POLYTECH
o NANTES

Spécialité Génie Electrique

Polycopié d’Informatique Industrielle

Partie | : Logique

D. DELFIEU

- Troisiéme année -

Reproduction interdite sans autorisation de 'auteur et de I’école

Table des matiéres

1 Systéme de numération 7
1.1 Lessystémes basés e 7
1.2 Conversion de baseso 7

1.2.1 Conversion d'unentier : 10=B 8
1.2.2 Conversion d’une partie fractionnaire : 10=B 8
1.2.3 Conversion 28 =27 8
1.3 L’arithmétique des systémes basés 9
131 Signe + VA . . oo 9
1.3.2 Complément Restreint (base B) - Complément & 1 (Base 2) 9
1.3.3 Complément Vrai (base B) - Complément & 2 (Base 2) 10
1.3.4 Bilan: CAy vs CAy e 11
1.3.5 Débordement de capacité oL 11
1.4 Codes non pondérés 12
1.41 Code Excess 3 e 12
1.4.2 Codagede Gray e 14

2 Logique Combinatoire 17

2.1 Opérateurs logique élémentaires 18
2.1.1 ET . . oo e 18
2.1.2 OU. .. 18
2.1.3 NON . . . e 18
2.1.4 NAND e 18
2.1.5 NOR e 18
21.6 XOR :® e 19
2.1.7 IMPLIQUE : = e 19
2.1.8 EQUIVALENCE : ® o i 19
2.1.9 Exemples de simplification algébrique d’expressions logiques 19

2.2 Simplification de fonction logique 19
2.2.1 Lecture d’une table de vérité 0. 21
2.2.2 Simplification d’expressions algébriques 29

2.3 Les circuits Combinatoires o 30
2.3.1 Circuits de transcodageo oo 30
2.3.2 L’additionneur 37
2.3.3 Lecomparateur L e 41
234 DUAL : 74181 . . . o oo 41

4 TABLE DES MATIERES
3 Logique Séquentielle 43
3.1 Imtroduction L 43
3.1.1 Lanotion de mémoire L 43

3.1.2 La bascule initiale : la RS asynchrone 46

3.2 Typologie des bascules L 48
3.2.1 Les bascules a verrou : les "Latch", ... 48

3.2.2 Les Bascules & déclenchement sur front : "Edge Triggered" 50

323 LaJKT e 52

3.2.4 Bascules Maitres Esclaves 0oL 53

3.3 Analyse de circuits séquentiel 56
3.3.1 Phasesde lanalyse 56

3.3.2 Exemple d’analyse de circuits séquentiel L. 57

3.4 Les Squenceurs e e 59
3.4.1 Table d’excitation de la bascule JKT 59

3.42 Exemple 59

Introduction

Ce cours de logique a pour objectif de vous permettre de comprendre les circuits com-
binatoires comme les Codeurs, les Décodeurs, les Multiplexeurs, les Démultiplexeurs, les
Additionneurs, comment on réalise une soustraction, le Multiplicateur le comparateur. Tous
ces circuits participent & la conception d’une Unité Arithmétique et Logique d’un micro-
controleur ou d’un microprocesseur. En logique Séquentielle, on verra la notion de bit ainsi
qu’une méthode d’analyse des circuits séquentiels ainsi qu'une méthode de synthése d’auto-
mate.

Aprés une partie sur les systémes basés, il y aura deux grands chapitres, la logique
combinatoire et la logique séquentielle. Comme l'indique la figure 1, en logique combinatoire
on établit des relations logiques entre des entrées et des sorties.

by —
by —> . . . S
Logique Combinatoire —

b14>

l)o"

FIGURE 1 — Logique combinatoire

Ainsi, 'exemple de la figure 2.1 illustre une serrure électronique qui s’ouvre lorsque les
boutons (bs, b2, b1, by) sont positionnés sur la combinaison (1,1, 1,0).

b

—_—

FI1GURE 2 — Exemple de logique combinatoire

L’équation de la sortie est alors S = bs.bs.b1.bg.

En logique séquentielle, la ou les sorties peuvent re-boucler sur les entrées! Comme
I'indique la figure 3, ici la sortie @ ne peut étre définie en effet on aurait la définition auto-
référente : QQ = rst + set + Q. En effet, définir @ en fonction de) n’a aucun sens en logique
combinatoire !

6 TABLE DES MATIERES

rst D° Q

FIGURE 3 — Rebouclage en logique séquentielle

On verra dans le chapitre logique séquentielle une méthode qui permettra d’établir tout
de méme, des équations qui décrivent ces systémes et de produire la machine & états qui
décrit le comportement d’un systéme séquentiel.

Chapitre 1

Systéme de numération

Le coeur d’un processeur, appelé Unité Arithmétique et Logique (UAL), n’effectue en
fait que des opérations élémentaires, qui peuvent étre soit des opérations arithmétiques soit
logiques. Toutes ces opérations sont réalisés en base 2. Nous étudierons dans cette section
comment sont représentés les nombres négatifs dans une représentation binaire et comment
IPUAL réalise les additions et les soustractions.

1.1 Les systémes basés

Un nombre N exprimé en base B se représente comme une juxtaposition d’éléments a;
exprimés en base B. Concernant la Partie Entiére (PE) d’un nombre :

- NB = a;0;—1...1090
— a; exprimé en base B signifie que a; € [0...B — 1]

Pour convertir ce nombre en base 10 on utilise la formule de Horner :
n
N10 = E aiB’
i=0

Concernant la Partie Fractionnaire (PF) :

i NB - O,a,la,g...a,m
-1
— Ni= > a;B'

i=—m

1.2 Conversion de bases

On va étudier les méthodes de conversion d’une base a une autre. Il existe la méthode
par multiplication et la méthode par division. Donnons 'algorithme de la méthode par
soustraction :

8 CHAPITRE 1. SYSTEME DE NUMERATION

1.2.1 Conversion d’un entier : 10 = B

Algorithm 1: Par Soustraction
Données: N : Entier a convertir en base B
Répéter
On cherche un couple (aj, BY) tel que a; est le plus grand entier dans [0, B — 1]
et B est le plus grand entier tel que a; * B < N ;
On pose a; au rang 7 ;
On réalise N = N —a; x B ;
Jusqu’a N < B;
On depose le dernier reste au rang zéro ;

Exercice : 771¢ en base 37

Maintenant donnons l’algorithme par division :

Algorithm 2: Par division

Données: N : Entier a convertir en base B
Répéter
Division Euclidienne de N par B: N =Q* B+ R ;
On pose R au rang dans 'ordre inverse ou il a été obtenu (le premier reste etant
le poids faible du résultat) ;
Jusqu’a (Q == 0);
Le dernier quotient est posé au rang le plus fort ;

Exercice : 7719 en base 37

1.2.2 Conversion d’une partie fractionnaire : 10 = B

Algorithm 3: Par Multiplication
Méthode par multiplication
Données: PF : Partie Fractionnaire & convertir en base B
Répéter
R= PFx B ;
PE = PartieEntiere(R) ;
PF=R-PE,;
On pose PE a droite du précédent résultat ;
Jusqu’a (PF == 0) ou (précision est obtenue) ou (détection séquence infinie);

Exemple : 0,451¢ en base 27

1.2.3 Conversion 2! = 27

Pour convertir de la base 2 vers une base 2V. On regroupe par paquets de n bits et on
convertit & I'intérieur de chaque paquets de n bits
Exemple : 0,011100113 = 0,011100110 = 0, 3465
Pour convertir d’une base 2V vers la base 2, on converti chaque terme a; en base 2 sur n
bits.

On considére par la suite, que la base 2 est le mode de représentation des nombres.

1.3. L’ARITHMETIQUE DES SYSTEMES BASES

1.3 L’arithmétique des systémes basés

Une arithmétique en base 2, se pose la question de la représentation des nombres négatifs.
Pour représenter les nombres nous avons :

— Signe et valeur absolue

— Complément & deux : C Ay

— Complément & un : C A,

1.3.1

Signe + VA

0111 — Un bit de signe :

0110 — 1 pour " -"

0101 — 0 pour " +"

0100 , . ,

0011 — Deux représentations pour le zéro :
- +

0010 0000 pour 0

0001 — 1000 pour 0—

0000 — Si l’on fait 'addition d’un nombre po-

1000 sitif et d’'un nombre négatif le résultat

1001 est incorrect.

1010

1011

1100

1101

1110

1111

Complément Restreint (base B) - Complément a 1 (Base 2)

0111 Soit n le nombre de bits de représentation
81(1)(1) des nombres, pour une base B on a :

0100 CAg {(N)=B"-—N -1
0011 5-1(N)

0010 Base 2 :
0001

0000 CA(N)=2"-N-1
1111
1110
1101
1100
1011
1010
1001
1000

S’obtient facilement par inversion binaire du
positif.

Ce mode de représentation produit des erreurs selon les cas :

Démonstration. L'usage de nombres négatifs contient deux cas de figure :
Premier cas : R=A-B

R=A-B=A+CA(B)=A4+2"-B—-1=A-B+2"-1
Posons K = A—- B
Si K >0:

10 CHAPITRE 1. SYSTEME DE NUMERATION

R=K+2"—-1=K —1:Erreur de +1
Si K<0:
R=2"—-|K|—-1=CA(K|) : Pas d’erreur

Second cas : R—=-A-B

R=-A-B=CA(A)+CA(B)=2"+(2"-A—-B-1)-1

=2"+CA1(A+B) -1
=CAi(A+ B) —1: Erreur de +1

En utilisant la formule C'A; précédente :

— Sur 4 bits, trouver la représentation en base 2 de -5 en complément restreint 7
— Sur 4 bits, trouver la représentation en base 2 de -1 en complément restreint ?

1.3.3 Complément Vrai (base B) - Complément a 2 (Base 2)

Soit n le nombre de bits de représentation
des nombres, en base B on a :

CAp(N)=B" - N

CAy(N)=2" — N

— S’obtient par inversion binaire du po-
sitif puis en rajoutant 1.

— “De la droite vers la gauche, repro-
duire les zéros, au premier “un” ren-
contré, le reproduire puis inverser tous

7 0111
6 0110
5 0101
4 0100
3 0011
2 0010
1 0001 Base 2 :
0 0000
-1 1111
-2 1110
-3 1101
—4 1100
-5 1011
—6 1010
—7 1001
—8 1000

les bits & sa gauche”

En CAs il n’y a jamais d’erreur :

Démonstration. L'usage de nombres négatifs contient deux cas de figure :

Premier cas : R—=A-B
R=A-B=A+CAy(B)=A+2"-B=A-B+2"-1
Posons K = A—- B

Si K>0:

R =K+ 2" = K : Pas d’erreur

Si K<0:

R=2"—|K|=CAs(|K|) : Pas d’erreur

Second cas : R—A-B

R=-A—B=CAy(A)+CAy(B)=2" —A+2" —B=2"—A— B+2"

Posons K = A+ B
R=2"—-K+2"=CAy(K)+ 2"

Or on sait que X + 2" = X sur n bits
D’ou R = CAy(K) Pas d’erreur

1.3. L’ARITHMETIQUE DES SYSTEMES BASES 11

En utilisant la formule précédente :
— Sur 4 bits, trouver la représentation en base 2 de -3 en complément vrai?
— Sur 4 bits, trouver la représentation en base 2 de -7 en complément vrai ?

1.3.4 Bilan : CA; vs CA,

Si 'on fait un bilan des deux fagons de coder les nombres négatifs

— CA4

— plage des positifs : 2771 —1 ... 0t

— plage des négatifs : 07 ... — (2771 —1)
- CA2 :

— plage des positifs : 2771 —1 ... 0

— plage des négatifs : —1 ... — (2771)

— Posons n=8 :

— Plage positif : 0 ... +127
— Plage négatifs : -1 ... -128
— Représentation négative de 100? 100 = 011001004
- CAl(].OO) = 28 - 1001() -]. == 25610 - 1001() -]. = 15510 = 100110112
10011011 s’obtient facilement par complément binaire de 01100100
— (C'A2(100) = 2% — 10019 = 25619 — 10019 = 15619 = 10011011,
10011011 s’obtient moins facilement par complément binaire et addition de +1 :
01100100 —Com»-Bin- 10011011 —+ 10011100

Complément & un : Complément & deux :

— deux zéros, — un seul zéro,

— correction dans certains cas, — pas de correction,

— facile & implémenter, — plus difficile a& implémenter,
— autant de positif que de négatifs. — un nombre négatif en plus.

Si Au final c’est le C'Ay qui est considéré comme le meilleur compromis. Pratiquement
quasiment 100% des processeurs utilisent le C' A,

1.3.5 Débordement de capacité

Un débordement de capacité se produit lors de 'addition de deux nombres positifs ou
lors de ’addition de deux nombres négatifs. Il se produit alors un changement de signe du
résultat. Ce phénoméne est simplement détecté quand la retenue entrante dans le bit de
signe est différente de la retenue sortante. Cela est testé par un ou exclusif.

Exemple sur 8 bits :

0O 1 1 1 1 1 1 0 o0

0 1 1 1 1 0 1 0
+ 0 0 0 1 0 1 1 O
= 1 0 0 1 0 0 0 O

Il y a débordement ! Les retenues entrantes et sortantes dans ’addition du bits de signe
sont différentes : 7 ®rg =081 =1

12 CHAPITRE 1. SYSTEME DE NUMERATION

1.4 Codes non pondérés

Les codages basés sont des codes dit pondérés. Un code est dit pondéré si la position de
chaque symbole dans chaque mot correspond a un poids fixé. La formule de Horner, indique
qu’en multipliant chaque symbole par son poids et en additionnant le tout, on obtient la
conversion en décimal.
Des codes non pondérés sont des codes pour lesquels on ne peut repérer de poids. Ils
sont définis par des tables de correspondances ou par le biais de symétrie et/ou de propriétés
logiques ou arithmétiques.
— Code Pondéré : binaire, octal, hexadécimal, Décimal Codé Binaire
Le "Décimal Codé Binaire" (BCD) est un code dans lequel chaque chiffre de la
représentation décimale est codé sur un groupe de 4 bits.
— Exemple : 1789 se code 0001 0111 1000 1001
— Avantage : Affichage décimal grandement facilité
— Inconvénient : Code redondant 6 combinaisons sur 16 ne sont pas utilisées
Remarque : 1789 prend 13 bits en BC'D, seulement 11 en binaire naturel.

— Code Non Pondéré : Code excess 3
L’Excess 3, permet une transcription rapide en décimal. Il permet de plus une préci-
sion infinie en arithmétique (limité par les temps de calcul) au dépend d’une repré-
sentation qui gaspille des combinaisons.
Il apporte par rapport au BCD une rapidité par rapport a la soustraction.

— Code Non Pondéré : Code de Gray

1.4.1 Code Excess 3

Le code excess 3 ou "code plus 3" (XS3) appelé aussi "code STIBIZ" du nom de son
inventeur est un code non pondéré issu du DCBN auquel on ajoute systématiquement 3 a
chaque chiffre. Donc un chiffre est représenté sur 4 bits auquel on rajoute 3. Les retenues
ont donc un poids de 16.

Définition 1.4.1. Additions de Nombres positifs Soit deux nombres positifs A et B exprimés
en XSz, et R=A+ B.

— Si R < 1619 alors il faut retrancher 3 a R.

— Si R > 1619 alors il faut ajouter 3.

Définition 1.4.2. Nombres négatifs La particularité essentielle est que la représentation
négative d’un nombre N se réalise par le Complément & 9 du nombre N. Etant donné deux
nombres positifs A et B, pour A— B, il y aura des corrections a faire dans le cas ou A > B.
Et une correction aura liew aussi pour —A — B.

Exemple :
Décimal BCD Excess-3
5 0101 1000
7 0111 1010

Addition binaire :

|+
Ol = =
OO O
== O
oo O

1.4. CODES NON PONDERES 13

1 0 0 1 O
+ 0 0 1 1
1 01 0 1

On a la retenue, puis le groupe de 4 bits qui fait 5 : On a donc 15 en X S35 qui représente
bien la valeur 12.

Exemples d’additions Notons Nxg, un nombre N exprimé en "DCBN X S3"
— 210+ 510 = 5x85 + 8x5; = 13x5, — 3 = 10xg, (correction de -3)

— 810 + 510 = 11xs, +8x5, = 19x5, —3 = 13xs3, (COI‘I‘eCtiOH de +3)

— Addition sur plusieurs digits : 21+37

Nombres XS5

2 5

4

3 6

7 A

Donc I’addition donne :

5 4
+ 6 A
= B E
+ -3 -3
= 8 B

Les soustractions en Codage Excess 3

Les nombres négatifs sont représentés en complément a 9.
CAg(z) =9 —x

Pour réaliser Axgs3 — Bxss :
— Calcul de CAy(B)
On additionne : Axgs + CAg(B)
Si le résultat sur 4 bits est >9 on ajoute 3.
— Rappel :

Exemples de soustraction 27-13
— 5A - CA(13)
Détaillons : CAg(13) = CAg(1)C Ag(3) = 86 =x g3 B9

5A 4 B9 =11+ CA;(8) = 8 4+ C'A;(1000)

1011 (8)
+0111 (-5)
10010 (
+0001
+0011
DCBN

14 CHAPITRE 1. SYSTEME DE NUMERATION

Exercices

Correction exercice 42 —12 Second algorithme : Le soustracteur 12 est exprimé en X S5
et devient 45. Ld résultat est en DCBN. La théorie nous dit qu’il y aura une erreur de +1
car le résultat attendu +30 de la soustraction est positif.

42 — 12 = 75 + C A (45) = 01110101 + C'A,(01000101)

Détaillons :

01110101 (75)
+10111010 (CA;(45))
100101111 (12 F)
+00000001

1 00110000(DCBN)

Correction exercice 21 — 37 Premier algorithme : Le soustracteur 37 n’est pas exprimé
en X S3. Le résultat ser en X .S5. La théorie nous dit qu’il n’y aura pas d’erreur car le résultat
attendu —16 est négatif.

21 — 37 = 54 + C'Ag(37) = 75 + C'A1(00110111)

Détaillons :

01010100 (54)
+11001000 (CA1(37))
101100010 (16 2)
400000001

1 01100011

1 6 3 (DCBN-XS3)

1.4.2 Codage de Gray

Ce code est construit de facon récurrente a I'aide de symétries. Il a comme propriétées
d’étre réfléchi, circulaire, et la distance de hamming entre deux codes est de 1.

La distance de Hamming entre deux nombre se définit comme le nombre de bite qui
différent.

Construisons un code de gray a trois variables :

On réalise d’abord une symeétrie : On réalise encore une symeétrie :

0 0 0
1 0 1
1 11
0 1 0
On remplit la colonne 2 1 0
par moitié de zéro et de un 1 1
0 1

0 0

On remplit la colonne 3
par moitié de zéro et de un

——_0 O
O~ = O

15

1.4. CODES NON PONDERES

O 4 O = — O

OO — —H|H —H O O

OO OO+~ —

16

CHAPITRE 1. SYSTEME DE NUMERATION

Chapitre 2

Logique Combinatoire

La logique permet de définir des fonctions logiques qui s’expriment sur des variables lo-
giques. Une variable logique est une variable qui prend ses valeurs dans [0,1]. Ce domaine
peut s’interpréter comme [Faux,Vrai] et également comme [0v,5v]. L’algébre de Boole
(Georges Boole 1815 - 1864) est une algébre binaire n’acceptant que deux valeurs numé-
riques : 0 et 1. Cette algébre est définie par la donnée d’'un ensemble non vide muni de 3
lois de composition interne : ET, OU, NON satisfaisant & certain nombre de propriétés
(commutativité, distributivité...).

Un systéme combinatoire se définit par les fonctions logiques qui correspondent aux
sorties du systémes :

by ——» —

by ——>) - S,
Logique Combinatoire —

S

b14>

by ——>

FIGURE 2.1 — Exemple de logique combinatoire

Définition 2.0.1. Fonction logique Une fonction logique F; est une fonction de n variables
qui est définie par sa valeur dans [0,1] pour les 2™ combinaisons de ces variables d’entrées.
Ces 2™ définitions constituent ce que 'on appelle la table de vérité d’une fonction.

Problématique du cours

La problématique de cette section est de traduire un probléme en équations logiques,
puis de simplifier ces équations et enfin de les implémenter ces équations & ’aide de portes
et/ou de composants logiques.

Un probléme de type combinatoire - c.a.d . qui ne requiert pas le concept de mémoire -
peut généralement s’exprimer dans le cas d’une algébre :

A=(., +,7,(0, 1))

17

18 CHAPITRE 2. LOGIQUE COMBINATOIRE

2.1 Opérateurs logique élémentaires

2.1.1 ET

Noté "." on trouve aussi A, & :

— il a un élément neutre noté 1 : l.x =«

— un élément absorbant noté 0 : 0.2z =0

— il est commutatif z.y = y.x

— il est associatif z.(y.z) = (z.y).z

— il est distributif sur le OU : z.(y + 2) = zy + z2
— il est idempotent : z = z.x.....x

Son symbole électronique est : D

2.1.2 OU

Noté "+" on trouve aussi V :

— il a un élément neutre noté 0 : 0+ x ==
— un élément absorbant noté 1 : 14+ x =1
— il est commutatif xt +y =y + =

— il est associatif x + (y+ 2) = (x +y) +
— il est distributif sur le ET : 2 + (y.2) =
— il est idempotent : z =z + z.... + =

z
(z +y).(x+2)
Son symbole électronique est : D

2.1.3 NON

Noté ~ on trouve aussi =, ¢’est une fonction unaire.
— il est involutif & =z

—xz+zT=1

—zxz=0

— théoréme de Morgan (Augustus De Morgan 1806-1871)
TVyvVzV.. TAZA ..

=TA
TAYAZA..=TVGVEV..
Son symbole électronique est : Do

2.1.4 NAND

Noté a.b _ _
— il n’est pas associatif : a.b.c # a.b.c
— NAND est un opérateur logique COMPLET :

— On peux réaliser le NOT avec un NAND : @ = a.
— On peux réaliser le OU avec un NAND : a + b = a.1.b,1

— On peux réaliser le ET avec un NAND : a.b = a.b.1
Son symbole électronique est : D

2.1.5 NOR

Noté a + b
— il n’est pas associatif : a+b+c#a+b+c

2.2. SIMPLIFICATION DE FONCTION LOGIQUE 19

— NOR est un opérateur logique COMPLET :
— On peux réaliser le NOT avec un NOR :a=a+0

— On peux réaliser le ET avec un NOR : a.b=a+0+0+0
— On peux réaliser le OU avecun NOR : a+b=a+0+0

Son symbole électronique est : D

2.1.6 XOR: @

Noté a ® b = a.b+ a.b
— il est associatif : (a®b) Bc=a® (bdc)
— XOR n’est pas un opérateur logique COMPLET :
On ne peux réaliser que le NOT avec un XOR :a=a & 1

Son symbole électronique est :)D

2.1.7 IMPLIQUE : =
Notéa=b=a+b

2.1.8 EQUIVALENCE : ©
Notéa=b=ab+ab=adb=a®b

Son symbole est :)D

2.1.9 Exemples de simplification algébrique d’expressions logiques

Simplifier une fonction logique permettra d’optimiser sa consommation électrique.
— Flr,y)=r+2g=a+y

— Flr,y)=z+2y=x+y

— Flr,y)=z+zy==zx

— f(a,b,c) = ab.c + a.b.c + a(bé + bé + bc + bc) = a + ¢

2.2 Simplification de fonction logique

On va dans cette section présenter comment réduire la complexité d’un fonction logique.
Réduire cette complexité, c’est permettre lors de son implémentation électronique, de dimi-
nuer le colt et la consommation électrique, mais aussi augmenter la vitesse de traitement
du circuit électronique qui implémente la fonction.

20 CHAPITRE 2. LOGIQUE COMBINATOIRE

Une fonction logique peut étre représentée par une expression algébrique, une table de
vérité ou une table de Karnaugh (1924-2022).

Un probléme en logique est qu’il existe une infinité de formes équivalente & f, par contre
on pourra toujours ramener une fonction f en une forme canonique disjonctive (les opérateurs
de plus haut niveau sont des OU) ou une forme canonique conjonctive (les opérateurs de
plus haut niveau sont des ET') . Une forme canonique est une une forme unique.

Théoréme de décomposition de Shannon (1916-2001)

Ce théoréme donne une méthode pour représenter une fonction sous une forme unique
conjonctive ou disjonctive.

Définition 2.2.1. Shannon : Toute fonction logique peut se décomposer par rapport & l'une
de ces variables sous la forme d’une somme de deux produits logiques tel que :

F(z,y,..2) =z.F(l,y,..2) + T.F(0,vy,...2)

Toute fonction logique peut se décomposer par rapport & l'une de ces variables sous la forme
d’un produit de deux sommes logiques tel que :

F(z,y,..z) = [+ F(L,y,...2)].[x + F(0,y,...2)]

Démonstration Pour la premiére assertion posons x=1, on a :

F(l,y,..2) = 1.F(1,y,...2) + 1.F(0,y, ...2)
=1.F(l,y,...2) + 0.F(0,y,...2)
= F(l,y,...z) ce qui est VRAI

Posons x=0, on a :

F(0,y,..2) =0.F(1,y,...2) + 0.F(0,y, ...2)
=1.F(0,y,...2)
= F(0,y,...2) ce qui est VRAI

Pour toutes les valeurs de x, la premiére assertion est valide. On fera un raisonnement
similaire pour la seconde assertion.

Forme disjonctive de Shannon Soit la fonction F : définie par F(x,y) =2 + Z.§

[z y | flz,y)
0 0] 1
0o 1| o0
1 of 1
1 1| o

F(z,y) =x.F(l,y) +z.F(0,y)
=z.[y.F(1,1)+ §.F(1,0)] + Z.[y.F(0,1) + §.F(0,0)]
=zyl4+2zyl+z2y0+29.1
=zy+zy+2y

2.2. SIMPLIFICATION DE FONCTION LOGIQUE 21

Lorsque F(.,.) =0, il y a une absorption du terme.

Définition 2.2.2. Remarques Appliquer le théoréme de Shanon pour la forme disjonctive
revient, in fine, a la lecture de la table de vérité sur les "uns”.

Forme conjonctive de Shannon Soit la fonction F : définie par F(z,y) = 2 + Z.§

lz y | flzy)
0 0] 1

0 1| o

1 o| 1
11 1

F(z,y) =[x+ F(1,y)].[z + F(0,y)]
=[x+ @+ F,1)(y+ F(1,0)]z+ (g + F(0,1))(y + F(0,0))]
=@+ @+ Dy + D+ (F+0)(y+1)]
=z +1] [z+9]
=1.[z+7

Lorsque F(.,.) =1, il y a une absorption du terme.

Définition 2.2.3. Remarques Appliquer le théoréme de Shanon pour la forme conjonctive
revient, in fine, a la lecture de la table de vérité sur les "zeros”, en inversant termes et
opérateurs.

2.2.1 Lecture d’une table de vérité

les deux formes du théoréme de Shannon, nous donnent deux méthodes de lecture des
tables de vérité.

Table de vérité et Shannon en forme disjonctive

— Lecture sur les "uns".

— "zéro" est absorbant et élimine les
autres lignes.

— Les termes sont associés en conjonc-
tion, les lignes sont en disjonction,

— f(a,b,c) = ab.c + a.b.c + a.b¢ + abc +
a.bc + a.bc

H RO OOOD
FROOKRKFOOT
—_ O MHOMKOMKO|6
g S el e =] =

Table de vérité et Shannon en forme Conjonctive

22 CHAPITRE 2. LOGIQUE COMBINATOIRE

— Lecture sur les "zéros".

— "un" est absorbant et élimine les
autres lignes.

— Les termes inversés sont associés en
disjonction, les lignes sont en conjonc-
tion,

— fla,b,e)=(a+b+c)(a+b+c)

— — O O R MO OolT
—_ O, O, QOO0
=== O = O e

e e == = =] R

Table de vérité

Une table de vérité sert & exprimer exhaustivement un cahier des charges. Elle est com-
posée de deux parties : les combinaisons et la valeur de vérité de la fonction. La Partie
combinaison on exhibe ’ensemble 2™ combinaisons correspondant aux n variables.

Si une combinaison est interdite ou si la valeur de la fonction est indifférente pour cette
combinaison :

Alors la valeur de vérité de la fonction recoit *. La valeur de vérité de la fonction est exprimée
sur 0, 1, x. x signifie que la valeur vaux un ou zéro.

Il est & noter qu’il est périlleux d’effectuer des simplifications dans une table de vérité.

Karnaugh

Construction d’une table de Karnaugh pour une fonction & n variables :

— Partager ’ensemble des variables en 2 sous-ensembles s; de dimension n; et so de
dimension ng avec nq + ng = n.

— Ecrire un tableau avec 2™ lignes et 2™2 colonnes.

— Construire un codage de Gray a n; et a ngy variables, que I'on placera dans la premiére
colonne et dans la premiére ligne du tableau.

— A partir de la table de vérité, reporter la (les) valeur(s) de vérité de(s) la fonction(s)
4 partir des combinaisons des variables d’entrée du tableau.

Table de vérité et table de Karnaugh.
f(a,b,c) = ab.c + a.b.c + a(bé + b + bc + be)

Sous-ensembles : 517 = ¢85 = (a,b)

a
f(a,b,c) b
&P 00 }ﬁ{ 10

of O 0 1 1

CIll 1 1 1

Ll e i i e B e B e B an) (<]
R, OO~ FROOlCT
Ok O OO0
= = =m0 R Ol

Reégles de simplification

— Dans une table de Karnaugh on regroupe deux paquets de 2™ "uns" pour former un
paquet de 2" variables.

2.2. SIMPLIFICATION DE FONCTION LOGIQUE 23
— Le principe de regroupement de 2 paquets X est basé sur le théoréme suivant :

Tyeoeejeunlpy F Tyl = T1.0 (X5 + Tj) oo Ty = L1 ie1-Tip1.-- Ty
Xz+Xzx=X

— Ainsi un regroupement de 2™ variables représente n applications SUCCESSIVES de
ce théoréme.

D’un point de vue graphique les regroupements peuvent se faire suivant les critéres

suivants :

— 2 cases adjacentes : le Code de Gray assure que 2 codes adjacents ont une distance
de Hamming de 1;

— un axe de symétrie partage la table de Karnaugh en deux parties égales;

— d’autres axes de symétrie peuvent partager en 2 une sous-table de Karnaugh issue
elle-méme d’un axe de symétrie;

— 2 blocs de 2™ cases peuvent étre regroupés si ils présentent entre eux d’un axe de
symétrie ;

— le Code de Gray étant circulaire, les colonnes et les lignes extrémes sont adjacentes.

Définition 2.2.4. Régles de simplification Pour simplifier une table de Karnaugh , on com-
mencera par les "uns” qui n’ont qu’une seule facon de se regrouper puis on essaiera de faire
les plus grands regroupements possibles

Exemples de regroupement de cases adjacentes

a a
f(a,b,c,d) b f(a,b,c,d) b
Cdaboo 01 11 10 Cdaboo 01 11 10

d d
1|1 1(1
C C
10 10
a
f(aﬂb7c7d) b
Cdaboo 01 11 10
O Y
of1
d
C
o 1) sh

Regroupements de blocs de 2" cases

24 CHAPITRE 2. LOGIQUE COMBINATOIRE

f(a,b,c)za—i-c

aI Cl 1 1 /)@

fla,b,c,d) =ab+ cb+
c

f

1 1 l» regroupement inutile

|
1 1 1 1)

fla,b,c,d) =ab+

f
d
-
1 1
1 1
b
aonED
a
Erreurs classiques! Remarque :
c Ce regroupement de six est interdit. Six n’est
; ——- pas une puissance de 2.
d
-
Bk
1 1

2.2. SIMPLIFICATION DE FONCTION LOGIQUE

Axes de symétrie Voici quelques axes de symétries possibles : f(a,b,¢,d,e) = cd

e
| |
{ \
f | - |
d d
b
a
f(a,b,e,d,e) = ede + cde
e
| |
{ 1
f | - |
1) 1)
1 1
b
1 1 1 1
a
9 10
Existe-t-il un axe de symeétrie ?
fla,b,c,d,e) =cd
e
| |
{ \
f | ¢ |
{ \
— —
))
1 1
1 1
b
1 1 1 1
a
9 o)

fla,b,c,d,e) = cd+ ade

26 CHAPITRE 2. LOGIQUE COMBINATOIRE

(&
| |
[1
f | - |
d d
S -
1) n
1 1

L)

Cas des fonctions incomplétement définies

Lorsque ’on a des combinaisons interdites, impossibles ou indifférentes alors on considére
que ces combinaisons sont disponibles a la simplification et sont notées .

Remarque :

Dans le cas ou la combinaison qualifiée d’impossible dans le cahier des charges se produit

2.2. SIMPLIFICATION DE FONCTION LOGIQUE 27

quand méme (perturbation électromagnétique), cela provoquera un aléa de fonctionnement.
La fréquence et la dangerosité de cet événement, peut nous amener alors & revoir le cahier
des charges et la réalisation du circuit électronique.

Soit N un chiffre décimal représentant une note sur 20 traduit en binaire. Donner la
fonction logique qui permet de tester si N > 12.

Bl ERcR=R-RoR-N-RoN-N-NoN=l LI IR R R

S0 -Ho0-0OHOHOHIOHOHO OO

lco~~00-H-HOCOHHIOOHHOOHHO

OO0 O0 A HHO0000HA+—H0OO000~

CHAPITRE 2. LOGIQUE COMBINATOIRE

HJoococoocococoocorrrdHlHrrH0o00OO

llocococoococoococoo|locoC O A~

12
13
14
15
16
17
18
19

o-mmtmworon ST

20
21

té de N > 12

La table de véri

28

Ty
N2

n2

L2
= N4 + Na.n3

N >12

ns
ns

31

ng
N2

N >12
N >12

2.2. SIMPLIFICATION DE FONCTION LOGIQUE 29

2.2.2 Simplification d’expressions algébriques

Il y a une infinité de théorémes ou de régles. Je propose ici un sous-ensemble de 3 théo-
rémes complétement arbitraire. La régle de remplacement est la plus étrange et j’en décon-
seille I'usage car elle peut étre couteuse en temps. Elle utile pour démontrer la régle appelée
“Simplification”. Par contre le sous-ensemble, Simplification, Absorption et Consensus est
suffisant pour simplifier toute fonction logique.

Remplacement
EFE+F=F+G < F<GLFE+F
Exemple :
E(Il,xg) =T T) E F G E+F
F(.’bl,xz) = T1.29 G(l’l,(EQ) = T2 0 0 0 0 0 0
0 1011 1
1 10|170]0 1
1 11101 1

D’ou le nouveau théoréme :

1+ T1.02 =21 + X2

Simplification, Absorption et Consensus

Simplification -
E+EF=F+F

Régle duale :

E(E+F)=E.F

Absorption
E+FEF=F

Régle duale :
E(E+F)=EFE
Consensus - -
EF+EG+FG=EF+EG
Régle duale : - -
(F+F)(EF+Q@).(F+GQ) =(E+F)(E+G)

Propriétées

ab=2zy=abu==zy.u
a+b=xz+y=>a+b+u=z+y+u

PAR CONTRE :
r+a=x+bAa=0b

ar=bxrAa=0>b

30 CHAPITRE 2. LOGIQUE COMBINATOIRE
2.3 Les circuits Combinatoires

Les circuits que nous allons aborder sont présents dans les microcontroleur ou dans
les carte mére. Par exemple, les codeurs ou décodeurs permettent d’accéder sélectivement
d’accéder a tel ou tel registre, les multiplexeurs permettent de sérialiser ou de de-sérialiser
I’information sortant ou entrant dans un bus de données.

— Les transcodeurs
1. Les codeurs
2. Les décodeurs

— Les circuits d’aiguillages
1. Les multiplexeurs

2. Les démultiplexeurs

2.3.1 Circuits de transcodage
Codeur

Ce sont les circuits qui transforment une information de 2™ bits vers n bits.

[y gu—
€ —
€5 | L s
€4— Codeur

B— 8—3
€9 —

1
— So
€1 ——
€o——

FIGURE 2.2 — Codeur 8 entrées vers 3 sorties

Si une entrée e; est active alors le nombre i sera représenté en binaire sur les sorties
52,51, S0
Equation des sorties d’un codeur non prioritaire 8 vers 3 :

so = e+ e3+es+ er(impair)
S1 = eg+e3+eg+er
So = e4+e5+egt+er

Exemple de codeur prioritaire : 74148 ce schéma est tiré du “datasheet” du compo-
sant :

2.3. LES CIRCUITS COMBINATOIRES

’148, 'LS148 logic diagram (positive logic)

o

2

3

El

10)

i0)

EO

il

]

12)

V4

(13)

)

%

©

(2

it

3)

@)

@

6) 2

ﬁﬁ%g%ﬁ

i

Pin numbers shown are for D, J, N, NS, and W packages.

FIGURE 2.3 — Schéma du 74148

31

Dans la figure 2.3.1 on peu voir noter les entrées 1 a 7 les trois sorties Az, A1, Ag. On

note une entrée supplémentaire Ei qui si elle est & un désactive toute les sorties.

Table de vérité du 74148 La table de vérité donne le niveau d’activation des entrées et
des sorties et les pattes annexes.

Inputs Outputs
Er| 0 1 2 3 4 5 6 7| Ay A Ay | GS Ep
H X X X X X X X X H H H H H
L H H H H H H H H H H H H L
L X X X X X X X L L L L L H
L X X X X X X L H L L H L H
L X X X X X L H H L H L L H
L X X X X L H H H L H H L H
L X X X L H H H H H L L L H
L X X L H H H H H H L H L H
L X L H H H H H H H H L L H
L L H H H H H H H H H H L H

E; (Enable Input) : Active le fonctionnement du codeur.

Role de Ep et GS On peut aussi examiner dans cette table le roles des pattes Ep et
GS. Eo (Enable Output) est activé si au moins une entrée a été sélectionnée. Tandis que
GS (Gate Select) est activé lorsque soit aucune entrée n’a été sélectionnée soit Er n’a pas

été activé.

Codeur 74148 : Sélection d’entrée Considérons dans la représentation simplifié d’un
codeur que l'entrée 6 est active :

32 CHAPITRE 2. LOGIQUE COMBINATOIRE

e7—|
€6 —i
eb—
ed—1 Codeur

e3— 8—3
e2—

—S2 1
—S1 1
—S0 0
el—
e0—j

FIGURE 2.4 — Codeur 8 entrées vers 3 sorties

Au niveau de la Table de vérité du 74148 on aura :

Inputs Outputs
E; 0 1 2 3 4 5 6 7| A, Ay Ag GS Eg
H X X X X X X X X H H H H H
L H H H H H H H H H H H H L
L X X X X X X X L L L L L H
L X X X X X X L H L L H L H
L X X X X X L H H L H L L H
L X X X X L H H H L H H L H
L X X X L H H H H H L L L H
L X X L H H H H H H L H L H
L X L H H H H H H H H L L H
L L H H H H H H H H H H L H

Les entrees sont ici actives a I'état bas tandis que les sorties sont aussi actives & I’état bas.
6 est une entrée active. On a ici un codeur prioritaire, c.a.d. que si une entrée de numéro
inférieure a 6, elle ne sera pas considérée (d’ou les X dans la ligne) alors on a sur les sorties
Ay, A1, Ag — L L H : 6 en logique négative

Décodeur

Ce sont les circuits qui transforment une information de n bits vers 2™ bits.

€2 —— S5

Déco.
—— S

6143 — 8 4

€0 —|

FIGURE 2.5 — Décodeur 3 entrées vers 8 sorties

Pour chaque combinaison de variables d’entrées on a une seule sortie active. Les com-
binaisons d’entrées sont appelées adresses car elles expriment en numérotation binaire le
numéro décimal de la sortie activée.

2.3. LES CIRCUITS COMBINATOIRES 33

€2 ——- S5
el peee: Sy

— 3 8

€0 —|

FIGURE 2.6 — Les entrées eq, e; donne le code (110) qui active la sortie 6

Décodeur 74138 : Table de vérité du datasheet

Inputs
Enable Select

l®
[=1
=+
kel
=
o+
%}

Q
©
oy

X o

mmmmmm:mxxr§
i alalalal ool ol ks

Eoo e o e e e D
a=fanleria- N ol ol ol QI ES
H T e e

HCo DO mO e) X XA
I T I T T T T T T
o
T T T T
ool gl N
asfiecerlicsl olarilcsferfarcslr s
effeclfenffon g Sl s ol

T T T BT T T |
I T BT I T I T I

Si on a la combinaison HH L = 6 sur les entrées A, B, C alors la sortie Y5 sera active (L) en
logique négative.

Le distributeur de boisson Un appareil comporte 8 cuves contenant de [’eau, du concen-
tré de cassis, du concentré de menthe. Ce distributeur permet d’obtenir de ’eau, de la menthe
a leau et du cassis a l’eau par le moyen des boutons e, m, c qui commandent les electrovannes
E, M,C. Le mélange cassis-menthe étant interdit. Une piéce p doit étre introduite sauf pour
leau pure qui est gratuite. L’appui sur un bouton e, m,c pour lintroduction déclenche une
temporisation. Le déclenchement et [’échéance de la temporisation ne seront pas traités. Si la
temporisation arrive & échénace avant qu’un choix cohérent soit fait, la piéce éventuellement
présente est rendue par la fonction de restitution P. Cette fonction est aussi activée si le
choiz est incohérent (mc).

Distributeur de boissons C

FIGURE 2.7 — Analyse des entrées et des sorties

La table de vérité L’analyse du cahier des charges combinaison par combinaison
donne la table suivante :

34

CHAPITRE 2. LOGIQUE COMBINATOIRE

e m c P E M C P
0 0 0 00 0 0 0
0 0 0o 1]/0o o o0 1
o 0 1 ofo o o o
o 0o 1 11 o 1 o0
0 1 0 of o o o0 o
0 1 o0 1] 1 1 0 o0
0 1 1 o]0 o 0 o0
o 1 1 1o o o 1
1 0 0 o1 o o0 o
1 0 o0 11 0o 0o 1
1 0o 1 offo o o0 o0
1 0o 1 11 0o 1 o0
1 1 0 oo o o o
1 1 0 11 1 o0 o0
1 1 1 offo o o o0
1 1 1 1o 0o o 1
T
E(e7m7c7p)
m
e m
cp 00 01 11 10
ol 0100 m
of1| O 1 1 w
p
bl D)oo
¢
. 10| O 0 0 0
Tables de Karnaugh de la variable F

E(e,m,c,p) = m.c.p+m.c.p+em.c

Tables de Karnaugh de la variable M

M(e,m,c,p) =m.c.p

2.3. LES CIRCUITS COMBINATOIRES

Tables de Karnaugh de la variable C

35
e
C(em,c,p)
m
c pe . 00 01 11 10

C(e,m,c,p) = m.c.p

Tables de Karnaugh de la variable P

P(e,m,c,p) = m.c.p+ m.c.p

Mise en équations

P(e,m,c,p)
m
£ m
cp 00 01 11 10

E(e,m,c,p) = m.c.p+m.c.p+ e.m.c

M(e,m,c,p) =m.c.p

C(e,m,c,p) = m.c.p

P(e,m,c,p) = m.c.p+ m.c.p

Implémentons maintenant ce distributeur & I’aide d’un double décodeur le 7415155

Reéalisation avec un 74LS155
1Y, 2Y pilotable par les entrées A et B

Ce composant comporte deux ensembles de sorties

36 CHAPITRE 2. LOGIQUE COMBINATOIRE

74LS155
—q 2C
Validation 2Y
—q 2G 2Y3 o—
2Y2 o—
2Y1 p—
2Y0 P—
— A
Entrées adresses
— B
1Y3 p—
1Y2 p—
— 1C 11 p—
Validation 1Y Y0 p—
—q 1G

A partir d’'une méme combinaison sur A et B on peut activer 2 lignes & la fois : une dans
1Y; et une dans 2Y; :

— AB == 00 les lignes 1Y} et 2Y; sont actives

— AB == 10 les lignes 1Y, et 2Y5 sont actives

D’autre part, les entrées de validation de 1G 1C et 2G 2C permettent de sélectionner le(s)
groupes de sortie actif(s). Les équations du multiplexeur 74155 sont :

2Ys = A.B.2C.2G 1Y¥s = A.B.1C1G
2Y; = AB2C.2G 1Y, = A B.1C1G
2Y: = A.B2C.2G 11 = A.B.1C.1G
2Y, = A.B.2C.2G 1Yo = A.B.1C1G

Dans toutes les expressions de E, M,C, P on trouve toujours m et ¢ avec e ou p en facteur.
Donc plagons :

— m et ¢ sur les entrées adresses A et B

— p sur entrée de validation 1C';

— e sur l'entrée de validation 2G;

— les validations 1G et 2C & la masse;

Les équations du multiplexeur deviennent :

m =m.c.e 17Y3 = m.c.p
m = m.c.e m = m.c.p
2Y, = m.ce 1Y1 = m.c.p
2Y, = m.c.e 1Yo =m.cp

D’ou les expressions de E, M, C, P en fonction des iY; :
— M =mcp=1Ys;

— C =m.cp=1Yy;

— P=mep+mep=1Yy + 1Ys;

— E =m.cp+mip+m.ce=1Y] +1Ys + 2Y,

2.3. LES CIRCUITS COMBINATOIRES 37

_ 74LS155
N
e {>— 2G Y3 p— ;[>f E

2Y2 p—
2Y1 p—
20 p——

c— A

m— B
1V3 P—
V2 p—> M

p - 1C vip—t>——\—C

o 1Y0
e o

Multiplexeur

Définition 2.3.1. Multiplezeur Un multiplezeur réalise l’aiguillage de 2" entrées vers une sortie
avec n bits de commande.

Equation de la sortie : co
S = €0.Cn-1.Cn—=2..... C1.Co €] —»] s

Multipleux 2" = 1 —

+ ei1.Ch—1.Cn—2..... C1.Co

+ e2.Ch—1.Cn—2..... c1.Co eon—1 —

+ ! P
Cn—1 c e

+ €n.Cnh—-1.Cn—-2....C1.Co " ! 0

Le Démultiplexeur

Définition 2.3.2. Démultiplexeur Un démultiplexeur réalise l’aiguillage d’une entrée vers 2" sorties
avec n bits de commande.

So

Equation des sorties : .
S1
G
e —» Demultiplexeur 1 = 2™
o Son—1
S0 = €.Cn—-1.Cn—2..... C1.Co _—
S1 = €e.Cn-1.Cn—=2..... C1.Co T T T
o , ,
Sn = €.Cp—2....C1.Co ot a

2.3.2 L’additionneur

C’est un circuit qui réalise I’addition de deux nombres binaires et produit la somme et la retenue :

38 CHAPITRE 2. LOGIQUE COMBINATOIRE

0+0 = 0 retenue =20 S —abtab=adb
0+1 = 1 retenue=20
1+0 = 1 retenue =20
1+1 = 0 retenue =1 Retenue = a.b
e
b / :
and R

L’additionneur complet

Pour réaliser une addition sur n bits, il faut un additionneur capable de réaliser I’addition sur
3 éléments : a;, b; et la retenue produite par le rang précédent r;.

ai b ri | rign
0 0 O 0 0
0 0 1 0 1
0o 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
a;
— Yi=ai Db D

Ei(ai,bi,ri)
i bi

r? 00 01 11 10

of O 1 0 1

Tz'Il 1 0 1 0

r; a;.b;.r;
z+1(79V 1) b1 Ti+1 = a;.b; +

ai bi
raN_00 01 11 1 10 = a;.b;+

of O Omo

TiIIO 1‘\1/‘1

riv1(ai,bi,ri)

b, _
T:h 100 }ﬁ{ 10 Ti+1 = ai.b; + n(albz + albl)

o O 0 m 0 Ti+1 = (1,7',.1)7, =+ 7'7;.((17; D bz)
I Dovo

2.3. LES CIRCUITS COMBINATOIRES

Définition 2.3.3. Equations de l’additionneur complet

Tn+1

% = (i ®b)dr

Ti4+1

anbn r ai b1 r aObo r
Lel” Lol oLael?
T T T
Sy, S1 So

L’additionneur a retenue anticipée

Prenons la seconde forme de 'additionneur :

rig1 = a;.bi + 1ri.(a;i ® bi) = ai.bi + ri.(a; + b;)

Posons : P; = a; +b; et G; = a;.b;

On a:

T1

T2

T3

ao.bo + (ao + bo).ro = Go + Po.ro

Gi+ P11

G1+ Pi.(Go + Po.ro) = G1 + P1.Go + P1.Po.ro
G2+ Pa.ro

G2+ P2.(G1 + P1.Go + P1.Py.ro)

G2+ P2.G1 + P2.P1.Go + P2.P1.Po.ro

40 CHAPITRE 2. LOGIQUE COMBINATOIRE

To
fo——+Jor> | =)

G r1
0 or

Les temps de calcul des retenues sont tous égaux a condition de réaliser des portes & plus de
deux entrées. Ils correspondent aux temps de calcul des P;, G;, et donc a ’étage des ET et a ’étage
des OU.

2.3. LES CIRCUITS COMBINATOIRES 41

an b, On—1b,_; ar b a1 b

LLlll Llll

Calcul des P;-G;

P, Gy Pu1Gnoy P G PRy Gy

Ll Ll

Calcul des retenues r;
TnT’n—1 1 To

I I

Calcul des sommes .S;
SnSrL—l Sl SO

I I

Le temps de calcul est donc indépendant du nombre de bits au dépend de la complexité des
portes. En effet certaines portes auront 3,4, ... jusqu’a n entrées.

2.3.3 Le comparateur

Un comparateur compare 2 nombres A et B sur n bits :

— GT : sortie active si A > B
— EQ : sortie active si A =B
— LT : sortie active si A < B
— GUE : sortie active si A > B
— LFE : sortie active si A < B
— NE : sortie active si A # B

Le comparateur délivre six sorties :

GT = Angn + (An ® Bn).(Anfanfl) + ...+ (An ® Bn) ... (A1 ® Bl)(A()?o)

EQ = (An. ® Bn).(An—1. ® Br—1) ... (Ao ® By)
LT = GT

GE = GT + EQ

LE = LT + EQ

BQ = EQ

2.3.4 L’UAL : 74181

L’UAL est composé de 2 entrées de 4 bits A et B, d’'un bus de commande S bits qui permet
d’effectuer 16 opérations différentes. Le résultat de 'opération produit un résultat sur le bus F. Il
y a une retenue entrante rg et sortante r4.

42 CHAPITRE 2. LOGIQUE COMBINATOIRE

S Sélectionne 'opération Op & réaliser

UAL

Opérandes (4 bits) Fo.3=A0.3 Op By 3

74LS181
— 14
By 3 d r

— Arithmétiques :

* Additions : A+ B, A+ B+ 1 (lorsque 79 = 1)

¥ —A=CAx(A)

* Soustractions : A— B, A— B —1
— Logiques :

* ET : (A3B3)(A2B2)(A1B1)(AOBo)

* OU : (A3 + B3).(A2 + B2).(A1 + B1).(Ao + Bo) (+ = ou)
NOT(A) =CA1(A)

Nor, Nand ...

Décalages A < LSL(A) ...

* % ¥

Chapitre 3

Logique Séquentielle

3.1 Introduction

Dans un systéme en logique séquentielle au moins une sortie reboucle sur une entrée et il devient,
dés lors, impossible de décrire le systéme par une fonction logique.

Q1
FEy ——
Systéme en
Logique Séquentielle
Ey — Q2
|

Une sortie reboucle sur une entrée

Dans ce chapitre nous allons définir d’abord comment la mémoire advient avec la notion de
re-bouclage, puis nous introduirons les circuits séquentiels de base : les bascules et le séquenceurs.
Puis nous présenterons une méthode d’analyse des circuits séquentiel.

3.1.1 La notion de mémoire

Le concept d’élément mémoire élémentaire - Binary digl'T : BIT - émerge au travers des concepts
suivants : Une lecture non destructrice de I’état du bit, la mise & un un ou & zéro, et le maintien en
I’état du bit en absence de toute modification. Cela peut se traduire par la table de vérité suivante :

R S Qt Qt+1
0 0 Qt Qt
0 1]|@° 1
1 0]Q o
1 1| @ *

Dans cette table la premiére ligne exprime que en ’absence d’action le bit garde sa valeur. La second
exprime le set, la troisiéme le reset. La quatriéme est que ’on va s’interdire les action simultanées
du set et du reset.

Examinons maintenant ce qui se passe si on re-bouble deux portes nor :

Ces test nous ont permis de comprendre qu’en re-bouclant des portes on peut mettre en ceuvre
le principe de mémoire élémentaire qui correspond aussi & la notion de bascule.

43

44

:c();'@ >O

CHAPITRE 3. LOGIQUE SEQUENTIELLE

o

L’état est stable

z=0

I S

::DO

Q=0

P=1

— Q=1

—> P =0

Sur un front montant de y, Q passe a un, P passe & zéro

r=0

L=

::DO

— Q=1

L’état est stable pendant le niveau haut de y

3.1. INTRODUCTION 45

x:O—»DO__>Q:1

Aprés la retombée de y 'état @ reste & un

ol) D

Aprés le front montant de x, Q passe & zéro, P & un

46 CHAPITRE 3. LOGIQUE SEQUENTIELLE

0

L D

Pendant le niveau haut de x, @ reste a zéro, P & un

3.1.2 La bascule initiale : la RS asynchrone

Dans une bascule RS, R sert & mettre la bascule & zéro et S & un. De plus, on interdit de faire
un R et un S en méme temps. Une bascule RS peut aussi se définir par sa table de vérité :

R S Qt Qt+1
0 0 Qt Qt
0 1| @t 1
1 0] @ 0
1 1| @Q *

Comme nous ’avons vu, une RS peut étre réalisée & ’aide deux portes nor re-bouclées :

D

Q|

e

On la représentera maintenant par :

R
f(R.S,Q") S
RS N —
Q* oo o1 111 10 f(R,S, Qt) = Qt+1 = R.S.Qt + R.S+ RS
o 0 (1 * |0 B
=RSQ'+R.S

3.1. INTRODUCTION

RS

Maintenant considérons une autre simplification dans la table de Karnaugh :

R
f(R,S,Q") S
t+1 _ p ot L P S
Q"' =R5.Q'+RS+RS B P e e

=RQ'+S QII GEj 0

L’équation caractéristique est donc : Q'*! = R.Q' + S

Reéalisation de la RS asynchrone en NAND

En NAND, & partir d’un forme en somme : Qt+! = R.Q* + .5 = R.Qt*.S

ojo 0

S

Q|

1 r

Reéalisation de la RS asynchrone en NOR

En NOR, a partir d’un forme en produit :

Q" =RS.Q'+RS=R.(5.Q"+5)=R.(Q"+9)

QY =@ =R(Q+5=R+Q +83

Et on retrouve la forme précédemment étudiée :

48 CHAPITRE 3. LOGIQUE SEQUENTIELLE

e

Q|

e

Maintenant on peut se poser la question de qui se passe si on applique R et S en méme temps ?
SiS=R=1alors Q =Q =0 (en NOR). Cet état est alors stable. Considérons maintenant
P'application simultanée de S = R = 0, les deux portes n’étant jamais réellement identiques, 'une
est plus rapide et donc, 'une commute sa sortie & un en premier verrouillant la seconde porte dont
la sortie restera bloquée & zéro désormais. On a ici une situation de course : c’est la porte la plus
rapide qui définit 1’état de la bascule!!! Comment éviter cette situation ?

Race conditions

Une premiére idée est de synchroniser les signaux d’entrée avec un signal d’autorisation par une
porte ET.

— Si ce signal est a zéro, les entrées sont & zéros,

— Si ce signal est & UN, les entrées sont susceptibles de faire évoluer les sorties.
Ce concept permet de se prémunir contre des variations indésirables, qui seraient susceptibles de
provoquer 'apparition simultanée de ces deux signaux.

3.2 Typologie des bascules
Il y a trois types de bascules : (i) les "Latch" : & Déclenchement sur niveau (haut ou bas), (ii)

Les "Edge triggered" : & déclenchement sur front, (iii) et les Les maitres-esclaves.

3.2.1 Les bascules a verrou : les "Latch"

Un bascule latch est une bascule synchrone dont toute variation sur les entrées pendant le niveau
d’activation du signal d’horloge est pris en compte sur ses sorties.
Dans la figure ci-dessous, on peut remarquer les deux portes et qui verrouillent les entrées sur

un niveau bas de ’horloge H :
R
3D—H'Do—% Q

U]
U]
il

3.2. TYPOLOGIE DES BASCULES 49

RST Latch

La table de vérité de la RST Latch

Cette table fait apparaitre la nouvelle colonne H qui correspond & I’horloge :

H|R|S| QM
0| % | = Qf
11o]o] @
1]0]1 1
111]o0] o
1111 *

Traitons maintenant un exemple. Pour un signal d’horloge donné H, donnons-nous aussi deux
signaux R et S comprennant aussi des petits pics parasites :

On va prendre en compte sur la sortie @ les niveaux hauts de I’horloge pour le set S et le reset
R.

DT Latch

Cette bascule posséde une entrée D et une entrée horloge T'. Cette bascule fonctionne en mode
recopie sur une niveau haut de T et en mode mémoire sur un niveau bas de 7.

Table de vérité de la DT Latch

T|D| Q!
0| * Qt
1]0 0
11 1

50 CHAPITRE 3. LOGIQUE SEQUENTIELLE

Traitons & nouveau un exemple ou pour un signal d’horloge donné, le signal D’ comprend un
pic parasite. Ce pic apparait sur la sortie @) car il s’est produit pendant le niveau haut.

ppipipipipin

U N T B

0 H

Réalisation d’une DT Latch

A partir d’une RS :

QM =5+RQ (3.1)
Q"' =D (3.2)
or D=D+ DQ (3.3)

=S=DErD=R (3.4)

) est I’équation caractéristique de la RS

) est ’équation caractéristique de la D

) correspond & un des théorémes de la logique : D+ DQ =D(14+ Q) =D
) correspond a la fagon de réaliser la bascule D

RS

3.2.2 Les Bascules a déclenchement sur front : "Edge Triggered"

Une bascule & déclenchement sur front est une solution plus performante pour se prémunir
des parasites par rapport aux bascules latch. Elles ne seront sensibles que sur les fronts soit des
intervalles de temps trés courts définis par la technologie utilisée dabs les transistors qui constituent
les portes. Examinons dans la prochaine section, une D Positive Edge Triggered.

3.2. TYPOLOGIE DES BASCULES 51

D Positive Edge Triggered

-
H |,

qs
W gy \00/1

1. Quand I’horloge est stable
— 683« 1lpour@Q@=0
— b 7,4 2pour Q=1
LA SORTIE NE VARIE PAS.
2. Quand 'horloge passe de 1 vers 0 : 5 — 4,8 — 1 : LA SORTIE NE VARIE PAS

3. Quand I’horloge passe de 0 vers 1 avec D =0 et Q = 0: 1 — 8 L’entrée D est appliquée sur
la sortie mais comme Q était déja & zéro il n’y a PAS DE CHANGEMENT D’ETAT.

4. Quand I'horloge passe de 0 vers 1 avec D = 1 et Q = 1:4 — 5 L’entrée D est appliquée sur
la sortie mais comme Q était déja & un il n’y a PAS DE CHANGEMENT D’ETAT.

5. La sortie CHANGE D’ETAT lors d’un front montant de H avec D # Q c.a.d. lors des
transitions : 3 -+ 5et 2 - 8

T Negative Edge Triggered

Une bascule fonctionnant suivant le type T' dispose d’une entrée unique 7'. La sortie () change
d’état a chaque front descendant de T'. Elle divise la fréquence d’entrée de T par 2.

S O e A

S e I e N e I

Réalisation de la T Negative Edge Triggered

Réalisation :

D=Qu1=0Q:

52 CHAPITRE 3. LOGIQUE SEQUENTIELLE

On réalise cette bascule en re-bouclant la sortie Q sur I’entrée D d’une bascule Délai. Seule reste
alors ’entrée horloge appelée T. Attention, cette bascule ne peut étre réalisée avec une bascule de
type "latch", mais avec une "Edge" : & déclenchement sur front.

T

DT

Ql

FIGURE 3.1 — Trigger a partir d'une DT

3.2.3 La JKT

— J et K similaire & S et R
— J = K =1 est autorisé : fonctionne comme une bascule T’

Réalisation d’une JKT

QM =JKQI+JK+JEK.Q'
=JKQ+JK(Q'+ Q")+ JK.Q"
=JKQ+ JEK.Q'+JK.Q"+JK.Q"
=JQYK +K)+K.Q'(J+1)
=JQ'+K.Q

Réalisation de la Bascule JKT

Pour la réaliser, on va identifier les termes 2 & 2 dans ’équation suivante :
JQI+ K.Q"' =S+ RQ"
En posant : S = J.Qt et R = K.Q°

En effet, avec ce choix pour R, on obtient alors :

KQQ=(K+Q).Q=K.Q

3.2. TYPOLOGIE DES BASCULES 93

La bascule JKTavec une RST

Ql

RS

D
D

F1GURrE 3.2 — JK a partir d'une RST

Avec une JKT on peux faire :

— Une DT, avec J =K =D

— UneT,avec J =K =1

— Une RST en s’interdisant J = K =1

3.2.4 Bascules Maitres Esclaves

Maitre Esclave

P |

— Composées de 2 bascules synchrones des D Positive Edge Triggered par exemple.
— Maitre et I’esclave

— Lecture et écriture de I’état de la bascules sur le méme pulse.

f - -Seuil d’ouverture-mattre - - -------3

[- Seuil-d’ouverture-esclave - - -5

54 CHAPITRE 3. LOGIQUE SEQUENTIELLE

Maitre Esclave
Zone 1 — — E—
Zone 2 — — -
Zone 3 E— — —
Zone 4 — — -
Zone b — e

— 11 n’existe pas de configuration ou le maitre et ’esclave sont passant en méme temps et
donc :

— On peut re-boucler I'entrée et la sortie de la ME et donc :

— On peut implémenter : Echanger i,j ou i=i+1

Exemple 1

Echange des valeurs des bascules A et B

3.2. TYPOLOGIE DES BASCULES

Zone 1

Zone 2

Zone 3

Zone 4

Zone b

Exemple 2

Maitre

—

~

Esclave

95
Ea Mp Ep
0 1 1
0 1 1
0 0 1
0 0 1
1 0 0

o6

CHAPITRE 3. LOGIQUE SEQUENTIELLE

Sens Positif

Exemple 2 : sens Positif

Sens Négatif

Exemple 2 : sens Négatif

3.3

Analyse de circuits séquentiel

L’analyse a pour objet de proposer une méthode pour analyser un circuit composé de portes
élémentaires mais qui comporte des re-bouclages. Ce schéma comporte des entrées et des sorties.
L’analyse produit au final, une machine a états. C’est & dire un graphe qui comporte des états
stables du systéme reliés par des événements qui sont des fronts montants ou descendants sur les
entrées du systéme.

3.3.1 Phases de I’analyse

Identification des entrées, des sorties principales et des re-bouclages qui correspondent &
I'introduction de variables variables internes Y; et y;.

Equations logiques des y; et s;

Table d’excitation et de sortie des y; et s;

identification des états stables

Table des états nommeés

Construction du graphe

3.3. ANALYSE DE CIRCUITS SEQUENTIEL

3.3.2 Exemple d’analyse de circuits séquentiel

m

v

Identification des re-bouclages

m

/Y
I
|l
\Y
Y1
Yo
Y1 |dt;| b
=D
1

Yo

Y2 | dity

n| L
A1

o7

58 CHAPITRE 3. LOGIQUE SEQUENTIELLE

Equations intermédiaires

Y2 | dty

Ys

Equations logiques :

y2=Ya.(m + Y1) + m.Y

y1=Ya.(m + Y1) + m.Y1
L=Y,

Table d’excitation

Y
-

viva Ys
m_ oo 01 11 10

o| 00p | 117 | 114 | 00¢

Exitation

mI 01y | 01; | 104 | 100

Table d’excitation : état stables

Y1
S

Vive Y,
M\ oo 01 11 10

[o)
mIl 01g 104

Exitation

3.4. LES SEQUENCEURS 59

Table des états nommeés

Exitation
Y1 Yo Yy

mIl (J1/0(J2/1

3.4 Les séquenceurs

=)
(=}
wW
~
—_
(=}
(=}
~
o

Un séquenceur est un systéme logique séquentiel construit & partir de bascules JKT qui implé-
mente un automatisme. Cet automatisme peut délivrer des signaux sur des lignes & partir d’une
horloge en fonction de son état courant. Cette méthode était utilisée, a 'origine, avant I’avénements
des automates. Cette méthode, trés économique, peut encore étre utilisé pour réaliser de petits
automatismes dans des environnements peu contraints. Le schéma suivant illustre un séquenceur
qui agit sur des actionneurs a; en fonction de son état courant et dentrées e;.

ap || az ap | Actionneurs

Sequenceur Etat courant

@ @ €n | Entrées

3.4.1 Table d’excitation de la bascule JKT

La table d’excitation de la JKT permet de déterminer le prochain état de la bascule JK en
fonction de son état courant et de son excitation (état de ses entrées). Par exemple, avec 'excitation
J=1let K=x%,cadJ=1et K=0o0ubien J=1et K =1 et dans ’état ou la bascule vaut 0

(Q = 0) alors la sortie @ passera & un.

K Qt Qt+1
0 0

|¥ | =O|lY

*
* 0 1
1 1 0
011 1

3.4.2 Exemple

On veut réaliser un séquenceur qui affiche sur 4 leds la valeur de comptage en binaire. Ce
compteur est cyclique : 0, 1, 2, 3 9. Arrivé a 9 son prochain comptage reboucle & zéro et continue
sa séquence infiniment & chaque toip d’horloge. On va réaliser ce séquenceur a ’aide de 4 bascules.

60 CHAPITRE 3. LOGIQUE SEQUENTIELLE

etat | Qp | Qc | QB | Qa | Jp Kp | Joc Kc |Js Kp|Ja Ka
0 0 0 0 0 0 * 0 * 0 * 1 *
1 0 0 0 1 0 * 0 * 1 * * 1
2 0 0 1 0 0 * 0 * * 0 1 *
3 0 0 1 1 0 * 1 * * 1 * 1
4 0 1 0 0 0 * * 0 0 * 1 *
5 0 1 0 1 0 * * 0 1 * * 1
6 0 1 1 0 0 * * 0 0 * 1 *
7 0 1 1 1 1 * * 1 * 1 * 1
8 1 0 0 0 * 0 0 * 0 * 1 *
0 1 0 0 1 * 1 0 * 0 * * 1
JpKp On pose Jp = Kp
Qb
f(Qp,Qc,Q5,Qa) 0
C
00 01 11 10
00 * 0
0f1 * 1
Qa &
Jp = Kp o 1 (1 [\ *
B
= Qc.Q.Qa+Qa.Qp Lo * *
JoKc On pose Jo = Ko
@b
2
f(QD7QC7Q37QA) Q
C
00 01 11 10
JC = KC 00 O O * O
= @B.Qa
o] O 0 * 0
Qa
11(1 1 * *)
OB
10| O 0 * *
JBKB OnposeJBzKB
@b
f(QDaQC7QByQA) Q
C
00 01 11 10
Js = Kpz oo/ O 0 * 0
= Qa@p o1 R x| 0
Qa
11\ 1 y * *
O
10| O 0 * *

3.4. LES SEQUENCEURS

JBKB On pose JA IKA

Voici maintenant le cablage final :

Qa-Q
L[Ja Qa |— Jb
Ka Qa [— Kb Q)

jDQA-QD

