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A B S T R A C T

This paper presents and discusses the use of Bayesian procedures – introduced through the use of

Bayesian networks in Part I of this series of papers – for ‘learning’ probabilities from data. The discussion

will relate to a set of real data on characteristics of black toners commonly used in printing and copying

devices. Particular attention is drawn to the incorporation of the proposed procedures as an integral part

in probabilistic inference schemes (notably in the form of Bayesian networks) that are intended to

address uncertainties related to particular propositions of interest (e.g., whether or not a sample

originates from a particular source). The conceptual tenets of the proposed methodologies are presented

along with aspects of their practical implementation using currently available Bayesian network

software.
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1. Introduction

Network fragments developed in Part I of this series of papers
are reused here for constructing models whose purpose is to assist
forensic scientists in the assessment of the evidential value of
analytical results that pertain to the area of forensic document
examination. The analyses will concentrate on selected character-
istics of black toners that are typically encountered on printed or
photocopied documents.

The purpose of the proposed Bayesian network models is to
help scientists construct probabilistic arguments in order to
approach situations of the following kind:

� Suppose selected characteristics of a black toner sample from a
questioned document correspond to (or, are found to be
indistinguishable from) those of reference documents produced
by a particular xerographic printing machine (seized, for
instance, in the context of a criminal investigation). What can
be inferred about the proposition according to which the
questioned document was printed by that machine (some other
machine)?
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� When black toner samples from two questioned documents are
found to have indistinguishable analytical characteristics, what
can be inferred about the proposition according to which these
two documents have a common (two distinct) source(s) (i.e.,
they have been printed by the same machine)?

In the latter case, the term ‘common source’ refers to the
proposition according to which the two documents have been
printed with the same machine. The scenario is one in which there
are two questioned documents but no potential source (i.e., a control
item). The former setting is one in which exactly one control item
(i.e., a potential source) and one questioned item are available.

The discussion will include value-of-evidence calculations using
Bayesian networks that aggregate prior beliefs and that offer an
interface to sets of real data. These data are briefly outlined in Section
2. The structure and the properties of the proposed Bayesian
networks are described in Section 3. The paper ends with Section 4
which contains a discussion of the methodology and a conclusion.

Bayesian networks are sometimes viewed cautiously because
they represent a rather compact approach with calculations that
can be largely automated and performed invisible to users (with
the aid of appropriate software tools). In order to illustrate that
Bayesian network output is not arbitrary and agrees with general
results known from existing forensic literature, both Bayesian
networks and the corresponding Bayesian algebraic analyses will
be presented throughout this paper.
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Fig. 1. Bayesian network for evaluating results obtained from the analysis of

samples of black toner. The definition of the nodes is as given in Table 2.
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This paper thus intends to continue and extend the discussion
of forensic uses of Bayesian networks as initiated by publications in
this [1,2, e.g.] and other journals [3–5, e.g.]. In particular, it focuses
on a Bayesian approach to the evaluation of scientific evidence for a
forensic domain (questioned document examination) in which, so
far, statistical approaches are not as widely used as in other
disciplines, such as DNA evidence, for example.

2. Data on analytical characteristics of black toner

2.1. Black toner samples

For the purpose of the current study, a total of 100 addressed
envelopes were considered. These envelopes represent a random
collection of letters received at the author’s institution during the
period 2003–2004. The address on each envelope was printed with
a black dry toner. The manufacturer and the model of the machines
used for printing the individual addresses were unknown.

The black toner present on these documents was analysed by an
optoelectronic system (Section 2.2.1) and by Fourier Transform
Infrared Spectroscopy (Section 2.2.2).

2.2. Methods

2.2.1. Optoelectronic systems

Single-component toner powders contain magnetic material.
When affixed to paper, that material is incorporated into the toner
particles. Toners of this kind typically exhibit magnetic properties
similar to other forms of magnetic printing. In the present study,
the presence (absence) of magnetic properties was tested by
means of a Mag optoelectronic system (Vildis, Russia). These
analyses can be used to differentiate magnetic single-component
toners from non-magnetic bi-component toners.

2.2.2. Fourier transform infrared (FTIR) spectroscopy

Polymer resins contained in dry black printer toners were
analysed by microscopic attenuated total reflectance (ATR) with an
internal reflection element (Germanium crystal) using a Digilab1

Excalibur spectrometer. FTIR spectra were acquired from 4000 to
650 cm�1 with a resolution of 4 cm�1, using 64 scans that were co-
added for each spectrum. Microscopical ATR by IR was shown to be
a fast, reproducible and non-destructive technique for analysing
the kind of polymer resins encountered in black toner samples.

2.3. Results

Table 1 summarises the results obtained following the analyses
of, respectively, the component type (magnetism) and the polymer
resins (IR-category) of each of 100 samples of black toner. Notice that
the summary values chosen to represent the results of each of the
Table 1
Results obtained following the analyses of, respectively, the component type

(magnetism) and the polymer resins (IR-category) of each of 100 samples of black

toner (taken from 100 addressed envelopes received at the author’s institution

during the period 2003–2004).

Resin group (No., name) Counts among

single component

toners

Counts among

bi-component

toners

1. Styrene-co-acrylate 69 14

2. Epoxy A 8 3

3. Epoxy B 0 2

4. Epoxy C 0 1

5. Epoxy D 0 1

6. Polystyrene 0 1

7. Other 0 1

Total 77 23
two analyses are – according to experience – fully reproducible (i.e.,
there are no ‘no data’ results). The resin classification ‘other’ is a
placeholder for all results of resin analyses different from those of
the (more common) categories 1–6. The observations are compara-
ble to those reported in existing literature in the field [6,7, e.g.].

3. Bayesian networks for evaluating results of black toner
analyses in forensic document examination

3.1. One evidential document, one potential source

3.1.1. Results of optoelectronic analyses

Imagine a case that involves a single document of questioned
origin. That document carries black bi-component toner impres-
sions. A toner of the same type is used by a particular machine that
could have served for printing the questioned document. A
question that may be of interest in such a setting is how this
analytical information ought to affect one’s belief in the proposi-
tion according to which the questioned document was printed
with the particular machine at hand—a so-called potential source.1

Such a proposition can be implemented as part of a Bayesian
network, an example of which is proposed in Fig. 1. Here, the target
propositions, that are

� H p: the questioned document was printed with the potential
source;
� Hd: the questioned document was not printed with the potential

source;

are modeled in terms of a Boolean node H with states tðtrueÞ and
f ð falseÞ. For convenience, H ¼ t and H ¼ f will be abbreviated by

H p and Hd, respectively. Following standard literature in the field,
the subscripts p and d are taken to reflect possible competing
standpoints, such as those of the prosecution and the defence. The
other nodes depicted in Fig. 1 are defined in Table 2.

The network fragment involving the nodes N; S; al pha;beta and
theta is analogous to the Bayesian network shown in Fig. 3 of Part I
of this series of papers [10]. The node2 theta represents the
proportion of single-component toners. Uncertainty about that
variable is modelled in terms of a beta distribution whose
parameters are given by the numbered states of, respectively,
the nodes al pha and beta. The nodes N and S provide a means to
update the beta distribution by a binomial sample of size n, with s

items found to be single-component toners.
Although reference is made here to a database that covers 100

entries (Table 1), the variable N is defined as one that covers states
numbered from 96 to 110. This allows one to remain flexible with
respect to situations with other database sizes. For the currently
considered setting, for example, further cases may be added to the
database up to 110.
1 Conceptually speaking, the question of interest here is one of traditional

forensic identification [8,9].
2 For technical reasons, as explained in Part I, a discrete node with intervals is

used to approximate the continuous variable u. An alternative – beyond the scope of

this paper – would consist in modelling the parameter outside the network through

the use of an interface, such as RHugin (http://rhugin.r-forge.r-project.org/).

http://www.hugin.com/


Table 2
Definition of the nodes used in the Bayesian network shown in Fig. 1.

Node Description States

al pha; beta Parameters of the beta

distributed variable u
(node theta)

0:1; 0:5;1;2;3; . . . ;10

H The potential source

(machine) was used to

print the questioned

document

tðtrueÞ; f ð falseÞ

N Database size n ¼ 96;97; . . . ;110

theta Proportion u of

single-component toners

0� 0:05; . . . ;0:95� 1

S Number of single-component

toner samples counted in

a database of size N

s ¼ 0;1;2; . . . ;110

Te A single-component toner

is present on the questioned

document

tðtrueÞ; f ð falseÞ

Ts The potential source (printer)

is a single-component toner

tðtrueÞ; f ð falseÞ
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The node theta (the population proportion) acts as a conditioning
for the Boolean node Ts, which models uncertainty about the
potential source3 being of type S (i.e., a single-component toner).
That is, the probability of the potential source being of type S
depends directly on the population proportion u. The probabilities of
the states true and false in the table of the node Ts are thus given by4:

Distributionðtheta;1-thetaÞ: (1)

This is inanalogy tothe nodesdi discussed inPart I [10] thatmodel
the outcome of items randomly drawn from a target population.

Let us notice that, while working with the Bayesian network,
a state of the node Ts (true or false) will usually be set to ‘known’
(that is, the node will be instantiated). The directed link between
the nodes theta and Ts will allow the distribution for the former
node to be updated by knowledge about the truthstate of latter.
The updated distribution for theta will subsequently serve the
purpose of assessing the probability of Te (i.e., the probability of
the document in question bearing a single-component toner) in
cases where Hd holds. Further details on this are given below.

The variable Te is directly dependent upon three variables, that
is H; Ts and theta. This structural specification allows one to express
the following:

� If the document in question does truly come from the potential
source (H p), then necessarily the evidential toner is of the same
type as that of the potential source:

PrðTe ¼ tjH p; Ts ¼ tÞ ¼ PrðTe ¼ f jH p; Ts ¼ f Þ ¼ 1: (2)

This reflects the assumption according to which the target
characteristic of a toner from a given machine will be stable and
that this characteristic can be determined reliably by the
scientist (e.g., there is no observational error).5

� If the document in question does truly come from another source
(Hd), then the probability of the evidential toner being of type S is
given by the appropriate population proportion of toners that are
3 For the remainder of this paper, the expression ‘potential source’ will be used

for short to designate the machine that is suspected of having been used to print the

document in question.
4 Throughout this paper, all expressions in Courier will refer to Hugin language

(http://www.hugin.com/).
5 It is part of a general understanding in that particular area of forensic

examination (questioned document examination) that the analytical technique

used by scientist can sufficiently be trusted, that is to work reliably and give

accurate results. For settings in which it is desirable to relax this assumption,

Bayesian networks can actually be extended so as to allow for uncertainty about the

reliability of analytical results. This has been described, for instance, in [11] in the

context of attribute sampling (see also Section 3.1.2).
of type S (node theta): PrðTe ¼ tjHd; uÞ ¼ u. Again, this is an
instance where Expression (1) may be used.

The Bayesian network defined so far allows one to evaluate the
ingredients of a likelihood ratio which provides a measure of the
capacity of evidence Te to discriminate between the competing
states of the proposition H. Formally, that ratio writes:

LR ¼ PrðTejTs;H pÞ
PrðTejTs;HdÞ

: (3)

This formula is considered here for settings where Te ¼ Ts.
Following Eq. (2), the numerator PrðTejTs;H pÞ is 1.

Recall that the probability of a sample containing a single-
component toner depends on the relevant population proportion u
of that toner type, and assume the uncertainty about u is modeled
through a beta probability density Beða;bÞ, with parameters
augmented by a n-sized binomial sample among which s units are
found to be single-component toners, that is Beðaþ s;bþ n� sÞ.
For a setting in which the questioned document and the potential
source have single-component toners, the denominator of the
likelihood ratio can be computed as

PrðTe ¼ tjTs ¼ t;HdÞ ¼
R 1

0 PrðTe ¼ tjTs ¼ t;Hd; uÞpðujTs ¼ tÞdu
¼
R 1

0 upðujTs ¼ tÞdu ¼ EðujTs ¼ tÞ;
(4)

where pðujTs ¼ tÞ is a beta posterior distribution with updated
parameters aþ sþ 1;bþ n� s, because of the conditioning on the
observation of the toner type of the potential source, which is of
type S.

Analogously, for a setting in which the questioned document
and the potential source have bi-component toners, the denomi-
nator is given by:

PrðTe ¼ f jTs ¼ f ;HdÞ ¼
R 1

0 ð1� uÞpðujTs ¼ f Þdu
¼ 1� EðujTs ¼ f Þ;

(5)

where pðujTs ¼ f Þ ¼ Beðaþ s;bþ n� sþ 1Þ.
In summary, thus, the denominator for the likelihood ratio for

evidence on toner type is:

PrðTejTs;HdÞ ¼

aþ sþ 1

aþ bþ nþ 1
; Te ¼ Ts ¼ t;

1� aþ s

aþ bþ nþ 1
; Te ¼ Ts ¼ f :

8>><
>>:

(6)

For the purpose of illustration, consider a Betað1;1Þ prior
distribution for the parameter u and a sample with n ¼ 100 and
s ¼ 77 (Table 1). In such a setting, the following likelihood ratios
are obtained:

LR ¼

1

ðaþ sþ 1Þ=ðaþ bþ nþ 1Þ �1:3; Te ¼ Ts ¼ t;

1

1� ððaþ sÞ=ðaþ bþ nþ 1ÞÞ �4:1; Te ¼ Ts ¼ f :

8>><
>>:

(7)

Fig. 2 provides a graphical illustration of the use of a Bayesian
network for evaluating the denominator of the likelihood ratio in a
case where the sample from the questioned document and the
potential source are both found to be of type S.

3.1.2. A note on classification error

The discussion so far assumed that a sample can be classified as
single or bi-component toner without any uncertainty in the
classification. The reason for this is that the analyses of the target
analytical characteristics generally lead to unambiguous results
that can clearly and reliably be distinguished, at least on a technical
level. Notwithstanding, false classifications may still occur (e.g.,
through a reporting or typing error) even if the generally ‘clear’

http://www.hugin.com/


Fig. 2. Bayesian network for evaluating results of optoelectronic analyses. The definition of the nodes is as given in Table 2. Instantiations are shown in bold. The state true of

the node Te displays the value of the denominator of the likelihood ratio, that is PrðTejTs;HdÞ, for a case in which the toner on a questioned document and a potential source are

found to share the same characteristic (i.e., single-component toner).

Fig. 3. Bayesian network for evaluating results obtained from the analysis of

samples of black toner. The definition of the nodes is as given in Tables 2 and 3.
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results should not be ‘missed’ by a competent examiner. According
to the case at hand, it may thus be desirable to incorporate a means
to account for this source of uncertainty. One way to account for
possible false classifications would be to introduce an additional
hierarchy of nodes that distinguish between the true presence of an
analytical characteristic (as assumed, for instance, by the nodes Te

and Ts) and the observed or reported analytical characteristic
(represented by, for instance, nodes Oe and Os). Then, with a
structure of the kind TeðsÞ !OeðsÞ, probabilities for false positives
and false negatives can be used as entries for the conditional
probability table of the node OeðsÞ.

6 An example of this has been
described, for instance, in the context of attribute sampling using
Bayesian networks [11].

3.1.3. Results extended to FTIR analyses

Consider now a situation in which an evaluation needs to be
extended to results of FTIR analyses. For this purpose, the Bayesian
network shown in Fig. 1 has been extended to include two
additional nodes, Re and Rs (Fig. 3). These nodes have states
numbered i ¼ 1;2; . . . ;7; j ¼ 1;2; . . . ;7 which represent the differ-
ent resin groups defined earlier in Table 1 (see also Table 3).

Whether or not a toner contains a particular resin group can be
generally thought of under the conditioning that the substance at
hand is a single- or a bi-component toner. Consider this with
regards to a potential source, for instance, that is a setting for
which the Bayesian network shown in Fig. 3 allows one to specify
the following conditional distributions:

PrðRsjTs ¼ tÞ ¼ Dirichletðas1 þ xs1; . . . ;as7 þ xs7Þ and
PrðRsjTs ¼ f Þ ¼ Dirichletðab1 þ xb1; . . . ;ab7 þ xb7Þ;
6 The underlying idea of this is analogous to a situation in which one accounts for

the accuracy of a diagnostic test by specifying the sensitivity and the specificity

[12–15, e.g.].
where as j and ab j are the prior Dirichlet parameters (‘prior
observation counts’) for the resin group j among, respectively,
the single- and bi-component toners. The xs j and xb j denote
the counts of toner samples of resin group j in a n-sized
sample (in which there are s single-component toners and n� s

are bi-component toners). Thus, the entries j of the probability
table of the node Rs are given by the mean of a Dirichlet
distribution7:

PrðRs ¼ jjTsÞ ¼
a� j þ x� jP7

j¼1 a� j þ
P7

j¼1 x� j
(8)

where a� j and x� j refer to the prior Dirichlet parameters and the
counts of toner samples of resin type j among, respectively, the
single- (Ts ¼ t) and bi-component (Ts ¼ f ) toners.

Consider now the probabilities that need to be specified for the
table of Re, the node which refers to the characteristics of the
document in question. Clearly, if H p holds, then the type of resin
7 See also Table 2 in Section 4.3 of Part I [10] for an example on how the mean of a

Dirichlet distribution is calculated.



Table 3
Definition of the additional nodes Re and Rs used in the Bayesian network shown in

Fig. 3.

Node Description States

Re Resin group contained in

the toner present on

the questioned document

i ¼ 1;2; . . . ;7

Rs Resin group contained in the

toner used by the potential

source (machine)

j ¼ 1;2; . . . ;7

Table 4
Likelihood ratios (values rounded) for results of FTIR analyses (analysis of a toner’s

resin component, where i ¼ j) in cases involving toner samples from a single

questioned document and a single potential source, conditional on knowing that

these share the same general characteristics (i.e., both are either single- or bi-

component toners, Te ¼ Ts). The values are obtained from Eq. (9) using a uniform

Dirichlet prior distribution and data from Table 1.

Corresponding resin group Toner type

Single component Bi-component

1. Styrene-co-acrylate 1.2 1.9

2. Epoxy A 8.5 6.2

3. Epoxy B 42.5 7.8

4. Epoxy C 42.5 10.3

5. Epoxy D 42.5 10.3

6. Polystyrene 42.5 10.3

7. Other 42.5 10.3
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contained in the toner on the document in question corresponds to
that of the potential source, therefore (for i; j ¼ 1;2; . . . ;7):

PrðRe ¼ ijH p;Rs ¼ jÞ ¼ 1; i ¼ j
0; i 6¼ j:

�

If Hd holds (the evidential toner comes from another source),
then the type of resin in the toner on the questioned document
(node Re) depends on whether that toner is a single- or a bi-
component toner. For cases in which the type of the questioned
toner’s true source is different from that of the potential source,
that is Te 6¼ Ts, the probability table of Re contains the following
values (for i ¼ 1;2; . . . ;7):

PrðRe ¼ ijHd; Te; TsÞ ¼
a�i þ x�iP7

i¼1 a�i þ
P7

i¼1 x�i

where a�i and x�i refer to the prior Dirichlet parameters and the
counts of toner samples of resin type i among, respectively, the
single- (Ts ¼ t) and bi-component (Ts ¼ f ) toners.
Table 5
Likelihood ratios (values rounded to one decimal) for results of optoelectronic

(Te ¼ Ts) and FTIR analyses (Re ¼ Rs). The values are obtained from Eq. (10) using

uniform beta and Dirichlet prior distributions and data from Table 1.

Corresponding resin group Toner type

Single component Bi-component

1. Styrene-co-acrylate 1.6 8.0

2. Epoxy A 11.1 25.5

3. Epoxy B 55.4 31.9

4. Epoxy C 55.4 42.6

5. Epoxy D 55.4 42.6

6. Polystyrene 55.4 42.6

7. Other 55.4 42.6

LR ¼ PrðRe;Rs; Te; TsjH pÞ
PrðRe;Rs; Te; TsjHdÞ

¼ PrðRejRs; Te; Ts;H pÞ
PrðRejRs; Te; Ts;HdÞ

� PrðTejTs;H pÞ
PrðTejTs;HdÞ

¼

P7
i¼1 asi þ

P7
i¼1 xsi þ 1

asi þ xsi þ 1
�aþ bþ nþ 1

aþ sþ 1
; Te ¼ Ts ¼ t;

P7
i¼1 abi þ

P7
i¼1 xbi þ 1

abi þ xbi þ 1
� 1� aþ s

aþ bþ nþ 1

� ��1

; Te ¼ Ts ¼ f :

8>>>><
>>>>:

(10)
Note that these probabilities do not depend on the resin type of
potential source, Rs.

When the true source and the potential source are of the same
toner type (i.e., single- or bi-component toners), then the following
probabilities apply (for i ¼ 1;2; . . . ;7):

PrðRe ¼ ijHd;Rs ¼ j; Te ¼ TsÞ ¼

a�i þ x�i þ 1P7
i¼1 a�i þ

P7
i¼1 x�i þ 1

; i ¼ j;

a�i þ x�iP7
i¼1 a�i þ

P7
i¼1 x�i þ 1

; i 6¼ j:

8>>>><
>>>>:

In summary, thus, the likelihood ratio for corresponding resin
groups (i ¼ j), conditional on knowing the type of toner involved
(i.e., single- or bi-component) writes:

LR ¼ PrðRe ¼ ijH p;Rs ¼ i; Te; TsÞ
PrðRe ¼ ijHd;Rs ¼ i; Te; TsÞ

¼ 1

ða�i þ x�i þ 1Þ=ð
P7

i¼1 a�i þ
P7

i¼1 x�i þ 1Þ
: (9)

The Bayesian network proposed in Fig. 3 provides a conve-
nient means to implement the individual components of Eq. (9)
using real data. Table 4 provides results of likelihood ratio
calculations for results of FTIR analyses conditional on knowing
the results from Section 3.1.1. Notice that, for some categories,
identical numbers of observations are made in the sample (see
data summarised in Table 1). As a consequence of this, along with
the fact that equal prior probabilities have been used, the
posterior probabilities of those categories with identical counts
will also be equal.

The joint evidential value of optoelectronic and FTIR analyses
can now be obtained as the individual likelihood ratio for the
former category of evidence (Eq. (3)) times the likelihood ratio for
the latter (Eq. (9)), that is, using notation introduced so far (for
Re ¼ Rs, that is i ¼ j):
Table 5 provides a summary of the various likelihood ratios that
are obtained from uniform beta and Dirichlet prior distributions
and the data presented in Table 1.

In a Bayesian network, these results may be obtained by
taking, for example, the quotient the posterior probabilities of
the states of the variable H—assuming equal prior probabilities
for the states of H and appropriate instantiations made in the
other nodes. Fig. 4 illustrates this for a case in which a bi-
component toner with a styrene-co-acrylate resin was found on



Fig. 4. Example of the use of a Bayesian network for the joint evaluation of results of optoelectronic and FTIR analyses. The definition of the nodes are as given in Tables 2 and 3.

The model provides the posterior probabilities for the states of the node H. Instantiations are shown in bold.

8 In Section 3.1, the notation Te and Ts was used.
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a questioned document as well as in a machine that could have
been used to print that document. In order to assure agreement
with the results provided in Table 5, equal beta and Dirichlet
prior distributions are assumed along with a database of cases as
summarized in Table 1. Notice again that, for reasons explained
in the previous section, some categories have equal posterior
probabilities.

Generally, the likelihood ratio values summarised in Table 5 can
be interpreted as factors by which particular evidence supports a
proposition versus another. For example, in a case where a bi-
component toner with an Epoxy A resin is found on both a
questioned document and a potential source, a likelihood ratio of
about 25 (Table 5) means that the probability of the scientific
evidence at hand is 25 times greater if the document was printed
with the examined printing device (the potential source) than with
another printing device.

3.2. Two questioned documents, no potential source

3.2.1. Results of optoelectronic analyses

Forensic scientists may also be asked to conduct comparative
toner analyses in the absence of a potential source. Common
situations in which this may be of interest are those that involve
two questioned documents about which one is unsure whether or
not they could have come from the same source. For such a
scenario, the development of the individual components of a
likelihood ratio differs slightly from the approach discussed in
Section 3.1.1 in the sense that there is no conditioning on analytical
results from a reference sample, that is from a potential source
[16]. Instead, the scientist needs to consider two sets of results,
those obtained from the toners present on, respectively, the first
and the second questioned document.
More formally, the likelihood ratio defined earlier in Section
3.1.1, Eq. (3), may be re-written as follows:

LR ¼ PrðT1; T2jH pÞ
PrðT1; T2jHdÞ

(11)

where T1 and T2 are Boolean variables8 that represent propositions
according to which the toners present on, respectively, the first and
the second questioned document are single-component toners.
The definition of the variable H is changed here to:

� H p : ‘the two questioned documents come from the same
source’;
� Hd : ‘the two questioned documents come from two distinct

sources’.

Let us recall from Section 3.1.1 that the numerator of the
likelihood ratio (3) for Te ¼ Ts was one, that is, given the
questioned document coming from the potential source (H p being
true) and knowing the toner characteristics of that source (Ts), then
- assuming constant source characteristics - surely the questioned
document will have the same characteristics.

In the currently discussed scenario, one still needs this
probability of one item of evidence being of a certain toner type,
given knowledge of the toner type of the other item of evidence
and knowing that both come from the same source. But, one
needs to multiply this probability by the probability of that
common source consisting of a toner of the observed type.
Using notation introduced so far and probabilistic modelling



Fig. 5. Bayesian network for the evaluation of optoelectronic and FTIR analyses in

scenarios with two items of evidence but no potential source. Node definitions are

given in Table 6, except for the nodes N; S; al pha; beta and theta, which have been

defined in Table 2.

Table 6
Definition of nodes used in the Bayesian network shown in Fig. 5. Definitions of

nodes not contained in this table are as given earlier in Table 2. For shortness of

notation, letters t and f are used for designating the states true and false.

Node Description States

H The two questioned

documents have a

common source

t; f

R1 Resin group contained

in the toner present

on the first

questioned document

i ¼ 1;2; . . . ;7

R2 Resin group contained

in the toner present

on the second

questioned document

j ¼ 1;2; . . . ;7

T1 A single-component

toner is present on the

first questioned

document

t; f

T2 A single-component

toner is present on the

second questioned

document

t; f

T1; T2 Toner type(s) present

on the two questioned

documents

tt; t f ; f f

R1 ¼ R2 ¼ i? Resin of type i is present

on both questioned

documents

ði ¼ 1; . . . ;7Þ

t; f

T1 ¼ T2 ¼ ft; fg?, R1 ¼ R2 ¼ i? Toner type and resin

group present on both

questioned documents

t; f
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assumptions encoded in Fig. 5, one has, for the numerator of
Eq. (11):

PrðT1; T2jH pÞ ¼ PrðT2jT1;H pÞ � PrðT1Þ

¼
1� aþ s

aþ bþ n
¼ aþ s

aþ bþ n
; T1 ¼ T2 ¼ t;

1� 1� aþ s

aþ bþ n

� �� �
; T1 ¼ T2 ¼ f :

8>>><
>>>:

(12)

The Bayesian network discussed earlier in Section 3.1 (Fig. 1)
does not allow one to evaluate this probability directly because
there are distinct nodes for T1 and T2. The probability of both T1

and T2 being true (or false) can be obtained, however, by
introducing a summary node ‘T1; T2’ (as proposed in Fig. 5) with
states tt; t f and f f . This allows one to account for the logical
combinations of the states of the nodes T1 and T2.

The denominator is obtained as follows:
PrðT1; T2jHdÞ ¼ PrðT2jT1;HdÞ � PrðT1Þ

¼

aþ sþ 1

aþ bþ nþ 1
� aþ s

aþ bþ n
; T1 ¼ T2 ¼ t;

1� aþ s

aþ bþ nþ 1

� �
� 1� aþ s

aþ bþ n

� �
; T1 ¼ T2 ¼ f :

8>>><
>>>:

(13)
Because of the factor PrðT1Þ that cancels in the numerator and
the denominator, the overall value of the likelihood ratio is the
same as that obtained in Section 3.1.1 (Eq. (6)). Eqs. (12) and (13)
are needed, however, to find values for the individual components
of the likelihood ratio.

3.2.2. Results of FTIR analyses

The likelihood ratio for results of FTIR analyses, given
knowledge of the type of toner involved, is (assuming R1 ¼ R2

and T1 ¼ T2):

LR ¼ PrðR1;R2jT1; T2;H pÞ
PrðR1;R2jT1; T2;HdÞ

¼ PrðR2jR1; T1; T2;H pÞ
PrðR2jR1; T1; T2;HdÞ

� PrðR1jT1; T2;H pÞ
PrðR1jT1; T2;HdÞ

;

(14)

where R1 and R2 refer to the kind of resin found in the toner from
the first and the second document, respectively (in Section 3.1, the
notation Re and Rs was used).

As may be seen, the overall value of the likelihood ratio is the
same as that given by Eq. (9). This is because the second ratio in
Eq. (14) is in fact 1. For the separate evaluation of the numerator
and the denominator, however, a factor PrðR1jT1; T2;HÞ needs to be
accounted for (Eq. (8)). The assessment of an observation that the
toner present on both questioned documents contains a resin of
type i can be assisted by additional nodes as proposed in the
Bayesian network shown in Fig. 5. These nodes, labelled R1 ¼ R2 ¼ i

with i ¼ 1;2; . . . ;7, are logical combinations of the nodes R1 and R2.
The table of a node R1 ¼ R2 ¼ i can be defined using an expression
of the form and(R1==i,R2==i), where i ¼ 1;2; . . . ;7.

The likelihood ratio for the joint evaluation of results of
optoelectronic and FTIR analyses is given by the product of the
component likelihood ratios obtained above:

LR ¼ PrðR1;R2; T1; T2jH pÞ
PrðR1;R2; T1; T2jHdÞ

¼ PrðR2jR1; T1; T2;H pÞ
PrðR2jR1; T1; T2;HdÞ

� PrðT2jT1;H pÞ
PrðT2jT1;HdÞ

:

(15)

The reader can see that by substituting in Eq. (15) results from
Eqs. (9), (12), (13), that the likelihood ratio is identical to that
obtained with one evidential document and one potential source,
Eq. (10).

Within a Bayesian network, the respective calculations can be
made by adding a minor extension to the graphical model
discussed so far. In fact, the separate summary nodes for
evaluating, respectively, a sample’s component and resin type,



Fig. 6. Expanded representation of part of the Bayesian network shown in Fig. 5. The node H displays the posterior probabilities for two questioned samples originating from a

common source in a scenario where the samples are found to be bi-component toners with a resin of type 1. Instantiations are shown in bold.
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can be logically combined into further summary nodes. Such nodes
are shown at the bottom of Fig. 5. For example, the Boolean node
‘T1 ¼ T2 ¼ t?;R1 ¼ R2 ¼ 1?’ allows one to approach a setting in
which the two questioned samples consist of a single-component
toner that contains a resin of type 1. The node table can be
completed using an expression (in Hugin language) of the form
and(T1T2==‘‘tt’’,R1R21). Here the term T1T2==‘‘tt’’
expresses the condition that the node T1; T2 is in the state tt

whereas the term R1R21 specifies the truth of the node R1 ¼ R2 ¼
1? (see also Table 6).

Fig. 6 shows an expanded network with a selection of nodes
needed for evaluating a scenario in which the two samples contain
a bi-component toner along with a resin group 1. The node H

shows the posterior probabilities for the proposition according to
which the two samples come from the same source (assuming the
same prior- and database-settings as in the previous Sections).

It is clear from these considerations that, once a Bayesian
network model is fully specified, any combination of observations
can be readily evaluated.

4. Discussion and conclusions

Laser printed or copied documents enjoy a widespread use in
manypartsofdaily life. It isthusnotuncommontoencounterthemin
various sorts of criminal activities such as revealing of compromis-
ing, injurious or confidential material, fraud or counterfeiting.
Evaluatingpossiblerelationshipsbetween, forinstance, aquestioned
document and a potential source, or between two questioned
documents, thus represents a topic of ongoing interest. More
generally, these topics also hold a relevant position among the
forensic science disciplines that reunite to support current initiatives
(e.g., counterterrorism) through an intelligence perspective.

There is considerable analytical literature that illustrates the
potential gain that may be expected from investigating various
toner components. These may be organised in computer search-
able libraries and assist scientists in assigning, for example, a
questioned toner sample to a particular group [6]. This may then
allow to set up a list of machines whose toners have comparable
analytical characteristics. Such analysis can support ongoing
investigations in particular when there is a need to reduce the
population of machines that could potentially be at the origin of a
questioned sample.

Additional analyses and argument are necessary, however, if
one wishes to address particular propositions of interest about
which uncertainty exists (e.g., the proposition according to which a
questioned sample originates from a particular source). Generally,
uncertainty about propositions is most appropriately expressed
through probability, a concept that allows one to derive rigourous
evaluative procedures, both in forensic science [13, e.g.] and also in
many other applications [15, e.g.]. However, the derivation of a
formal procedure may involve considerable technicalities, often
difficult to adjust whenever the initially stated target question or
purposes change. In addition, further complication may arise if one
wishes the numerical specification of a particular model to relate
experimental data.

With the aim of illustrating that all of these facets of an
inference problem can be approached within a unified framework,
this series of papers has focused on the discussion of Bayesian
networks, from both a conceptual and a practical point of view.
Conceptually, the approach allows one to account for the essential
ingredients of the Bayesian approach to statistics, that is:

� a parameter of interest can be considered as a random variable;
� inferences about a parameter can be made using the rules of

probability;
� probability statements about a parameter can be based on

(subjective) prior information which may subsequently be
revised in the light of newly acquired data, using Bayes’ theorem.
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The proposed Bayesian networks can be used at several levels of
detail. Local network components (sub-networks) may be retained
for implementing probability ‘learning’ procedures that them-
selves maybe part of a larger network used for the analysis of
particular case scenarios. Generally, the Bayesian network
environment assures that the two aspects neatly interface and
work within a coordinated whole.

From a practical point of view, a Bayesian network approach
offers various useful features. In particular, it allows one:

� to avoid the technicalities of managing and manipulating
different (possibly cumbersome) probabilistic formulae (instead,
efforts can be concentrated on structural issues and underlying
assumptions);
� encode, store, communicate and share domain knowledge by

translating probabilistic inference procedures into graphical
representations;
� to interface an inference model to real data and to learn target

probabilities from that data;
� to readily adjust parametric settings (e.g., distributive assump-

tions) without the need to care about underlying calculations;
� to implement Bayesian principles for both parameter estimation

and inference about propositions.

The availability of Bayesian network software packages
provides further support in extending these ideas to practical
applications (e.g., for analysing how the value of several distinct
items of scientific evidence may be assessed). In addition, it opens
opportunities to explore categories of scientific evidence from
other forensic disciplines.
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