Bayesian network formalism. It consists

in its capacity of facilitating the representation of probability

distributions. For the purpose of illustration, consider a distribution

Pr defined on n discrete variables, ordered arbitrarily as A1, A2, ..., An.

Using the product rule, the joint distribution Pr(A1, ..., An) can be

decomposed as follows (also known as the ‘chain rule’):

PrðA1; :::; AnÞ ¼
Yn

i¼2

PrðAijA1; :::; Ai�1Þ
" #

PrðA1Þ : (A.1)

A more economic representation of a joint probability

distribution can be obtained if one is capable of specifying

variables that are not ‘sensitive’ to all predecessors but only a

certain subset of those predecessors. Stated otherwise, a variable Ai

may be independent of all other predecessors once a selected

group of predecessors of Ai, called ‘parents’ (par) of Ai, is known. In

such a case the product of Eq. (A.1) can be rewritten in a shorter

form: Pr(Ai|par(Ai)).

Now, if the conditional independencies in a Bayesian network hold

for the collection of variables A1, ..., An, then the Bayesian network

provides a representation of the joint probability distribution Pr(A1, ...,

An) in terms of the product of all specified potentials, that is,

PrðA1; ::; AnÞ ¼
Yn

i¼1

PrðAij parðAiÞÞ (A.2)

where par(Ai) represents the set of parental variables of Ai. Eq. (A.2)
is called the ‘chain rule for Bayesian networks’ and formally defines
what a Bayesian network means: a representation of the joint
probability distribution for all the variables.

Many of the notions introduced in this Section may also be

formulated in more technical, mathematical notation. Detailed

instances of such approaches can be found, for example, in Castillo

et al. [3], Cowell et al. [1], Jensen and Nielsen [4] and Nam et al. [92].

Appendix B. ‘Evidence propagation’ in Bayesian networks

Once a Bayesian network is properly constructed, it can be

consulted to process newly acquired information, that is, calculat-

ing the conditional probabilities of the nodes in the network given

that the values of some of the nodes have been observed. It is

customary to denote the latter as ‘evidence variables’ and the

former as ‘query variables’. The term ‘evidence’ is used here in a

broad sense. It is taken as information that is available to a

particular individual and that is thought to be incorporated in the

system of beliefs maintained by that individual. Such ‘information’

may consist, in forensic contexts, of one or more propositions

whose truthstate becomes certain for a given reasoner (e.g., when a

scientists decides that there is a ‘match’ between evidential and

reference material). This would then provide the basis for

reasoning about other propositions that bear on an inference

problem of interest. There may also be occasions on which

‘information’, or ‘evidence’, may be of a more technical nature,

such as numerical data generated by an experimental procedure

(e.g., a number n of glass fragments collected on a suspect’s

clothing, or, in the context of DNA evidence, detected alleles). Such

numerical data may directly serve as input data that can be

accommodated by a Bayesian network (e.g., by means of a

numbered node). In either case, it is assumed that what is
etworks for evaluating forensic DNA profiling evidence: A review
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considered as so-called ‘hard’ evidence is something that corre-

sponds to the instantiation24 of a network’s node.

The processing of information is a key task handled by Bayesian

networks, and this represents one of the main points of interest for

the study of probabilistic inference in forensic science. Actually, the

core feature of Bayesian networks is, as their name says, the re-

evaluation of probabilities, given particular evidence, which is a task

carried out according to Bayes’ theorem. A convenient graphical

illustration of this property amounts to a two-node network,

involving the two binary variables A and B with the factorised form

Pr(A)Pr(B|A), that is, the Bayesian network A ! B.25 Upon observing

that B holds, one seeks to calculate Pr(A|B). To apply Bayes’ theorem

for this task, the following calculations are needed: (i) PrðBÞ ¼
PrðBjAÞPrðAÞ þ PrðBjĀÞPrðĀÞ; (ii) Pr(A, B) = Pr(A)Pr(B|A), and (iii)

Pr(A|B) = Pr(A, B)/Pr(B). Notice that calculation (i) invokes the so-

called extension of the conversation rule. In this computation,

evidence on B is ‘forwarded’ to A against the direction of the arc that

holds between these two nodes. It is important to note that within

Bayesian networks, propagation is also possible along the direction of

the arcs. To continue the example introduced above, a propagation

along the direction of the arc A ! B means to calculate the probability

of B given A, or, Pr(B|A) for short. What happens during the passage

from Pr(B) to Pr(B|A) can be seen in the above mentioned Eq. (i). This

relationship states that for assessing the uncertainty of B one needs to

take into account uncertainty in relation to A. When A becomes

‘known’ this means that Pr(A) = 1 and PrðĀÞ ¼ 0: Consequently, (i)

reduces to Pr(B|A) and this is just the respective value that has been

specified in the conditional probability table of node B..

This description of probabilistic calculations that can be handled

within Bayesian networks is informal and based solely on a local

network fragment. Since the beginning of the development of

Bayesian networks, researchers and practicians have sought ways to

automate these calculations, notably through computerised imple-

mentations. This was felt to be an essential step to be achieved if the

approach is to be of use for real-world applications. A collection of

algorithms is now available that allow calculations to be made in an

efficient manner. The most frequently referenced method in this

context is due to Lauritzen and Spiegelhalter [94]. This approach has

later been implemented in academically and commercially available

Bayesian network software. A more detailed discussion of algo-

rithms for inference in Bayesian networks is not pursued here

because it requires some length and further complexity. For the

purpose of the current paper, attention is confined to structural

issues of Bayesian networks. It is assumed that calculations will be

confined, where needed, to a computer program. The assumption is

made that the results provided by such systems comply with the

definition of the basic concepts, that is, probability and Bayesian

networks.
24 Evidence on a variable corresponds to a statement of the certainties of that

variable’s states. If it is known with certainty in which state a variable is, then

evidence is called ‘hard’ and the node is said to be ‘instantiated’. Alternatively, an

instantiated variable may also be referred to as an ‘observed’ variable. Generally,

evidence that is not ‘hard’ is called ‘soft’. One can also talk about evidence in terms

of a function. For a variable with discrete states, for example, an evidence function

that assigns a zero probability to all but one state may be said to provide hard

evidence.
25 A common, general instance that can be represented in this way is the

evaluation of a screening test [93] where B refers to the result of the test (which may

either be positive or negative) and A is the proposition about which one is uncertain,

for example, whether or not a sample is human blood, or whether or not an

unknown powder contains something illegal.
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[24] M. Goméz, Real-world applications of influence diagrams, in: J.A. Gámez, S. Moral,
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