
Spécialité Génie Electrique

Polycopié d’Informatique Industrielle

Partie I : Logique

D. DELFIEU

- Troisième annèe -

Reproduction interdite sans autorisation de l’auteur et de l’école

1

2

Table des matières

1 Système de numération 7
1.1 Les systèmes basés . 7
1.2 Conversion de bases . 7

1.2.1 Conversion d’un entier : 10 ⇒ B . 8
1.2.2 Conversion d’une partie fractionnaire : 10 ⇒ B 8
1.2.3 Conversion 2i ⇒ 2j . 8

1.3 L’arithmétique des systèmes basés . 9
1.3.1 Signe + VA . 9
1.3.2 Complément Restreint (base B) - Complément à 1 (Base 2) 9
1.3.3 Complément Vrai (base B) - Complément à 2 (Base 2) 10
1.3.4 Bilan : CA1 vs CA2 . 11
1.3.5 Débordement de capacité . 11

1.4 Codes non pondérés . 12
1.4.1 Code Excess 3 . 12
1.4.2 Codage de Gray . 14

2 Logique Combinatoire 17
2.1 Opérateurs logique élémentaires . 18

2.1.1 ET . 18
2.1.2 OU . 18
2.1.3 NON . 18
2.1.4 NAND . 18
2.1.5 NOR . 18
2.1.6 XOR : ⊕ . 19
2.1.7 IMPLIQUE : ⇒ . 19
2.1.8 EQUIVALENCE : ⊙ . 19
2.1.9 Exemples de simplification algébrique d’expressions logiques 19

2.2 Simplification de fonction logique . 19
2.2.1 Lecture d’une table de vérité . 21
2.2.2 Simplification d’expressions algébriques 29

2.3 Les circuits Combinatoires . 30
2.3.1 Circuits de transcodage . 30
2.3.2 L’additionneur . 37
2.3.3 Le comparateur . 41
2.3.4 L’UAL : 74181 . 41

3

4 TABLE DES MATIÈRES

3 Logique Séquentielle 43
3.1 Introduction . 43

3.1.1 La notion de mémoire . 43
3.1.2 La bascule initiale : la RS asynchrone 46

3.2 Typologie des bascules . 48
3.2.1 Les bascules à verrou : les "Latch" . 48
3.2.2 Les Bascules à déclenchement sur front : "Edge Triggered" 50
3.2.3 La JKT . 52
3.2.4 Bascules Maîtres Esclaves . 53

3.3 Analyse de circuits séquentiel . 56
3.3.1 Phases de l’analyse . 56
3.3.2 Exemple d’analyse de circuits séquentiel 57

3.4 Les séquenceurs . 59
3.4.1 Table d’excitation de la bascule JKT 59
3.4.2 Exemple . 59

Introduction

Ce cours de logique à pour objectif de vous permettre de comprendre les circuits com-
binatoires comme les Codeurs, les Décodeurs, les Multiplexeurs, les Démultiplexeurs, les
Additionneurs, comment on réalise une soustraction, le Multiplicateur le comparateur. Tous
ces circuits participent à la conception d’une Unité Arithmétique et Logique d’un micro-
contrôleur ou d’un microprocesseur. En logique Séquentielle, on verra la notion de bit ainsi
qu’une méthode d’analyse des circuits séquentiels ainsi qu’une méthode de synthèse d’auto-
mate.

Après une partie sur les systèmes basés, il y aura deux grands chapitres, la logique
combinatoire et la logique séquentielle. Comme l’indique la figure 1, en logique combinatoire
on établit des relations logiques entre des entrées et des sorties.

b3

b2

b1

b0

S
Logique Combinatoire

Figure 1 – Logique combinatoire

Ainsi, l’exemple de la figure 2.1 illustre une serrure électronique qui s’ouvre lorsque les
boutons (b3, b2, b1, b0) sont positionnés sur la combinaison (1, 1, 1, 0).

b3

b2
b1

b0

S

Figure 2 – Exemple de logique combinatoire

L’équation de la sortie est alors S = b3.b2.b1.b0.

En logique séquentielle, la ou les sorties peuvent re-boucler sur les entrées ! Comme
l’indique la figure 3, ici la sortie Q ne peut être définie en effet on aurait la définition auto-
référente : Q = rst+ set+Q. En effet, définir Q en fonction de Q n’a aucun sens en logique
combinatoire !

5

6 TABLE DES MATIÈRES

rst

set

Q

Figure 3 – Rebouclage en logique séquentielle

On verra dans le chapitre logique séquentielle une méthode qui permettra d’établir tout
de même, des équations qui décrivent ces systèmes et de produire la machine à états qui
décrit le comportement d’un système séquentiel.

Chapitre 1

Système de numération

Le coeur d’un processeur, appelé Unité Arithmétique et Logique (UAL), n’effectue en
fait que des opérations élémentaires, qui peuvent être soit des opérations arithmétiques soit
logiques. Toutes ces opérations sont réalisés en base 2. Nous étudierons dans cette section
comment sont représentés les nombres négatifs dans une représentation binaire et comment
l’UAL réalise les additions et les soustractions.

1.1 Les systèmes basés

Un nombre N exprimé en base B se représente comme une juxtaposition d’éléments ai
exprimés en base B. Concernant la Partie Entière (PE) d’un nombre :

— NB = aiai−1...a1a0
— ai exprimé en base B signifie que ai ∈ [0...B − 1]

Pour convertir ce nombre en base 10 on utilise la formule de Horner :

N10 =

n∑
i=0

aiB
i

Concernant la Partie Fractionnaire (PF) :
— NB = 0, a−1a−2...a−m

— N10 =
−1∑

i=−m

aiB
i

1.2 Conversion de bases

On va étudier les méthodes de conversion d’une base à une autre. Il existe la méthode
par multiplication et la méthode par division. Donnons l’algorithme de la méthode par
soustraction :

7

8 CHAPITRE 1. SYSTÈME DE NUMÉRATION

1.2.1 Conversion d’un entier : 10 ⇒ B

Algorithm 1: Par Soustraction
Données: N : Entier à convertir en base B
Répéter

On cherche un couple (aj , Bi) tel que aj est le plus grand entier dans [0, B − 1]
et Bi est le plus grand entier tel que aj ∗Bi < N ;

On pose aj au rang i ;
On réalise N = N − ai ∗Bi ;

Jusqu’à N < B;
On depose le dernier reste au rang zéro ;

Exercice : 7710 en base 3 ?

Maintenant donnons l’algorithme par division :

Algorithm 2: Par division
Données: N : Entier à convertir en base B
Répéter

Division Euclidienne de N par B : N = Q ∗B +R ;
On pose R au rang dans l’ordre inverse où il a été obtenu (le premier reste etant
le poids faible du résultat) ;

Jusqu’à (Q == 0);
Le dernier quotient est posé au rang le plus fort ;

Exercice : 7710 en base 3 ?

1.2.2 Conversion d’une partie fractionnaire : 10 ⇒ B

Algorithm 3: Par Multiplication
Méthode par multiplication
Données: PF : Partie Fractionnaire à convertir en base B
Répéter

R= PF ∗B ;
PE = PartieEntiere(R) ;
PF = R− PE ;
On pose PE à droite du précédent résultat ;

Jusqu’à (PF == 0) ou (précision est obtenue) ou (détection séquence infinie);

Exemple : 0, 4510 en base 2 ?

1.2.3 Conversion 2i ⇒ 2j

Pour convertir de la base 2 vers une base 2N . On regroupe par paquets de n bits et on
convertit à l’intérieur de chaque paquets de n bits
Exemple : 0, 011100112 =⇒ 0, 011100110 =⇒ 0, 3468
Pour convertir d’une base 2N vers la base 2, on converti chaque terme ai en base 2 sur n
bits.

On considère par la suite, que la base 2 est le mode de représentation des nombres.

1.3. L’ARITHMÉTIQUE DES SYSTÈMES BASÉS 9

1.3 L’arithmétique des systèmes basés
Une arithmétique en base 2, se pose la question de la représentation des nombres négatifs.

Pour représenter les nombres nous avons :
— Signe et valeur absolue
— Complément à deux : CA2

— Complément à un : CA1

1.3.1 Signe + VA

7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0+ 0000
0− 1000
−1 1001
−2 1010
−3 1011
−4 1100
−5 1101
−6 1110
−7 1111

— Un bit de signe :
— 1 pour " -"
— 0 pour " +"

— Deux représentations pour le zéro :
— 0000 pour 0+

— 1000 pour 0−
— Si l’on fait l’addition d’un nombre po-

sitif et d’un nombre négatif le résultat
est incorrect.

1.3.2 Complément Restreint (base B) - Complément à 1 (Base 2)

7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0+ 0000
0− 1111
−1 1110
−2 1101
−3 1100
−4 1011
−5 1010
−6 1001
−7 1000

Soit n le nombre de bits de représentation
des nombres, pour une base B on a :

CAB−1(N) = Bn −N − 1

Base 2 :

CA1(N) = 2n −N − 1

S’obtient facilement par inversion binaire du
positif.

Ce mode de représentation produit des erreurs selon les cas :

Démonstration. L’usage de nombres négatifs contient deux cas de figure :
Premier cas : R=A-B
R = A−B = A+ CA1(B) = A+ 2n −B − 1 = A−B + 2n − 1
Posons K = A−B
Si K > 0 :

10 CHAPITRE 1. SYSTÈME DE NUMÉRATION

R = K + 2n − 1 = K − 1 : Erreur de +1
Si K < 0 :
R = 2n − |K| − 1 = CA1(|K|) : Pas d’erreur

Second cas : R=-A-B
R = −A−B = CA1(A) + CA1(B) = 2n + (2n −A−B − 1)− 1
= 2n + CA1(A+B)− 1
= CA1(A+B)− 1 : Erreur de +1

En utilisant la formule CA1 précédente :
— Sur 4 bits, trouver la représentation en base 2 de -5 en complément restreint ?
— Sur 4 bits, trouver la représentation en base 2 de -1 en complément restreint ?

1.3.3 Complément Vrai (base B) - Complément à 2 (Base 2)

7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001
0 0000
−1 1111
−2 1110
−3 1101
−4 1100
−5 1011
−6 1010
−7 1001
−8 1000

Soit n le nombre de bits de représentation
des nombres, en base B on a :

CAB(N) = Bn −N

Base 2 :

CA2(N) = 2n −N

— S’obtient par inversion binaire du po-
sitif puis en rajoutant 1.

— “De la droite vers la gauche, repro-
duire les zéros, au premier “un” ren-
contré, le reproduire puis inverser tous
les bits à sa gauche”

En CA2 il n’y a jamais d’erreur :

Démonstration. L’usage de nombres négatifs contient deux cas de figure :
Premier cas : R=A-B
R = A−B = A+ CA2(B) = A+ 2n −B = A−B + 2n − 1
Posons K = A−B
Si K > 0 :
R = K + 2n = K : Pas d’erreur
Si K < 0 :
R = 2n − |K| = CA2(|K|) : Pas d’erreur

Second cas : R=-A-B
R = −A−B = CA2(A) + CA2(B) = 2n −A+ 2n −B = 2n −A−B + 2n

Posons K = A+B
R = 2n −K + 2n = CA2(K) + 2n

Or on sait que X + 2n = X sur n bits
D’ou R = CA2(K) Pas d’erreur

1.3. L’ARITHMÉTIQUE DES SYSTÈMES BASÉS 11

En utilisant la formule précédente :
— Sur 4 bits, trouver la représentation en base 2 de -3 en complément vrai ?
— Sur 4 bits, trouver la représentation en base 2 de -7 en complément vrai ?

1.3.4 Bilan : CA1 vs CA2

Si l’on fait un bilan des deux façons de coder les nombres négatifs
— CA1

— plage des positifs : 2n−1 − 1 ... 0+

— plage des négatifs : 0− ... − (2n−1 − 1)
— CA2 :

— plage des positifs : 2n−1 − 1 ... 0
— plage des négatifs : −1 ... − (2n−1)

— Posons n=8 :

— Plage positif : 0 ... +127
— Plage négatifs : -1 ... -128
— Représentation négative de 100 ? 100 = 011001002

— CA1(100) = 28 − 10010 − 1 = 25610 − 10010 − 1 = 15510 = 100110112
10011011 s’obtient facilement par complément binaire de 01100100

— CA2(100) = 28 − 10010 = 25610 − 10010 = 15610 = 100110112
10011011 s’obtient moins facilement par complément binaire et addition de +1 :
01100100 →Comp.Bin. 10011011 →+1 10011100

Complément à un :
— deux zéros,
— correction dans certains cas,
— facile à implémenter,
— autant de positif que de négatifs.

Complément à deux :
— un seul zéro,
— pas de correction,
— plus difficile à implémenter,
— un nombre négatif en plus.

Si Au final c’est le CA2 qui est considéré comme le meilleur compromis. Pratiquement
quasiment 100% des processeurs utilisent le CA2

1.3.5 Débordement de capacité

Un débordement de capacité se produit lors de l’addition de deux nombres positifs ou
lors de l’addition de deux nombres négatifs. Il se produit alors un changement de signe du
résultat. Ce phénomène est simplement détecté quand la retenue entrante dans le bit de
signe est différente de la retenue sortante. Cela est testé par un ou exclusif.
Exemple sur 8 bits :

0 1 1 1 1 1 1 0 0

0 1 1 1 1 0 1 0
+ 0 0 0 1 0 1 1 0
= 1 0 0 1 0 0 0 0

Il y a débordement ! Les retenues entrantes et sortantes dans l’addition du bits de signe
sont différentes : r7 ⊕ r6 = 0⊕ 1 = 1

12 CHAPITRE 1. SYSTÈME DE NUMÉRATION

1.4 Codes non pondérés

Les codages basés sont des codes dit pondérés. Un code est dit pondéré si la position de
chaque symbole dans chaque mot correspond à un poids fixé. La formule de Horner, indique
qu’en multipliant chaque symbole par son poids et en additionnant le tout, on obtient la
conversion en décimal.

Des codes non pondérés sont des codes pour lesquels on ne peut repérer de poids. Ils
sont définis par des tables de correspondances ou par le biais de symétrie et/ou de propriétés
logiques ou arithmétiques.

— Code Pondéré : binaire, octal, hexadécimal, Décimal Codé Binaire
Le "Décimal Codé Binaire" (BCD) est un code dans lequel chaque chiffre de la
représentation décimale est codé sur un groupe de 4 bits.
— Exemple : 1789 se code 0001 0111 1000 1001
— Avantage : Affichage décimal grandement facilité
— Inconvénient : Code redondant 6 combinaisons sur 16 ne sont pas utilisées
Remarque : 1789 prend 13 bits en BCD, seulement 11 en binaire naturel.

— Code Non Pondéré : Code excess 3
L’Excess 3, permet une transcription rapide en décimal. Il permet de plus une préci-
sion infinie en arithmétique (limité par les temps de calcul) au dépend d’une repré-
sentation qui gaspille des combinaisons.
Il apporte par rapport au BCD une rapidité par rapport à la soustraction.

— Code Non Pondéré : Code de Gray

1.4.1 Code Excess 3

Le code excess 3 ou "code plus 3" (XS3) appelé aussi "code STIBIZ" du nom de son
inventeur est un code non pondéré issu du DCBN auquel on ajoute systématiquement 3 à
chaque chiffre. Donc un chiffre est représenté sur 4 bits auquel on rajoute 3. Les retenues
ont donc un poids de 16.

Définition 1.4.1. Additions de Nombres positifs Soit deux nombres positifs A et B exprimés
en XS3, et R = A+B.

— Si R < 1610 alors il faut retrancher 3 à R.
— Si R ≥ 1610 alors il faut ajouter 3.

Définition 1.4.2. Nombres négatifs La particularité essentielle est que la représentation
négative d’un nombre N se réalise par le Complément à 9 du nombre N . Etant donné deux
nombres positifs A et B, pour A−B, il y aura des corrections à faire dans le cas ou A > B.
Et une correction aura lieu aussi pour −A−B.

Exemple :
Décimal BCD Excess-3

5 0101 1000
7 0111 1010

Addition binaire :

1 0 0 0
+ 1 0 1 0
1 0 0 1 0

1.4. CODES NON PONDÉRÉS 13

1 0 0 1 0
+ 0 0 1 1
1 0 1 0 1

On a la retenue, puis le groupe de 4 bits qui fait 5 : On a donc 15 en XS3 qui représente
bien la valeur 12.

Exemples d’additions Notons NXS3
un nombre N exprimé en "DCBN XS3"

— 210 + 510 = 5XS3
+ 8XS3

= 13XS3
− 3 = 10XS3

(correction de -3)

— 810 + 510 = 11XS3
+ 8XS3

= 19XS3
− 3 = 13XS3

(correction de +3)

— Addition sur plusieurs digits : 21+37

Nombres XS3

2 5
1 4
3 6
7 A

Donc l’addition donne :
5 4

+ 6 A
= B E
+ -3 -3
= 8 B

Les soustractions en Codage Excess 3

Les nombres négatifs sont représentés en complément à 9.

CA9(x) = 9− x

Pour réaliser AXS3 −BXS3 :
— Calcul de CA9(B)

On additionne : AXS3 + CA9(B)
Si le résultat sur 4 bits est >9 on ajoute 3.

— Rappel :

Exemples de soustraction 27-13
— 5A− CA(13)

Détaillons : CA9(13) = CA9(1)CA9(3) = 86 =XS3 B9

5A+B9 = 11 + CA1(8) = 8 + CA1(1000)

1011 (8)
+0111 (-5)
1 0010 (+2)
+0001
+0011
DCBN

14 CHAPITRE 1. SYSTÈME DE NUMÉRATION

Exercices

Correction exercice 42−12 Second algorithme : Le soustracteur 12 est exprimé en XS3

et devient 45. Ld résultat est en DCBN . La théorie nous dit qu’il y aura une erreur de +1
car le résultat attendu +30 de la soustraction est positif.

42− 12 = 75 + CA1(45) = 01110101 + CA1(01000101)

Détaillons :
01110101 (75)
+10111010 (CA1(45))
1 00101111 (1 2 F)
+00000001
1 00110000(DCBN)

Correction exercice 21− 37 Premier algorithme : Le soustracteur 37 n’est pas exprimé
en XS3. Le résultat ser en XS3. La théorie nous dit qu’il n’y aura pas d’erreur car le résultat
attendu −16 est négatif.

21− 37 = 54 + CA9(37) = 75 + CA1(00110111)

Détaillons :
01010100 (54)
+11001000 (CA1(37))
1 01100010 (1 6 2)
+00000001
1 01100011
1 6 3 (DCBN-XS3)

1.4.2 Codage de Gray
Ce code est construit de facon récurrente à l’aide de symétries. Il a comme propriétées

d’être réfléchi, circulaire, et la distance de hamming entre deux codes est de 1.
La distance de Hamming entre deux nombre se définit comme le nombre de bite qui

diffèrent.
Construisons un code de gray à trois variables :

On réalise d’abord une symétrie :
0
1
1
0

On remplit la colonne 2
par moitié de zéro et de un

0 0
0 1
1 1
1 0

On réalise encore une symétrie :
0 0
0 1
1 1
1 0
1 0
1 1
0 1
0 0

On remplit la colonne 3
par moitié de zéro et de un

1.4. CODES NON PONDÉRÉS 15

0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0

16 CHAPITRE 1. SYSTÈME DE NUMÉRATION

Chapitre 2

Logique Combinatoire

La logique permet de définir des fonctions logiques qui s’expriment sur des variables lo-
giques. Une variable logique est une variable qui prend ses valeurs dans [0, 1]. Ce domaine
peut s’interpréter comme [Faux, V rai] et également comme [0v, 5v]. L’algèbre de Boole
(Georges Boole 1815 - 1864) est une algèbre binaire n’acceptant que deux valeurs numé-
riques : 0 et 1. Cette algèbre est définie par la donnée d’un ensemble non vide muni de 3
lois de composition interne : ET , OU , NON satisfaisant à certain nombre de propriétés
(commutativité, distributivité...).

Un système combinatoire se définit par les fonctions logiques qui correspondent aux
sorties du systèmes :

b3

b2

b1

b0

S1

S2

...

Sn

Logique Combinatoire

Figure 2.1 – Exemple de logique combinatoire

Définition 2.0.1. Fonction logique Une fonction logique Fi est une fonction de n variables
qui est définie par sa valeur dans [0, 1] pour les 2n combinaisons de ces variables d’entrées.
Ces 2n définitions constituent ce que l’on appelle la table de vérité d’une fonction.

Problématique du cours

La problématique de cette section est de traduire un problème en équations logiques,
puis de simplifier ces équations et enfin de les implémenter ces équations à l’aide de portes
et/ou de composants logiques.

Un problème de type combinatoire - c.a.d . qui ne requiert pas le concept de mémoire -
peut généralement s’exprimer dans le cas d’une algèbre :

A = (. , + , ¯, (0, 1))

17

18 CHAPITRE 2. LOGIQUE COMBINATOIRE

2.1 Opérateurs logique élémentaires

2.1.1 ET
Noté "." on trouve aussi ∧, & :
— il a un élément neutre noté 1 : 1.x = x
— un élément absorbant noté 0 : 0.x = 0
— il est commutatif x.y = y.x
— il est associatif x.(y.z) = (x.y).z
— il est distributif sur le OU : x.(y + z) = xy + xz
— il est idempotent : x = x.x.....x

Son symbole électronique est :

2.1.2 OU
Noté "+" on trouve aussi ∨ :
— il a un élément neutre noté 0 : 0 + x = x
— un élément absorbant noté 1 : 1 + x = 1
— il est commutatif x+ y = y + x
— il est associatif x+ (y + z) = (x+ y) + z
— il est distributif sur le ET : x+ (y.z) = (x+ y).(x+ z)
— il est idempotent : x = x+ x....+ x

Son symbole électronique est :

2.1.3 NON
Noté ¯ on trouve aussi ¬, c’est une fonction unaire.
— il est involutif ¯̄x = x
— x+ x = 1
— x.x = 0
— théorème de Morgan (Augustus De Morgan 1806-1871)

x ∨ y ∨ z ∨ ... = x ∧ y ∧ z ∧ ...
x ∧ y ∧ z ∧ ... = x ∨ y ∨ z ∨ ...

Son symbole électronique est :

2.1.4 NAND
Noté a.b
— il n’est pas associatif : a.b.c ̸= a.b.c
— NAND est un opérateur logique COMPLET :

— On peux réaliser le NOT avec un NAND : a = a.1

— On peux réaliser le OU avec un NAND : a+ b = a.1.b, 1

— On peux réaliser le ET avec un NAND : a.b = a.b.1

Son symbole électronique est :

2.1.5 NOR
Noté a+ b
— il n’est pas associatif : a+ b+ c ̸= a+ b+ c

2.2. SIMPLIFICATION DE FONCTION LOGIQUE 19

— NOR est un opérateur logique COMPLET :
— On peux réaliser le NOT avec un NOR : a = a+ 0

— On peux réaliser le ET avec un NOR : a.b = a+ 0 + b+ 0

— On peux réaliser le OU avec un NOR : a+ b = a+ b+ 0

Son symbole électronique est :

2.1.6 XOR : ⊕
Noté a⊕ b = a.b+ a.b
— il est associatif : (a⊕ b)⊕ c = a⊕ (b⊕ c)
— XOR n’est pas un opérateur logique COMPLET :

On ne peux réaliser que le NOT avec un XOR : a = a⊕ 1

Son symbole électronique est :

2.1.7 IMPLIQUE : ⇒
Noté a ⇒ b = a+ b

a b a ⇒ b
0 0 1
0 1 1
1 0 0
1 1 1

2.1.8 EQUIVALENCE : ⊙
Noté a ⇔ b = a.b+ a.b = a⊕ b = a⊙ b

a b a ⇔ b
0 0 1
0 1 0
1 0 0
1 1 1

Son symbole est :

2.1.9 Exemples de simplification algébrique d’expressions logiques
Simplifier une fonction logique permettra d’optimiser sa consommation électrique.
— F (x, y) = x+ x̄.ȳ = x+ ȳ
— F (x, y) = x+ x̄.y = x+ y
— F (x, y) = x+ x.y = x
— f(a, b, c) = āb̄.c+ ā.b.c+ a(b̄c̄+ bc̄+ b̄c+ bc) = a+ c

2.2 Simplification de fonction logique
On va dans cette section présenter comment réduire la complexité d’un fonction logique.

Réduire cette complexité, c’est permettre lors de son implémentation électronique, de dimi-
nuer le coût et la consommation électrique, mais aussi augmenter la vitesse de traitement
du circuit électronique qui implémente la fonction.

20 CHAPITRE 2. LOGIQUE COMBINATOIRE

Une fonction logique peut être représentée par une expression algébrique, une table de
vérité ou une table de Karnaugh (1924-2022).

Un problème en logique est qu’il existe une infinité de formes équivalente à f , par contre
on pourra toujours ramener une fonction f en une forme canonique disjonctive (les opérateurs
de plus haut niveau sont des OU) ou une forme canonique conjonctive (les opérateurs de
plus haut niveau sont des ET) . Une forme canonique est une une forme unique.

Théorème de décomposition de Shannon (1916-2001)

Ce théorème donne une méthode pour représenter une fonction sous une forme unique
conjonctive ou disjonctive.

Définition 2.2.1. Shannon : Toute fonction logique peut se décomposer par rapport à l’une
de ces variables sous la forme d’une somme de deux produits logiques tel que :

F (x, y, ...z) = x.F (1, y, ...z) + x̄.F (0, y, ...z)

Toute fonction logique peut se décomposer par rapport à l’une de ces variables sous la forme
d’un produit de deux sommes logiques tel que :

F (x, y, ...z) = [x̄+ F (1, y, ...z)].[x+ F (0, y, ...z)]

Démonstration Pour la première assertion posons x=1, on a :

F (1, y, ...z) = 1.F (1, y, ...z) + 1̄.F (0, y, ...z)

= 1.F (1, y, ...z) + 0.F (0, y, ...z)

= F (1, y, ...z) ce qui est VRAI

Posons x=0, on a :

F (0, y, ...z) = 0.F (1, y, ...z) + 0̄.F (0, y, ...z)

= 1.F (0, y, ...z)

= F (0, y, ...z) ce qui est VRAI

Pour toutes les valeurs de x, la première assertion est valide. On fera un raisonnement
similaire pour la seconde assertion.

Forme disjonctive de Shannon Soit la fonction F : définie par F (x, y) = x+ x̄.ȳ

x y f(x, y)
0 0 1
0 1 0
1 0 1
1 1 0

F (x, y) = x.F (1, y) + x̄.F (0, y)

= x.[y.F (1, 1) + ȳ.F (1, 0)] + x̄.[y.F (0, 1) + ȳ.F (0, 0)]

= x.y.1 + x.ȳ.1 + x̄.y.0 + x̄.ȳ.1

= x.y + x.ȳ + x̄.ȳ

2.2. SIMPLIFICATION DE FONCTION LOGIQUE 21

Lorsque F (., .) = 0, il y a une absorption du terme.

Définition 2.2.2. Remarques Appliquer le théorème de Shanon pour la forme disjonctive
revient, in fine, à la lecture de la table de vérité sur les "uns".

Forme conjonctive de Shannon Soit la fonction F : définie par F (x, y) = x+ x̄.ȳ

x y f(x, y)
0 0 1
0 1 0
1 0 1
1 1 1

F (x, y) = [x̄+ F (1, y)].[x+ F (0, y)]

= [x̄+ (ȳ + F (1, 1))(y + F (1, 0)][x+ (ȳ + F (0, 1))(y + F (0, 0))]

= [x̄+ (ȳ + 1)(y + 1)][x+ (ȳ + 0)(y + 1)]

= [x̄+ 1] [x+ ȳ]

= 1 . [x+ ȳ]

Lorsque F (., .) = 1, il y a une absorption du terme.

Définition 2.2.3. Remarques Appliquer le théorème de Shanon pour la forme conjonctive
revient, in fine, à la lecture de la table de vérité sur les "zeros", en inversant termes et
opérateurs.

2.2.1 Lecture d’une table de vérité
les deux formes du théorème de Shannon, nous donnent deux méthodes de lecture des

tables de vérité.

Table de vérité et Shannon en forme disjonctive

a b c f
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

— Lecture sur les "uns".
— "zéro" est absorbant et élimine les

autres lignes.
— Les termes sont associés en conjonc-

tion, les lignes sont en disjonction,
— f(a, b, c) = āb̄.c+ ā.b.c+ a.b̄c̄+ ab̄c+

a.bc̄+ a.bc

Table de vérité et Shannon en forme Conjonctive

22 CHAPITRE 2. LOGIQUE COMBINATOIRE

a b c f
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

— Lecture sur les "zéros".
— "un" est absorbant et élimine les

autres lignes.
— Les termes inversés sont associés en

disjonction, les lignes sont en conjonc-
tion,

— f(a, b, c) = (a+ b+ c).(a+ b̄+ c)

Table de vérité

Une table de vérité sert à exprimer exhaustivement un cahier des charges. Elle est com-
posée de deux parties : les combinaisons et la valeur de vérité de la fonction. La Partie
combinaison on exhibe l’ensemble 2n combinaisons correspondant aux n variables.

Si une combinaison est interdite ou si la valeur de la fonction est indifférente pour cette
combinaison :
Alors la valeur de vérité de la fonction reçoit ∗. La valeur de vérité de la fonction est exprimée
sur 0, 1, ∗. ∗ signifie que la valeur vaux un ou zéro.

Il est à noter qu’il est périlleux d’effectuer des simplifications dans une table de vérité.

Karnaugh

Construction d’une table de Karnaugh pour une fonction à n variables :
— Partager l’ensemble des variables en 2 sous-ensembles s1 de dimension n1 et s2 de

dimension n2 avec n1 + n2 = n.
— Ecrire un tableau avec 2n1 lignes et 2n2 colonnes.
— Construire un codage de Gray à n1 et à n2 variables, que l’on placera dans la première

colonne et dans la première ligne du tableau.
— A partir de la table de vérité, reporter la (les) valeur(s) de vérité de(s) la fonction(s)

à partir des combinaisons des variables d’entrée du tableau.

Table de vérité et table de Karnaugh.

f(a, b, c) = āb̄.c+ ā.b.c+ a(b̄c̄+ bc̄+ b̄c+ bc)

a b c f
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Sous-ensembles : s1 = c, s2 = (a, b)

@@c
a b

1

0

0 0 0 1 1 1 1 0

f(a,b,c)

0 0

1 1

11

11

a

c

b

Règles de simplification

— Dans une table de Karnaugh on regroupe deux paquets de 2n "uns" pour former un
paquet de 2n+1 variables.

2.2. SIMPLIFICATION DE FONCTION LOGIQUE 23

— Le principe de regroupement de 2 paquets X est basé sur le théorème suivant :

x1....xi....xn + x1....x̄i...xn = x1...(xi + x̄i)...xn = x1...xi−1.xi+1...xn

X.x̄+X.x = X

— Ainsi un regroupement de 2n variables représente n applications SUCCESSIVES de
ce théorème.

D’un point de vue graphique les regroupements peuvent se faire suivant les critères
suivants :

— 2 cases adjacentes : le Code de Gray assure que 2 codes adjacents ont une distance
de Hamming de 1 ;

— un axe de symétrie partage la table de Karnaugh en deux parties égales ;
— d’autres axes de symétrie peuvent partager en 2 une sous-table de Karnaugh issue

elle-même d’un axe de symétrie ;
— 2 blocs de 2n cases peuvent être regroupés si ils présentent entre eux d’un axe de

symétrie ;
— le Code de Gray étant circulaire, les colonnes et les lignes extrêmes sont adjacentes.

Définition 2.2.4. Règles de simplification Pour simplifier une table de Karnaugh , on com-
mencera par les "uns" qui n’ont qu’une seule façon de se regrouper puis on essaiera de faire
les plus grands regroupements possibles

Exemples de regroupement de cases adjacentes :

@@c d
a b

�� �

1 0

1 1

0 1

0 0

0 0 0 1 1 1 1 0

f(a,b,c,d)

1 1

c

a

d

b
@@c d
a b �

�
�

1 0

1 1

0 1

0 0

0 0 0 1 1 1 1 0

f(a,b,c,d)

1

1

c

a

d

b

@@c d
a b

�
 �

�� ��

1 0

1 1

0 1

0 0

0 0 0 1 1 1 1 0

f(a,b,c,d)

1 1

1 1
c

a

d

b

Regroupements de blocs de 2n cases

24 CHAPITRE 2. LOGIQUE COMBINATOIRE

f(a, b, c) = a+ c

�� �
a
'
&

$
%
c

1 1

11

11

c

a

b

f(a, b, c, d) = ab+ c̄b+ c̄ā

�� �

'
&

$
%
���

���*
regroupement inutile

'
&

$
%

f

1 1

1 1

1 1 11
a

c

b

d

f(a, b, c, d) = ab+ c̄ā

�� �

'
&

$
%

f

1 1

1 1

1 1 11
a

c

b

d

Erreurs classiques !

�
�
�
�
�@

@
@
@
@

'

&

$

%

f

1 1

1 1

1 1 11
a

c

b

d

Remarque :
Ce regroupement de six est interdit. Six n’est
pas une puissance de 2.

2.2. SIMPLIFICATION DE FONCTION LOGIQUE 25

Axes de symétrie Voici quelques axes de symétries possibles : f(a, b, c, d, e) = c̄d

f

e

a

c

b

d d

f(a, b, c, d, e) = c̄dē+ c̄de

�

�

�

�

�

�

f

1

1

1

1 1

1

1

1

1

1

1

e

a

c

b

d d

Existe-t-il un axe de symétrie ?

f(a, b, c, d, e) = c̄d

�

�

�

�

�

�

� �
f

1

1

1

1 1

1

1

1

1

1

1

e

a

c

b

d d

f(a, b, c, d, e) = c̄d+ ade

26 CHAPITRE 2. LOGIQUE COMBINATOIRE

�

�

�

�

�

�

� �

'
&

$
%

f

1

1

1

1 1

1

1

1

1

1

1

e

a

c

b

d d

f(a, b, c, d, e) = c̄d+ ade+ abdē

�

�

�

�

�

�

� �

'
&

$
%

�� �

f

1

1

1

1 1

1

1

1

1

1

1

e

a

c

b

d d

f(a, b, c, d, e) = c̄d+ ade+ abd

�

�

�

�

�

�

� �

'
&

$
%

�� �
 �� �

� �

f

1

1

1

1 1

1

1

1

1

1

1

e

a

c

b

d d

Cas des fonctions incomplètement définies

Lorsque l’on a des combinaisons interdites, impossibles ou indifférentes alors on considère
que ces combinaisons sont disponibles à la simplification et sont notées ∗.

Remarque :
Dans le cas ou la combinaison qualifiée d’impossible dans le cahier des charges se produit

2.2. SIMPLIFICATION DE FONCTION LOGIQUE 27

quand même (perturbation électromagnétique), cela provoquera un aléa de fonctionnement.
La fréquence et la dangerosité de cet évènement, peut nous amener alors à revoir le cahier
des charges et la réalisation du circuit électronique.

Soit N un chiffre décimal représentant une note sur 20 traduit en binaire. Donner la
fonction logique qui permet de tester si N ≥ 12.

28 CHAPITRE 2. LOGIQUE COMBINATOIRE

La table de vérité de N ≥ 12 :

N n4 n3 n2 n1 n0 f
0 0 0 0 0 0 0
1 0 0 0 0 1 0
2 0 0 0 1 0 0
3 0 0 0 1 1 0
4 0 0 1 0 0 0
5 0 0 1 0 1 0
6 0 0 1 1 0 0
7 0 0 1 1 1 0
8 0 1 0 0 0 0
9 0 1 0 0 1 0
10 0 1 0 1 0 0
11 0 1 0 1 1 0
12 0 1 1 0 0 1
13 0 1 1 0 1 1
14 0 1 1 1 0 1
15 0 1 1 1 1 1
16 1 0 0 0 0 1
17 1 0 0 0 1 1
18 1 0 0 1 0 1
19 1 0 0 1 1 1
20 1 0 1 0 0 1
21 1 0 1 0 1 *
... *
31 1 1 1 1 1 *

N ≥ 12

1

1

1

1

11

1*

* *

* *

1*

1*

* *

* *

n4

n1

n3

n0

n2 n2

�

�

�

�

�

�

� �'

&

$

%

N ≥ 12

1

1

1

1

11

1*

* *

* *

1*

1*

* *

* *

n4

n1

n3

n0

n2 n2

N ≥ 12 = n4 + n2.n3

2.2. SIMPLIFICATION DE FONCTION LOGIQUE 29

2.2.2 Simplification d’expressions algébriques
Il y a une infinité de théorèmes ou de règles. Je propose ici un sous-ensemble de 3 théo-

rèmes complètement arbitraire. La règle de remplacement est la plus étrange et j’en décon-
seille l’usage car elle peut être couteuse en temps. Elle utile pour démontrer la règle appelée
“Simplification”. Par contre le sous-ensemble, Simplification, Absorption et Consensus est
suffisant pour simplifier toute fonction logique.

Remplacement

E + F = E +G ⇐⇒ F ≤ G ≤ E + F

Exemple :

E(x1, x2) = x1

F (x1, x2) = x̄1.x2 G(x1, x2) = x2

x1 x2 E F G E+F
0 0 0 0 0 0
0 1 0 1 1 1
1 0 1 0 0 1
1 1 1 0 1 1

D’où le nouveau théorème :

x1 + x̄1.x2 = x1 + x2

Simplification, Absorption et Consensus

Simplification
E + Ē.F = E + F

Régle duale :
E.(Ē + F) = E.F

Absorption
E + EF = E

Régle duale :
E.(E + F) = E

Consensus
E.F + Ē.G+ FG = E.F + Ē.G

Régle duale :
(E + F)(Ē +G).(F +G) = (E + F)(Ē +G)

Propriétées

a.b = x.y ⇒ a.b.u = x.y.u

a+ b = x+ y ⇒ a+ b+ u = x+ y + u

PAR CONTRE :
x+ a = x+ b ̸⇒ a = b

a.x = b.x ̸⇒ a = b

30 CHAPITRE 2. LOGIQUE COMBINATOIRE

2.3 Les circuits Combinatoires

Les circuits que nous allons aborder sont présents dans les microcontrôleur ou dans
les carte mère. Par exemple, les codeurs ou décodeurs permettent d’accéder sélectivement
d’accéder à tel ou tel registre, les multiplexeurs permettent de sérialiser ou de de-sérialiser
l’information sortant ou entrant dans un bus de données.

— Les transcodeurs

1. Les codeurs

2. Les décodeurs

— Les circuits d’aiguillages

1. Les multiplexeurs

2. Les démultiplexeurs

2.3.1 Circuits de transcodage

Codeur

Ce sont les circuits qui transforment une information de 2n bits vers n bits.

e0

e1

e2

e3

e4

e5

e6

e7

s0

s1

s2
Codeur
8 → 3

Figure 2.2 – Codeur 8 entrées vers 3 sorties

Si une entrée ei est active alors le nombre i sera représenté en binaire sur les sorties
s2, s1, s0

Equation des sorties d’un codeur non prioritaire 8 vers 3 :

s0 = e1 + e3 + e5 + e7(impair)

s1 = e2 + e3 + e6 + e7

s2 = e4 + e5 + e6 + e7

Exemple de codeur prioritaire : 74148 ce schéma est tiré du “datasheet” du compo-
sant :

2.3. LES CIRCUITS COMBINATOIRES 31

Figure 2.3 – Schéma du 74148

Dans la figure 2.3.1 on peu voir noter les entrées 1 à 7 les trois sorties A2, A1, A0. On
note une entrée supplémentaire Ei qui si elle est à un désactive toute les sorties.

Table de vérité du 74148 La table de vérité donne le niveau d’activation des entrées et
des sorties et les pattes annexes.

Inputs Outputs
EI 0 1 2 3 4 5 6 7 A2 A1 A0 GS E0

H X X X X X X X X H H H H H
L H H H H H H H H H H H H L
L X X X X X X X L L L L L H
L X X X X X X L H L L H L H
L X X X X X L H H L H L L H
L X X X X L H H H L H H L H
L X X X L H H H H H L L L H
L X X L H H H H H H L H L H
L X L H H H H H H H H L L H
L L H H H H H H H H H H L H

EI (Enable Input) : Active le fonctionnement du codeur.

Rôle de EO et GS On peut aussi examiner dans cette table le rôles des pattes EO et
GS. EO (Enable Output) est activé si au moins une entrée a été sélectionnée. Tandis que
GS (Gate Select) est activé lorsque soit aucune entrée n’a été sélectionnée soit EI n’a pas
été activé.

Codeur 74148 : Sélection d’entrée Considérons dans la représentation simplifié d’un
codeur que l’entrée 6 est active :

32 CHAPITRE 2. LOGIQUE COMBINATOIRE

e0
e1
e2
e3
e4
e5
e6
e7

S0
S1
S2

Codeur
8 → 3

1
1
0

Figure 2.4 – Codeur 8 entrées vers 3 sorties

Au niveau de la Table de vérité du 74148 on aura :

Inputs Outputs
EI 0 1 2 3 4 5 6 7 A2 A1 A0 GS E0

H X X X X X X X X H H H H H
L H H H H H H H H H H H H L
L X X X X X X X L L L L L H
L X X X X X X L H L L H L H
L X X X X X L H H L H L L H
L X X X X L H H H L H H L H
L X X X L H H H H H L L L H
L X X L H H H H H H L H L H
L X L H H H H H H H H L L H
L L H H H H H H H H H H L H

Les entrees sont ici actives à l’état bas tandis que les sorties sont aussi actives à l’état bas.
6 est une entrée active. On a ici un codeur prioritaire, c.a.d. que si une entrée de numéro
inférieure à 6, elle ne sera pas considérée (d’ou les X dans la ligne) alors on a sur les sorties
A2, A1, A0 → L L H : 6 en logique négative

Décodeur

Ce sont les circuits qui transforment une information de n bits vers 2n bits.

e0
e1
e2

s0
s1
s2
s3
s4
s5
s6
s7

Déco.
3 → 8

Figure 2.5 – Décodeur 3 entrées vers 8 sorties

Pour chaque combinaison de variables d’entrées on a une seule sortie active. Les com-
binaisons d’entrées sont appelées adresses car elles expriment en numérotation binaire le
numéro décimal de la sortie activée.

2.3. LES CIRCUITS COMBINATOIRES 33

e0
e1
e2

s0
s1
s2
s3
s4
s5
s6
s7

Déco.
3 → 8

Figure 2.6 – Les entrées e2, e1 donne le code (110) qui active la sortie 6

Décodeur 74138 : Table de vérité du datasheet

Inputs Outputs
Enable Select

G2A G2B Ḡ1 A B C Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

L X X X X X H H H H H H H H
X H X X X X H H H H H H H H
X X H X X X H H H H H H H H
H L L L L L H H H H H H H L
H L L L L H H H H H H H L H
H L L L H L H H H H H L H H
H L L L H H H H H H L H H H
H L L H L L H H H L H H H H
H L L H L H H H L H H H H H
H L L H H L H L H H H H H H
H L L H H H L H H H H H H H

Si on a la combinaison HHL = 6 sur les entrées A,B,C alors la sortie Y6 sera active (L) en
logique négative.

Le distributeur de boisson Un appareil comporte 3 cuves contenant de l’eau, du concen-
tré de cassis, du concentré de menthe. Ce distributeur permet d’obtenir de l’eau, de la menthe
à l’eau et du cassis à l’eau par le moyen des boutons e,m, c qui commandent les electrovannes
E,M,C. Le mélange cassis-menthe étant interdit. Une pièce p doit être introduite sauf pour
l’eau pure qui est gratuite. L’appui sur un bouton e,m, c pour l’introduction déclenche une
temporisation. Le déclenchement et l’échéance de la temporisation ne seront pas traités. Si la
temporisation arrive à échénace avant qu’un choix cohérent soit fait, la pièce éventuellement
présente est rendue par la fonction de restitution P . Cette fonction est aussi activée si le
choix est incohérent (mc).

e

m

c

p

E

M

C

P

Distributeur de boissons

Figure 2.7 – Analyse des entrées et des sorties

La table de vérité L’analyse du cahier des charges combinaison par combinaison
donne la table suivante :

34 CHAPITRE 2. LOGIQUE COMBINATOIRE

e m c p E M C P
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 0
0 0 1 1 1 0 1 0
0 1 0 0 0 0 0 0
0 1 0 1 1 1 0 0
0 1 1 0 0 0 0 0
0 1 1 1 0 0 0 1
1 0 0 0 1 0 0 0
1 0 0 1 1 0 0 1
1 0 1 0 0 0 0 0
1 0 1 1 1 0 1 0
1 1 0 0 0 0 0 0
1 1 0 1 1 1 0 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 1

Tables de Karnaugh de la variable E

@@c p
e m

�� �

�
�

�

�
 ��

1 0

1 1

0 1

0 0

0 0 0 1 1 1 1 0

E(e,m,c,p)

0 0

0 1

10

11

0 0

1 0

00

10
c

e

p

m

E(e,m, c, p) = m̄.c.p+m.c̄.p+ e.m̄.c̄

Tables de Karnaugh de la variable M

@@c p
e m

�� �

1 0

1 1

0 1

0 0

0 0 0 1 1 1 1 0

M(e,m,c,p)

0 0

0 1

00

01

0 0

0 0

00

00
c

e

p

m

M(e,m, c, p) = m.c̄.p

2.3. LES CIRCUITS COMBINATOIRES 35

Tables de Karnaugh de la variable C

@@c p
e m

�
 ��
1 0

1 1

0 1

0 0

0 0 0 1 1 1 1 0

C(e,m,c,p)

0 0

0 0

00

00

0 0

1 0

00

10
c

e

p

m

C(e,m, c, p) = m̄.c.p

Tables de Karnaugh de la variable P

@@c p
e m

�� �

�
 ��

1 0

1 1

0 1

0 0

0 0 0 1 1 1 1 0

P(e,m,c,p)

0 0

1 0

00

10

0 0

0 1

00

01
c

e

p

m

P (e,m, c, p) = m̄.c̄.p+m.c.p

Mise en équations

E(e,m, c, p) = m̄.c.p+m.c̄.p+ e.m̄.c̄

M(e,m, c, p) = m.c̄.p

C(e,m, c, p) = m̄.c.p

P (e,m, c, p) = m̄.c̄.p+m.c.p

Implémentons maintenant ce distributeur à l’aide d’un double décodeur le 74LS155

Réalisation avec un 74LS155 Ce composant comporte deux ensembles de sorties
1Y, 2Y pilotable par les entrées A et B

36 CHAPITRE 2. LOGIQUE COMBINATOIRE

74LS155

1Y 0
1Y 1
1Y 2
1Y 3

2Y 0
2Y 1
2Y 2
2Y 3

1G

1C

B

A

2G

2C

Entrées adresses

Validation 1Y

Validation 2Y

A partir d’une même combinaison sur A et B on peut activer 2 lignes à la fois : une dans
1Yi et une dans 2Yi :

— AB == 00 les lignes 1Y0 et 2Y0 sont actives
— AB == 10 les lignes 1Y2 et 2Y2 sont actives

D’autre part, les entrées de validation de 1G 1C et 2G 2C permettent de sélectionner le(s)
groupes de sortie actif(s). Les équations du multiplexeur 74155 sont :

2Y3 = A.B.2C.2G 1Y3 = A.B.1C.1G

2Y2 = A.B.2C.2G 1Y2 = A.B.1C.1G

2Y1 = A.B.2C.2G 1Y1 = A.B.1C.1G

2Y0 = A.B.2C.2G 1Y0 = A.B.1C.1G

Dans toutes les expressions de E,M,C, P on trouve toujours m et c avec e ou p en facteur.
Donc plaçons :

— m et c sur les entrées adresses A et B ;
— p sur l’entrée de validation 1C ;
— e sur l’entrée de validation 2G ;
— les validations 1G et 2C à la masse ;
Les équations du multiplexeur deviennent :

2Y3 = m.c.e 1Y3 = m.c.p

2Y2 = m.c.e 1Y2 = m.c.p

2Y1 = m.c.e 1Y1 = m.c.p

2Y0 = m.c.e 1Y0 = m.c.p

D’ou les expressions de E,M,C, P en fonction des iYj :
— M = m.c.p = 1Y2 ;
— C = m.c.p = 1Y1 ;
— P = m.c.p+mcp = 1Y0 + 1Y3 ;
— E = m.c.p+m.c.p+m.ce = 1Y1 + 1Y2 + 2Y0

2.3. LES CIRCUITS COMBINATOIRES 37

74LS155

1Y 0
1Y 1
1Y 2
1Y 3

2Y 0
2Y 1
2Y 2
2Y 3

1G

1C

B

A

2G

2C

e

c

m

p C
M

E

P

Multiplexeur

Définition 2.3.1. Multiplexeur Un multiplexeur réalise l’aiguillage de 2n entrées vers une sortie
avec n bits de commande.

Equation de la sortie :

s = e0.cn−1.cn−2.....c1.c0

+ e1.cn−1.cn−2.....c1.c0

+ e2.cn−1.cn−2.....c1.c0

+ ...

+ en.cn−1.cn−2....c1.c0

e0

e1

e2n−1

S

cn−1 c1 c0

Multipleux 2n ⇒ 1

Le Démultiplexeur

Définition 2.3.2. Démultiplexeur Un démultiplexeur réalise l’aiguillage d’une entrée vers 2n sorties
avec n bits de commande.

Equation des sorties :

s0 = e.cn−1.cn−2.....c1.c0

s1 = e.cn−1.cn−2.....c1.c0

sn = e.cn−2....c1.c0

s0

s1

s2n−1

e

cn−1 c1 c0

Demultiplexeur 1 ⇒ 2n

2.3.2 L’additionneur
C’est un circuit qui réalise l’addition de deux nombres binaires et produit la somme et la retenue :

38 CHAPITRE 2. LOGIQUE COMBINATOIRE

0 + 0 = 0 retenue = 0
0 + 1 = 1 retenue = 0
1 + 0 = 1 retenue = 0
1 + 1 = 0 retenue = 1

Σ = ā.b+ ab̄ = a⊕ b

Retenue = a.b

a
b Σ

R

xor

and

L’additionneur complet

Pour réaliser une addition sur n bits, il faut un additionneur capable de réaliser l’addition sur
3 éléments : ai, bi et la retenue produite par le rang précédent ri.

ai bi ri ri+1 Σi

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

@@ri
ai bi

1

0

0 0 0 1 1 1 1 0

Σi(ai,bi,ri)

0 1

1 0

10

01

ai

ri

bi

Σi = ai ⊕ bi ⊕ ri

@@ri
ai bi

1

0

0 0 0 1 1 1 1 0�
�

�

�� �
�� �

ri+1(ai,bi,ri)

0 0

0 1

01

11

ai

ri

bi
ri+1 = ai.bi + ri.bi + ri.ai

= ai.bi + ri.(ai + bi)

@@ri
ai bi

1

0

0 0 0 1 1 1 1 0�
�

�

���
 ���

ri+1(ai,bi,ri)

0 0

0 1

01

11

ai

ri

bi
ri+1 = ai.bi + ri.(āi.bi + ai.b̄i)

ri+1 = ai.bi + ri.(ai ⊕ bi)

2.3. LES CIRCUITS COMBINATOIRES 39

Définition 2.3.3. Equations de l’additionneur complet

Σi = (ai ⊕ bi)⊕ ri

ri+1 = ai.bi + ri.(ai ⊕ bi)

a0 b0 r0

S0

a1 b1 r1

S1

an bn rn

Sn

0

rn+1

L’additionneur à retenue anticipée

Prenons la seconde forme de l’additionneur :

ri+1 = ai.bi + ri.(ai ⊕ bi) = ai.bi + ri.(ai + bi)

Posons : Pi = ai + bi et Gi = ai.bi

On a :

r1 = a0.b0 + (a0 + b0).r0 = G0 + P0.r0

r2 = G1 + P1.r1

= G1 + P1.(G0 + P0.r0) = G1 + P1.G0 + P1.P0.r0

r3 = G2 + P2.r2

= G2 + P2.(G1 + P1.G0 + P1.P0.r0)

= G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.r0

...

40 CHAPITRE 2. LOGIQUE COMBINATOIRE

r0

a0
b0

a1
b1

and1
or

or

or

and

or

and

and

and

P0

G0

P1

G1

r2

r1

Les temps de calcul des retenues sont tous égaux à condition de réaliser des portes à plus de
deux entrées. Ils correspondent aux temps de calcul des Pi, Gi, et donc à l’étage des ET et à l’étage
des OU .

2.3. LES CIRCUITS COMBINATOIRES 41

Calcul des Pi-Gi

Calcul des retenues ri

Calcul des sommes Si

an bn an−1bn−1 a1 b1 a1 b1

Pn Gn Pn−1Gn−1 P1 G1 P0 G0

rnrn−1 r1 r0

SnSn−1 S1 S0

Le temps de calcul est donc indépendant du nombre de bits au dépend de la complexité des
portes. En effet certaines portes auront 3, 4, . . . jusqu’à n entrées.

2.3.3 Le comparateur

Un comparateur compare 2 nombres A et B sur n bits :

— GT : sortie active si A > B
— EQ : sortie active si A = B
— LT : sortie active si A < B
— GE : sortie active si A ≥ B
— LE : sortie active si A ≤ B
— NE : sortie active si A ̸= B

Le comparateur délivre six sorties :

GT = An.B̄n + (An ⊙Bn).(An−1.Bn−1) + . . .+ (An ⊙Bn) . . . (A1 ⊙B1).(A0.B0)

EQ = (An.⊙Bn).(An−1.⊙Bn−1) . . . (A0 ⊙B0)

LT = GT

GE = GT + EQ

LE = LT + EQ

EQ = EQ

2.3.4 L’UAL : 74181

L’UAL est composé de 2 entrées de 4 bits A et B, d’un bus de commande S bits qui permet
d’effectuer 16 opérations différentes. Le résultat de l’opération produit un résultat sur le bus F . Il
y a une retenue entrante r0 et sortante r4.

42 CHAPITRE 2. LOGIQUE COMBINATOIRE

r4

G
P

F0..3 = A0..3 Op B0..3

r0

A0..3

B0..3

S0...3

Opérandes (4 bits) UAL
74LS181

S Sélectionne l’opération Op à réaliser

— Arithmétiques :
* Additions : A+B, A+B + 1 (lorsque r0 = 1)
* −A = CA2(A)
* Soustractions : A−B, A−B − 1

— Logiques :
* ET : (A3.B3).(A2.B2).(A1.B1).(A0.B0)
* OU : (A3 +B3).(A2 +B2).(A1 +B1).(A0 +B0) (+ = ou)
* NOT (A) = CA1(A)
* Nor, Nand ...
* Décalages A← LSL(A) . . .

Chapitre 3

Logique Séquentielle

3.1 Introduction
Dans un système en logique séquentielle au moins une sortie reboucle sur une entrée et il devient,

dès lors, impossible de décrire le système par une fonction logique.

E1

E2

Q1

Q2

Système en
Logique Séquentielle

Une sortie reboucle sur une entrée

Dans ce chapitre nous allons définir d’abord comment la mémoire advient avec la notion de
re-bouclage, puis nous introduirons les circuits séquentiels de base : les bascules et le séquenceurs.
Puis nous présenterons une méthode d’analyse des circuits séquentiel.

3.1.1 La notion de mémoire
Le concept d’élément mémoire élémentaire - Binary digIT : BIT - émerge au travers des concepts

suivants : Une lecture non destructrice de l’état du bit, la mise à un un ou à zéro, et le maintien en
l’état du bit en absence de toute modification. Cela peut se traduire par la table de vérité suivante :

R S Qt Qt+1

0 0 Qt Qt

0 1 Qt 1
1 0 Qt 0
1 1 Qt *

Dans cette table la première ligne exprime que en l’absence d’action le bit garde sa valeur. La second
exprime le set, la troisième le reset. La quatrième est que l’on va s’interdire les action simultanées
du set et du reset.

Examinons maintenant ce qui se passe si on re-bouble deux portes nor :
Ces test nous ont permis de comprendre qu’en re-bouclant des portes on peut mettre en œuvre

le principe de mémoire élémentaire qui correspond aussi à la notion de bascule.

43

44 CHAPITRE 3. LOGIQUE SÉQUENTIELLE

Q = 0

P = 1

x = 0

y=0

L’état est stable

Q = 1

P = 0

0

x = 0

y=1

Sur un front montant de y, Q passe à un, P passe à zéro

Q = 1

P = 0
0

x = 0

y=1

L’état est stable pendant le niveau haut de y

3.1. INTRODUCTION 45

Q = 1

P = 0

0

0

x = 0

y=0

Après la retombée de y l’état Q reste à un

Q = 0

P = 1

1

0

x = 1

y=0

Après le front montant de x, Q passe à zéro, P à un

46 CHAPITRE 3. LOGIQUE SÉQUENTIELLE

Q = 0

P = 1

1

0

x = 1

y=0

Pendant le niveau haut de x, Q reste à zéro, P à un

3.1.2 La bascule initiale : la RS asynchrone
Dans une bascule RS, R sert à mettre la bascule à zéro et S à un. De plus, on interdit de faire

un R et un S en même temps. Une bascule RS peut aussi se définir par sa table de vérité :

R S Qt Qt+1

0 0 Qt Qt

0 1 Qt 1
1 0 Qt 0
1 1 Qt *

Comme nous l’avons vu, une RS peut être réalisée à l’aide deux portes nor re-bouclées :

Q

Q

R

S

On la représentera maintenant par :

@@Qt
RS �

�
	�
�	1

0

0 0 0 1 1 1 1 0

f(R,S,Qt)

0 1

1 1

0*

0*

R

Q

S
f(R,S,Qt) = Qt+1 = R.S.Qt +R.S +RS

= R.S.Qt +R.S

3.1. INTRODUCTION 47

RS

S

R

Q

Q

Maintenant considérons une autre simplification dans la table de Karnaugh :

Qt+1 = R.S.Qt +R.S +RS

= R.Qt + S

@@Qt
RS

�� �

'
&

$
%1

0

0 0 0 1 1 1 1 0

f(R,S,Qt)

0 1

1 1

0*

0*

R

Q

S

L’équation caractéristique est donc : Qt+1 = R.Qt + S

Réalisation de la RS asynchrone en NAND

En NAND, à partir d’un forme en somme : Qt+1 = R.Qt + .S = R.Qt.S

Q

Q

S

R

Réalisation de la RS asynchrone en NOR

En NOR, à partir d’un forme en produit :

Qt+1 = R.S.Qt +R.S = R.(S.Qt + S) = R.(Qt + S)

Qt+1 = Qt+1 = R.(Qt + S) = R+Qt + S

Et on retrouve la forme précédemment étudiée :

48 CHAPITRE 3. LOGIQUE SÉQUENTIELLE

Q

Q

R

S

Race conditions

Maintenant on peut se poser la question de qui se passe si on applique R et S en même temps ?
Si S = R = 1 alors Q = Q = 0 (en NOR). Cet état est alors stable. Considérons maintenant
l’application simultanée de S = R = 0, les deux portes n’étant jamais réellement identiques, l’une
est plus rapide et donc, l’une commute sa sortie à un en premier verrouillant la seconde porte dont
la sortie restera bloquée à zéro désormais. On a ici une situation de course : c’est la porte la plus
rapide qui définit l’état de la bascule ! ! ! Comment éviter cette situation ?

Une première idée est de synchroniser les signaux d’entrée avec un signal d’autorisation par une
porte ET .

— Si ce signal est à zéro, les entrées sont à zéros,
— Si ce signal est à UN, les entrées sont susceptibles de faire évoluer les sorties.

Ce concept permet de se prémunir contre des variations indésirables, qui seraient susceptibles de
provoquer l’apparition simultanée de ces deux signaux.

3.2 Typologie des bascules
Il y a trois types de bascules : (i) les "Latch" : à Déclenchement sur niveau (haut ou bas), (ii)

Les "Edge triggered" : à déclenchement sur front, (iii) et les Les maîtres-esclaves.

3.2.1 Les bascules à verrou : les "Latch"
Un bascule latch est une bascule synchrone dont toute variation sur les entrées pendant le niveau

d’activation du signal d’horloge est pris en compte sur ses sorties.
Dans la figure ci-dessous, on peut remarquer les deux portes et qui verrouillent les entrées sur

un niveau bas de l’horloge H :

H

R

S

Q

Q

H

R

S

Q

3.2. TYPOLOGIE DES BASCULES 49

RST Latch

H

R

S

Q

Q

H

La table de vérité de la RST Latch

Cette table fait apparaître la nouvelle colonne H qui correspond à l’horloge :∣∣∣∣∣∣∣∣∣∣∣∣

H R S Qt+1

0 ∗ ∗ Qt

1 0 0 Qt

1 0 1 1

1 1 0 0

1 1 1 ∗

∣∣∣∣∣∣∣∣∣∣∣∣
Traitons maintenant un exemple. Pour un signal d’horloge donné H, donnons-nous aussi deux

signaux R et S comprennant aussi des petits pics parasites :

H

R

S

Q

On va prendre en compte sur la sortie Q les niveaux hauts de l’horloge pour le set S et le reset
R.

DT Latch

Cette bascule possède une entrée D et une entrée horloge T . Cette bascule fonctionne en mode
recopie sur une niveau haut de T et en mode mémoire sur un niveau bas de T .

Table de vérité de la DT Latch∣∣∣∣∣∣∣∣
T D Qt+1

0 ∗ Qt

1 0 0

1 1 1

∣∣∣∣∣∣∣∣

50 CHAPITRE 3. LOGIQUE SÉQUENTIELLE

Traitons à nouveau un exemple ou pour un signal d’horloge donné, le signal Dt comprend un
pic parasite. Ce pic apparaît sur la sortie Q car il s’est produit pendant le niveau haut.

H

Dt

Q

Réalisation d’une DT Latch

A partir d’une RS :

Qt+1 = S +R.Q (3.1)

Qt+1 = D (3.2)
or D = D +DQ (3.3)

⇒ S = D et D = R (3.4)

(1) est l’équation caractéristique de la RS
(1) est l’équation caractéristique de la D
(3) correspond à un des théorèmes de la logique : D +DQ = D(1 +Q) = D
(4) correspond à la façon de réaliser la bascule D

RS

Q

QD

3.2.2 Les Bascules à déclenchement sur front : "Edge Triggered"

Une bascule à déclenchement sur front est une solution plus performante pour se prémunir
des parasites par rapport aux bascules latch. Elles ne seront sensibles que sur les fronts soit des
intervalles de temps très courts définis par la technologie utilisée dabs les transistors qui constituent
les portes. Examinons dans la prochaîne section, une D Positive Edge Triggered.

3.2. TYPOLOGIE DES BASCULES 51

D Positive Edge Triggered

q1

00/0

q3

01/0

q8

10/0

q6

11/0

q5

11/1

q4

01/1

q7

10/1

q2

00/1

qi

HD/Q

D ↑

H ↑

D ↓

H

H ↓D ↑

H ↓

D ↓

H ↓ D ↓D ↑

H ↓

H ↑

D ↓

H

1. Quand l’horloge est stable
— 6↔ 8, 3↔ 1 pour Q = 0
— 5↔ 7, 4↔ 2 pour Q = 1
LA SORTIE NE VARIE PAS.

2. Quand l’horloge passe de 1 vers 0 : 5→ 4, 8→ 1 : LA SORTIE NE VARIE PAS
3. Quand l’horloge passe de 0 vers 1 avec D = 0 et Q = 0 : 1→ 8 L’entrée D est appliquée sur

la sortie mais comme Q était déjà à zéro il n’y a PAS DE CHANGEMENT D’ÉTAT.
4. Quand l’horloge passe de 0 vers 1 avec D = 1 et Q = 1 : 4→ 5 L’entrée D est appliquée sur

la sortie mais comme Q était déjà à un il n’y a PAS DE CHANGEMENT D’ÉTAT.
5. La sortie CHANGE D’ÉTAT lors d’un front montant de H avec D ̸= Q c.a.d. lors des

transitions : 3→ 5 et 2→ 8

T Negative Edge Triggered

Une bascule fonctionnant suivant le type T dispose d’une entrée unique T . La sortie Q change
d’état à chaque front descendant de T . Elle divise la fréquence d’entrée de T par 2.

T

Q

Réalisation de la T Negative Edge Triggered

Réalisation :
D = Qt+1 = Qt

52 CHAPITRE 3. LOGIQUE SÉQUENTIELLE

On réalise cette bascule en re-bouclant la sortie Q sur l’entrée D d’une bascule Délai. Seule reste
alors l’entrée horloge appelée T . Attention, cette bascule ne peut être réalisée avec une bascule de
type "latch", mais avec une "Edge" : à déclenchement sur front.

DT

Q

QD

T

Figure 3.1 – Trigger à partir d’une DT

3.2.3 La JKT

— J et K similaire à S et R
— J = K = 1 est autorisé : fonctionne comme une bascule T

Réalisation d’une JKT

∣∣∣∣∣∣∣∣∣∣
J K Qt+1

0 0 Qt

0 1 0
1 0 1

1 1 Qt

∣∣∣∣∣∣∣∣∣∣
Qt+1 = J.K.Qt + J.K + J.K.Qt

= J.K.Qt + J.K(Qt +Qt) + J.K.Qt

= J.K.Qt + J.K.Qt + J.K.Qt + J.K.Qt

= J.Qt(K +K) +K.Qt(J + J)

= J.Qt +K.Qt

Réalisation de la Bascule JKT

Pour la réaliser, on va identifier les termes 2 à 2 dans l’équation suivante :

J.Qt +K.Qt = S +RQt

En posant : S = J.Qt et R = K.Qt

En effet, avec ce choix pour R, on obtient alors :
KQ.Q = (K +Q).Q = K.Q

3.2. TYPOLOGIE DES BASCULES 53

La bascule JKTavec une RST

T

RS

S

R

Q

QK

J

Figure 3.2 – JK à partir d’une RST

Avec une JKT on peux faire :
— Une DT , avec J = K = D
— Une T , avec J = K = 1
— Une RST en s’interdisant J = K = 1

3.2.4 Bascules Maîtres Esclaves

Maître Esclave

H

— Composées de 2 bascules synchrones des D Positive Edge Triggered par exemple.
— Maître et l’esclave
— Lecture et écriture de l’état de la bascules sur le même pulse.

Seuil d’ouverture esclave

Seuil d’ouverture maître

1 2 3 4 5

54 CHAPITRE 3. LOGIQUE SÉQUENTIELLE

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Maître Esclave

— Il n’existe pas de configuration ou le maître et l’esclave sont passant en même temps et
donc :

— On peut re-boucler l’entrée et la sortie de la ME et donc :
— On peut implémenter : Echanger i,j ou i=i+1

Exemple 1

Ma Ea Mb Eb

H

Echange des valeurs des bascules A et B

3.2. TYPOLOGIE DES BASCULES 55

Zone 1

Zone 2

Zone 3

Zone 4

Zone 5

Maître Esclave MA EA MB EB

0 0 1 1

0 0 1 1

1 0 0 1

1 0 0 1

1 1 0 0

Exemple 2

Moteur

α

+

−

0

1

0
10

1

0

1

0

1

0
1 0

1

0

1

IRa ; a = 1

IRb ; b = 0

56 CHAPITRE 3. LOGIQUE SÉQUENTIELLE

Sens Positif

H (b)

a

Q

Exemple 2 : sens Positif

Sens Négatif

H (b)

a

Q

Exemple 2 : sens Négatif

3.3 Analyse de circuits séquentiel

L’analyse à pour objet de proposer une méthode pour analyser un circuit composé de portes
élémentaires mais qui comporte des re-bouclages. Ce schéma comporte des entrées et des sorties.
L’analyse produit au final, une machine à états. C’est à dire un graphe qui comporte des états
stables du système reliés par des évènements qui sont des fronts montants ou descendants sur les
entrées du système.

3.3.1 Phases de l’analyse

— Identification des entrées, des sorties principales et des re-bouclages qui correspondent à
l’introduction de variables variables internes Yi et yi.

— Equations logiques des yi et si
— Table d’excitation et de sortie des yi et si
— identification des états stables
— Table des états nommés
— Construction du graphe

3.3. ANALYSE DE CIRCUITS SÉQUENTIEL 57

3.3.2 Exemple d’analyse de circuits séquentiel

m

L

Identification des re-bouclages

m

L

dt1y1 Y1

dt2y2 Y2

Y1

Y1

Y2

Y2

Y1

Y1

58 CHAPITRE 3. LOGIQUE SÉQUENTIELLE

Equations intermédiaires

m

L

dt1y1 Y1

dt2y2 Y2

Y1

Y1

Y2

Y2

Y1

Y1

m+ Y1

m.Y1

m+ Y1

m.Y1

Y2.(m+ Y1)

Y2.(m+ Y1)

Equations logiques : 
y1=Y2.(m̄+ Y1) +m.Y1

y2=Y2.(m̄+ Ȳ1) +m.Ȳ1

L=Y2

Table d’excitation

@@m
Y1Y2

1

0

0 0 0 1 1 1 1 0

Exitation

000 111

010 011

000111

100101

Y1

m

Y2

Table d’excitation : état stables

@@m
Y1Y2

1

0

0 0 0 1 1 1 1 0���
���

���
���

Exitation

000 111

010 011

000111

100101

Y1

m

Y2

3.4. LES SÉQUENCEURS 59

Table des états nommés

@@m
Y1Y2

1

0

0 0 0 1 1 1 1 0�
�

�
��
�

�
�
�
�

�
��
�

�
�

Exitation

q0/0 q3/1

q1/0 q1/1

q0/0q3/1

q2/0q2/1

Y1

m

Y2

3.4 Les séquenceurs
Un séquenceur est un système logique séquentiel construit à partir de bascules JKT qui implé-

mente un automatisme. Cet automatisme peut délivrer des signaux sur des lignes à partir d’une
horloge en fonction de son état courant. Cette méthode était utilisée, à l’origine, avant l’avènements
des automates. Cette méthode, très économique, peut encore être utilisé pour réaliser de petits
automatismes dans des environnements peu contraints. Le schéma suivant illustre un séquenceur
qui agit sur des actionneurs ai en fonction de son état courant et dentrées ei.

Horloge Etat courantSequenceur

a1 a2 an

e1 e2 en

Actionneurs

Entrées

3.4.1 Table d’excitation de la bascule JKT

La table d’excitation de la JKT permet de déterminer le prochain état de la bascule JK en
fonction de son état courant et de son excitation (état de ses entrées). Par exemple, avec l’excitation
J = 1 et K = ∗, c.a.d J = 1 et K = 0 ou bien J = 1 et K = 1 et dans l’état ou la bascule vaut 0
(Q = 0) alors la sortie Q passera à un.∣∣∣∣∣∣∣∣∣∣

J K Qt Qt+1

0 ∗ 0 0

1 ∗ 0 1

∗ 1 1 0

∗ 0 1 1

∣∣∣∣∣∣∣∣∣∣
3.4.2 Exemple

On veut réaliser un séquenceur qui affiche sur 4 leds la valeur de comptage en binaire. Ce
compteur est cyclique : 0, 1, 2, 3 9. Arrivé à 9 son prochain comptage reboucle à zéro et continue
sa séquence infiniment à chaque toip d’horloge. On va réaliser ce séquenceur à l’aide de 4 bascules.

60 CHAPITRE 3. LOGIQUE SÉQUENTIELLE∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

etat QD QC QB QA JD KD JC KC JB KB JA KA

0 0 0 0 0 0 ∗ 0 ∗ 0 ∗ 1 ∗
1 0 0 0 1 0 ∗ 0 ∗ 1 ∗ ∗ 1

2 0 0 1 0 0 ∗ 0 ∗ ∗ 0 1 ∗
3 0 0 1 1 0 ∗ 1 ∗ ∗ 1 ∗ 1

4 0 1 0 0 0 ∗ ∗ 0 0 ∗ 1 ∗
5 0 1 0 1 0 ∗ ∗ 0 1 ∗ ∗ 1

6 0 1 1 0 0 ∗ ∗ 0 0 ∗ 1 ∗
7 0 1 1 1 1 ∗ ∗ 1 ∗ 1 ∗ 1

8 1 0 0 0 ∗ 0 0 ∗ 0 ∗ 1 ∗
0 1 0 0 1 ∗ 1 0 ∗ 0 ∗ ∗ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
JDKD On pose JD = KD

JD = KD

= QC .QB .QA +QA.QD

�� �

'
&

$
%

1 0

1 1

0 1

0 0

0 0 0 1 1 1 1 0

f(QD,QC ,QB ,QA)

0*

1*

1

**

**
QB

QD

QA

QC

JCKC On pose JC = KC

JC = KC

= QB .QA �� �

1 0

1 1

0 1

0 0

0 0 0 1 1 1 1 0

f(QD,QC ,QB ,QA)

0 0

0 0

0*

0*

0 0

1 1

**

**
QB

QD

QA

QC

JBKB On pose JB = KB

JB = KB

= QA.QD
'
&

$
%

1 0

1 1

0 1

0 0

0 0 0 1 1 1 1 0

f(QD,QC ,QB ,QA)

0 0

1 1

0*

0*

0 0

1 1

**

**
QB

QD

QA

QC

3.4. LES SÉQUENCEURS 61

JBKB On pose JA = KA

JA = KA

= 1

Voici maintenant le câblage final :

1
QA.QD QA.QB

QA.QD

Ka

Ja

Qa

Qa

Kb

Jb

Qb

Qb

Kc

Jc

Qc

Qc

Kd

Jd

Qd

Qd

