Polytech’Nantes

Informatique Industrielle IT : Microcontroleur

David Delfieu

Département Génie Electrique 3¢ année

Acronyms

ACIC Analog Comparator Input Capture Enable. 29

ACO Analog Comparator Output. 29, 30

COM1AT : 0 Compare Output Mode A 1:0. 32

COM1x1 : 0 Compare Output Mode x(A or B) 1:0. 30, 31, 34, 35
[C'Fy Input Compare Flag 1. 27, 29

IC'NC, Input Capture Noise Canceller 1. 30

OCFy4 Output Compare Flag 1 A. 27, 28

OC'F 5 Output Compare Flag 1 B. 27, 28

TICTE; Timer Input Capture Interrupt Enable 1. 29

TOV, Timer Overflow 1. 27, 29

WG M5, Wave Generation Modes 3:0. 2, 29-31

ACS ACD ACO ACI ACIE ACIC ACIS, ACIS,. 29
ADCH Analog to Digital Converter High. 18

ADCL Analog to Digital Converter Low. 18

ADMUX REFS, REFSy ADLAR MUX, MUX3 MUXy; MUX, MUX,. 19
ASSR Asynchronous Status Register. 44

DDRB Data Direction Register B. 32

GICR General Interrupt Control Register. 11, 12

ICR; Input Capture Register. 28-30, 32, 33, 36, 37

MCUCR Management Control Unit Control Register. 8, 11
MCUCSR MCU Control and Status Register. 12

OCR;1 4 Output Compare Register 1 A. 28, 30-33, 36, 37

OCR;p Output Compare Register 1 B. 28, 31

OCR;y; Output Compare Register 1 x=A ou B. 32-34, 36

OCRy Output Compare Register 2. 39-45

OC14 Sortie MLI A du timer 1. 32

OCx Sorties MLI A ou B du timer 1. 34

SFIOR ADTS2 ADTS1 ADTS0 — ACME PUD PSR2 PSR10. 15

SPI Serial Peripheral Interface. 5

SRAM Static Random Access Memory. 4

SREG I'THSV N ZC.7

TCCRy — — — — — Sy CSp CSpg. 25

TCCR14 COM1A, COM1Ay COM1B, COM1By FOC1, FOClp WGM1; WGM1y. 28, 29, 35
TCCRyp ICNy ICES — WGM13 WGM1, CS1, CS1y CS1. 28-30, 36

TCCRy Timer Counter Control Register 2. 40, 43

TCNTy Timer Counter Timer 0. 25, 26

TCNT; Timer Counter Timer 1. 28-34, 36, 37

TCNT, Timer Counter Timer 2. 39-45

TIFR OCF2 TOV, ICF, OCFlA OCFlg TOV, — TOV,. 24,25, 28, 37, 39

TIMSK OCIE, TOIE, TICIE, OCIE\A OCIE\B TOIE, — TOIE,. 3, 25,26, 28, 36, 45

USART Universal Synchronous and Asynchronous Serial Receiver. 5

ACSR Comparateur analogique. 17

ADCH Poids fort de la conversion analogique. 2, 20
ADCL Poids faible de la conversion analogique. 2, 20
ADCSRA Contréle du convertisseur analogique. 2, 19, 20

ADMUX Multiplexeur analogique. 2, 20

EEPROM Petite mémoire non volatile qui contient des données dynamiques. Elle a un temps d’accés trés lent, autour de 5
millisecondes pour un ATMEGAg. 4, 6

FLASH Mémoire non volatile qui contient le programme et les données statiques. Par rapport a la SRAM, elle a un temps
d’accés plus lent ainsi qu’une durée de vie est assez limitée, par contre elle a une consommation faible. 4, 6

GICR Gestion des interruptions. 11
ICP1 Patte du timer 1 sur laquelle on peut réaliser une entrée de capture (P°By). 29

MCUCR Gére notamment les activations des interruptions externes. 11

MLI Modulation de Largeur d’Impulsions. 5

OC1A Patte du timer 1 sur laquelle on peut observer une MLI (P3;). 31
OC1B Patte du timer 1 sur laquelle on peut observer une MLI (P B,). 31

OSCCAL Calibration et gestion du résonnateur. 8
PUD Inhibe les résistances de tirage. 15

SFIOR Résistances de tirage et le pré-diviseur des timer 0 et 1. 15, 17

SRAM Mémoire volatile qui contient les données dynamiques. Elle est contient notamment tous les registres du microcon-
troleur. 4, 6

SREG Registre qui controéle les bits d’état du microcontroleur comme la Carry, le bit Zero, le bit Négatif, 7

TCCRO Pré-diviseur du timer 0. 2, 25
TCNTO Registre de comptage du timer 0. 2, 25

TIMSK Registre de masquage des interruptions des timers. 2, 25

Contents

1 Présentation générale

3

1.1

1.2

1.3

1.4

2.1

2.2

Les Timers

3.1

3.2

3.3

Introduction e e e
1.1.1 Les différents blocs mémoire de VATMEGAg« . . o o i e e e e e e e e
1.1.2 Fonctionnalités e e e e e e e
1.1.3 Les modes de communication de TATMEGAg o i i e e e e e
Architecture L e
1.2.1 Architecture interneo
1.2.2 Registres Systémes L
Les interruptions de PATMEGAg« o o 0 i e e e e e e e
1.3.1 Le concept dinterruption e e e
1.3.2 Gestion des interruptionso e e e e
1.3.3 Les interruptions externes N1y et ITNT) . . . o 0 o o 0 o 0 o e s e e e e
1.34 Lechiendegarde e
Les Ports e e e e
1.4.1 Usage des PORTS . o o 0 o 0 e e e e e e e e e
1.4.2 Codes complets d’écriture et de lecture d'un porto Lo
1.4.3 Fonction de manipulation de bits dans un port (ou un registre) L.
1.4.4 Resistance de tirage : Pull Up Resistor. e
Le traitement des valeurs Analogiques
Le Comparateur Analogique L e e
2.1.1 Fonctionnement global L
2.1.2 Lesregistres. L
Le Convertisseur Analogique-Numérique : ADC
2.2.1 Fonctionnement et caractéristiques L L e
2.2.2 Les différentes méthodes de programmation d’une conversion
2.2.3 Les Registres de 'ADC : ADMUX, ADCSRA, ADCH, ADCL
Letimer O o o o e e
3.1.1 Caractéristiques i e e e
3.1.2 Les registres qui pilotent le timer 0 : TCCR0, TCNTO TIMSK
Le timer 1 o e e
3.2.1 Caractéristiques générales L e
3.22 Lesl6modesdutimer 1. oL L e
3.2.3 Les 16 Modes du générateur de formes : WGMIs.g . o o 0 0 o 0 0 00 0 e e
3.2.4 Inventaire des registres utiles au timer 1 Lo
3.2.5 Résumé des 16 modes de MLI du timer 1
3.2.6 Exemples d’utilisation du timer 1 oL
Le timer 2 o o
3.3.1 Apercudu timer 2o e
3.3.2 Génération de forme : pulse, PWM,... e
3.3.3 Lesmodes dutimer 2 e e e
3.3.4 Les registres utiles au timer 2 e
3.3.5 Les interruptions du timer 2 Lo e

3.3.6 TIMSK e 48

3.3.7 TIFR . . . o e 48

4 La programmation en langage C 50
4.1 Structure de Programineo it e e e e e e e e e 50
4.1.1 Entéteo 50
4.1.2 Main . . . oL 51
4.1.3 Fonctions L e 51
4.1.4 Déclaration de variable globales : attribut volatile L. 51
4.1.5 Fonction de manipulation de bits 52

4.2 Lesinterruptions oL e e e e 52
4.2.1 MiSE €1 0BUVIE . . . o v v v vt vt et e e e e e e e 52
4.2.2 Description des sources d'Interruptions de VATMEGAg i 53
4.2.3 Convertisseur Analogique Numérique 0 o 53
4.2.4 Mémoire EEPROM e 53
4.2.5 Interruptions externes L L e e e 53
4.2.6 Interruptions Diverses Lo e 53
4.27 Timer 0 o o e 53
4.2.8 Timer 1 o L e e s 54
4.2.9 TImer 2o e e e 54
4.2.10 TWI . . o o 54
4.2.11 UART . . . o 54
4.2.12 USART . . . o 55
4.2.13 USL . . . 55
4.2.14 Watchdog L e 55

Chapter 1

Présentation générale

1.1 Introduction

Un microcontroleur est un microprocesseur dédié au controle, il contient dans un méme composant une unité de calcul CPU,
comme dans un micro-processeur, mais il a, par contre la possibilité d’adresser directement des Ports d’entrées-sorties (im-
possible pour un microprocesseur. Il a de plus, spécifiquement, des timers, des convertisseurs analogiques, des unités de
communication et de la mémoire.

Ce cours présente ’ATM EG Ag, microcontroleur de la famille Arduino (Microchip anciennement Atmel) sur lequel on
développera des programmes en langage C' dans 'environnement Arduino. On n’utilisera pas cependant le langage Arduino leur
préférant un structure C' et la manipulation de registres.

La famille des ATM EGAsg

Modéle Flash | EEPROM | RAM | 10 | PWM Interfaces CAN
ATMEGAg 8K 512 1024 23 3 SPI-USART 10 bits
ATMEGAq6 16K 512 1024 | 32 4 SPI-USART 10 bits
ATMEGA3s2 32K 1k 2k 32 4 SPI - USART 10 bits
ATMEGAg4 64K 2k 4k 53 8 SPI - USART(2) | 10 bits
ATMEGA128 | 128K 4k 4k 53 8 SPI - USART(2) | 10 bits
ATMEGA256 | 256K 4k 8k 53 16 SPI - USART(2) | 10 bits

Dans cette famille, TATM EGAg et ' AT M EG A1 sont compatibles broches & broches et il n’y a que trés peu de différences
au niveau du code. On pourrait sur la carte de T'P remplacer facilement un ATM EGAg par un ATMEGA+¢.

1.1.1 Les différents blocs mémoire de ’ATM EG Ag

La mémoire de ' AT M EG Ag est constituée de 1ko de Mémoire vive (SRAM), de 512 octets de EEPROM et de 8ko de mémoire
FLASH.

La mémoire de type SRAM contient les registres et la pile systéme. La mémoire de type Static Random Access Memory
(SRAM) est un type de mémoire vive “volatile” utilisant des bascules pour mémoriser les données. En Pabsence d’alimentation
les données sont perdues. On placera ces variables dans cet espace, lorsqu’elles sont partagées par le prpgramma principal et
un sous-programme d’intérruption. On peut utilise alors I'attribut volatile. Par exemple : volatile int i; Cet attribut assure
que la variable sera déclarée dans la SRAM, en dehors de la zone des registres spéciaux. Les accés a la variable sont plus lent,
par contre, il n’y a pas de mise en cache de la variable et donc pas de probléme de synchronisation (cf annexe 4.1.4)

La mémoire FLASH permet 10.000 cycles d’écriture. Elle contient le programme et les données. C’est une mémoire non
volatile. Par rapport a la SRAM, elle a un des temps d’accés moins rapide, une durée de vie est assez limitée mais une
consommation faible. Elle est méme nulle au repos. La FLASH utilise comme cellule de base un transistor M OS possédant
une grille flottante enfouie au milieu de 'oxyde de grille, entre le canal et la grille. L’information est stockée grace au piégeage
d’électrons dans cette grille flottante. Cette technologie se décline sous deux principales formes : NOR et NAND, d’aprés
le type de porte logique utilisée pour chaque cellule de stockage. Dans 'AT M EGAg on a une FLASH de type NOR. Les
mémoires de type NAN D sont plutét consacrées aux mémoires de masse externes telles que les Cartes SD, disque dur,. ..

Les de type EEPROM sont les plus chéres. Elle autorisent 100.000 cycles d’écriture. Elles ont un temps d’accés
un peu plus long, et donc on y stocke des données qui n’ont pas vocation a étre modifiée souvent. Une autre différence avec la
FLASH classique est que I'on y écrit octet par octet.

1.1.2 Fonctionnalités

Les différentes fonctionnalités sont les timers, le convertisseur analogique (ADC), les possibilités de communication, les

et les d’entrées/sorties. Un timer peut définir des bases de temps, faire du comptage d’événements, ou bien
générer des MLI ou de gérer un watchdog !. L’ADC permet de convertir en valeurs numériques codées sur 10 bits des tensions
entre Ov et bv. Les permettent d’adresser et de communiquer avec des composants externes.

1.1.3 Les modes de communication de ’ATMEG Ag

IATM EGAg dispose de maniére interne d’un circuit dénommé Universal Synchronous and Asynchronous Serial Receiver
(USART). A noter qu’on entend couramment parler d’'UART, mais qu’Atmel a ajouté ici un S pour Synchronous. Ce qui
veut dire que cette interface peut servir & faire aussi bien de la communication série synchrone ou asynchrone, c’est & dire avec
des bits de start et de stop, mais aussi synchrone dans laquelle les bits de données sont envoyés de maniére cadencée par un
signal de clock, piloté par un maitre du protocole de communication. Elle utilise deux fils : un pour I’émission et un pour la
réception.

La communication série de type SPI est un bus de donnée série synchrone baptisé ainsi par Motorola, et qui opére en Full
Duplex. Les circuits communiquent selon un schéma maitre-esclaves, ot le maitre s’occupe totalement de la communication.
Plusieurs esclaves peuvent co-exister sur un bus, la sélection du destinataire se fait par une ligne dédiée entre le maitre et
I’esclave appelée chip select.

Le bus Serial Peripheral Interface (SPI) contient 4 signaux logiques :

e SCLK : Horloge (géneéré par le maitre)

e MOST : Master Output, Slave Input (généré par le maitre)
e MISO : Master Input, Slave Output (généré par I’esclave)

e S5 : Slave Select, Actif a 1’état bas, (généré par le maitre)

La liaison SPI est utilisée pour la programmation de 'ATM EG As.
Gréace a une liaison série de VAT M EG Ag on peut loader un programme & exécuter dans le microcontroleur

1.2 Architecture

L’architecture du microcontroleur est illustrée dans la figure suivante :

1Systéme de surveillance de bon déroulement de programme : Un wachtdog est capable de détecter si un programme sort de sa boucle infinie
déclenchant alors un reset qui remettra le programme dans se boucle

VCC PCy PCs PCy PC3 PCy PC PCy PB; PBs PB; PB, PBs PB, PB, PB,

A 111111 [I

[PORTC | | PORTB |

N
s
&

CNA TWI

%
SRam

«—— Watchdog
Flash

— IT
Blocs de registres
%
;/ UAL
> Usart

SR

SP

ﬁ
B

|

SPI

PORTD |

|
TTTTTTT]

PD7PDgPDsPDyPD3PD>;PD,PDy

Figure 1.1: synoptique d’un Atmega

1.2.1 Architecture interne

Comme on ’a vu, il y a trois sortes de mémoires :
La mémoire FLASH : stocke le programme (10.000 cycles)
La mémoire SRAM (mémoire donnée) :

les 32 accus ;

les registres a fonctions spéciales ;

la pile.

La mémoire EEPROM : on y place des données stratégiques (100 000 cycles)

Registres | Adresse Fonction

Ry $00 Accumulateur
Ry $01 Accumulateur
accu
Ros $19 Accumulateur

Les 32 registres internes sont : Rog $1A X poids faible
R27 $1B X pOidS Fort
Rog $1C Y poids faible
Rog $1D Y poids Fort
Rs3p $1E Z poids faible
R31 $1F 7 poids Fort

Mémoire Flash 8 ko Mémoire SRAM 10240 Mémoire EEPROM 5120
$0000 $0000 $0000

32 registres accumulateurs

$001F

Registres a fonctions spéciales

$005F $01FF

$1FFF

Figure 1.2: synoptique d’'un Atmega

Un mapping signifie une projection d’un plan mémoire sur 'espace d’adressage. Dans I’ AT M EG Ag, certains plans partagent
un méme espace d’adressage. On distinguera alors I’accés aux variables partageant ce méme espace par l'utilisation de modes
d’adressage spécifiques.

Mémoire SRAM Espace d’adressage

$0000 $0000
_
32 registres accumulateurs }
RO-R31
_
_
_

Registres a fonctions spéciales

$03F

$FFFF

Figure 1.3: synoptique d’un Atmega

1.2.2 Registres Systémes
Ces registres agissent sur le controle ou indiquent 1’état du processeur.
Registres SREG: SREG est un registre crucial dans ce micro-contréleur. C’est lui qui surveille en permanence le mi-

crocontroleur et positionne ces bits en fonction de la derniére opération arithmétique ou logique. Par exemple si la derniére
opération donne un résultat négatif le bit N de SR passe a un.

(T[T IH[S[VIN[Z]C]

C': Carry

e / : Zero

e NV : Negative

e I/ : oVerflow = Cs & Cr
e S: V&N

10

e [: Half carry
e 1" : copy sTorage : bit tampon pour manipuler un bit

e [: autorisation générale des interruptions : sei() — cli()

Registre de pile SP Ce registre permet les appels de sous-programmes et le passage de paramétres et la sauvegarde de
I’état courant d’un programme. En assembleur, une pile se manipule par les instructions :

PUSH : Empile une donnée, décrémente SP
POP : Dépile une donnée, incrémente S P

Comme les piles Motorola, la pile de I’Atmel, fonctionne par adresses décroissantes. Par défaut SP contient : 0260 et il faudra
changer cette valeur par la valeur : 0z1FF

Registre MCUCR Ce registre définit les différents modes de sommeil dans lequel le micro peut étre plongé :

[SE [SM2 [SM1 | SM0 [ISC11 | ISC10 [ISCO1 | ISC00 |

Les bits de configuration des modes de sommeil S//;:

SM2 | SM1 | SMO Mode de Sommeil
0 0 0 Mode attente
0 0 1 Mode réduction de bruit pour 'ADC
0 1 0 Mode sommeil (Power down)
0 1 1 Mode économie d’énergie (Power save)
1 0 0 Réservé
1 0 1 Reéservé
1 1 0 Non utilisé
1 1 1 En pause
Domaines d’horloges actives Oscillateurs Sources de reveil
Sommeil CPU | FLA | IO | ADC | ASY | QTZ | TIM || INT | TWI | T2 | EEP | ADC | IOs
Power Down X X
En pause X X X
Power Save X X X X X
Réd. bruit X X X X X X X X X
Attente X X X X X X X X X X X

Calibration et le contréle de I’horloge OSCCAL

[[CAL7 [CALG | CAL5 | CAL4 | CAL3 | CAL2 | CALI | CALO |

Valeur de calibrage de l'oscillateur pour la programmation de la mémoire flash ou de 1’eeprom.
Suivant la configuration de certains bits, on peut utiliser les résonateurs suivants :

e Résonateur externe type céramique ou crystal

e Cristal externe basse fréquence

Oscillateur externe ou interne de type RC

Oscillateur calibré interne de type RC

Horloge externe de type quelconque

11

La figure suivante (fig. ??) présente un montage en quartz externe basse fréquence :

Horloge
XTAL, +— XTAL,
—_ (1 16 MHz| AT Megag AT Megag
XTAL- XTALo
—_ G
GND GND

Montage quartz interne

Montage quartz externe .
ntage quartz extertl avec génération d’horloge externe

Figure 1.4: synoptique d’'un Atmega

On parle d’horloge temps réel lorsqu’elle permet de générer des diviseurs ou des multiples entier de la seconde. La figure
suivante (fig. ??) combine le positionnement d’un quartz externe et d’une horloge temps réel :

XTAL,

] 16 MHz

XTALs

— 0,

GND

= AT Megasg

TOSC,

32768 Hz

TOSCy

Génration d’une horloge temps réel

Figure 1.5: synoptique d’'un Atmega

La figure suivante (fig. 1.2.2) présente un montage en résonateur externe :

12

+5V

R XTAL,
XTAL,
(CR—
GND

Figure 1.6: Résonateur externe

Tableau récapitulatif de tous les registres systémes :

| Addresse | Nom | Bit7 [Bit6 [Bit5] Bit4 | Bit3d | Bit2 [Bitl [Bit0 |
0x31 (0x51) | OSCCAL Registre de calibration et de controle de I'horloge
0x34 (0xb4) | MCUCSR - - - - WDRF BORF EXTRF PORF
0x35 (0x55) MCUCR SE SM2 SM1 SMO ISC11 ISC10 ISCO1 ISC00
0x37 (0x57) SPMCR | SPMIE | RWWSB - RWWSRE | BLBSET | PGWRT | PGERS | SPMEN
0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO
0x3E (0x5E) SPH - - - - - SP10 SP9 SP8
0x3F (0x5F) | SREG I T i S v N 7 C

1.3 Les interruptions de VAT M EG Ag

Un microcontroleur fonctionne de facon normale en exécutant la boucle infinie de son programme principal. Il peut aussi étre
interrompu par un événement unique ou récurrent pour exécuter un sous-programimme associé.

1.3.1 Le concept d’interruption

Une interruption externe correspond & la prise en compte d’un événement dont ’occurrence est possiblement aléatoire. Lors de
la survenue de cet événement l’exécution d’un sous-programme associé est lancée automatiquement. Ces événements peuvent
étre par exemple :

e La fin d’un délai,
e La fin de conversion,
e Le compteur d’un timer atteint un seuil
e Un front sur une patte du microcontroéleur
Un front sur une patte peut correspondre au niveau applicatif a :

e Un arrét d’urgence provoqué par ’appui d’un bouton ad. hoc.
e Capteur de choc ou de contact

e Dépassement de seuil sur un capteur de température, ...

D’un point de vue programmation, il serait donc peu intéressent d’utiliser des boucles d’attentes de cette alarme. Par exemple
il est déconseillée de faire appel aux fonctions de la bibliothéque Serial (lentes) dans une interruption. Son traitement est donc
réalisé en associant un sous-programme a un événement. On associe un événement & un sous-programme par la primitive ISR.

13

1.3.2 Gestion des interruptions

Interruptions imbriquées : Dans la famille Arduino, une interruption n’est pas interruptible par défaut par une nouvelle
interruption (sauf par un reset), en effet / de SREG est mis a zéro a Uentrée de linterruption. Toute nouvelle interruption
sera alors prise en compte lorsque l'interruption en cours sera terminée. Pour autoriser une nouvelle interruption dans
Iinterruption en cours il faut donc basculer / a un dans 'interruption en cours.

Deadlock : Il ne faut pas appeler de fonctions qui se mettent en attente d’une autre interruption. Comme l'interruption
est in-interruptible par défaut, la fonction attendra indéfiniment et tout le systéme se bloquera. C’est ce que l'on appelle un
Deadlock.

Plusieurs interruptions en méme temps ? Les interruptions ont chacune une priorité. Par exemple, les interruptions
externes sont plus prioritaires que les interruptions des Timers. L’Arduino exécutera les interruptions dans leur ordre de
priorité. Dans la table ci-dessous, les priorités les plus petits numéros correspondent aux priorités les plus fortes :

Table 1.1: Tableaux des interruptions de 'ATM EG Ag

Priorité | Nom de 'interruption Description
1 RESET External Pin, Power-on Reset, Brown-out Reset, and Watchdog Reset
2 INTO External Interrupt Request 0
3 INT1 External Interrupt Request 1
4 TIMER2 COMP Timer/Counter2 Compare Match
5 TIMER2 OVF Timer/Counter2 Overflow
6 TIMER1 CAPT Timer/Counterl Capture Event
7 TIMER1 COMPA Timer/Counterl Compare Match A
8 TIMER1 COMPB Timer/Counterl Compare Match B
9 TIMER1 OVF Timer/Counterl Overflow
10 TIMERO OVF Timer/Counter0 Overflow
11 SPI, STC Serial Transfer Complete
12 USART, RXC USART, Rx Complete
13 USART, UDRE USART Data Register Empty
14 USART, TXC USART, Tx Complete
15 ADC ADC Conversion Complete
16 EE RDY EEPROM Ready
17 ANA COMP Analog Comparator
18 TWI Two-wire Serial Interface
19 SPM_RDY Store Program Memory Ready

1.3.3 Les interruptions externes /N7, et [N'T)

L’ATM EGAg offre deux interruptions externes sur deux pattes : PDy et PDj3 respectivement appelées INT, et [NT.
Les événements qui peuvent se produire sur ce type de patte sont soit un front montant, soit un front descendant, soit un
changement de niveau.

Associer un événement & un sous-programme se fait en utilisant 'instruction ISR auquel on passe un nom d’événement :
ISR(Nom_evenement) et du code entre accolades. L’ensemble des événements est données dans les tables de la section 4.2.2
Exemple :

ISR(INTO_vect){

PORTD ~= 0xFO; // code associe a l’interruption
}
int main(){

DDRD=0xFO0;

GICR |= 1<<INTO;

MCUCR |= 1<<ISCO01; // Front descendant

sei();

while (1) {}
+

14

Si I'événement INT} (front sur la patte °D-) se produit, quel que soit le comportement de la boucle infinie du programme
principal (main), le travail est interrompu pour exécuter le sous-programme associé qui est défini entre les deux accolades
du bloc ISR. A la fin du sous-programme d’interruption on revient 1a ot 'on a été interrompu. La mise en oeuvre d’une
interruption externe se fait grace aux registre GICR et MCUCR :

e GICR :

[INTL [INTO [- [- [- [- [IVSEL [IVCE |

— INTy : a un, autorise une interruption externe sur la patte PDo

— INTj : a un, autorise une interruption externe sur la patte P D3

e MCUCR :

[SE [SM2 | SM1 [SM0 | ISC11 [ISC10 [ISCO01 [ISCO0 |

Considérons une interruption externe [NT,. Les bits 15Cq, [SCyy correspondent alors & la patte PD, et le niveau
d’activité est défini par le tableau suivant :

- 00 : niveau bas

- 01 : front montant ou descendant

- 10 : front descendant

- 11 : front montant

Autres bits du registre GICR

e [V SEL : Interrupt Vector Select
Quand le bit IV SEL est mis & zéro, les vecteurs d’interruption sont placés au début de la la mémoire flash. Quand ce bit
est mis & un, les vecteurs d’interruption sont déplacés au début de la zone du boot loader de la mémoire flash. L’adresse
de cette zone est modifiable par les bits "fusibles" BOOTSZ.

e [V SEL : a un, autorise le changement du bit /V SEL

Parmi les différents modes de fonctionnement d’un micro-controleur on peut citer le fonctionnement "chien de garde".

1.3.4 Le chien de garde

Un chien de garde permet de relancer/réinitialiser le programme. En effet lors d’une perturbation électromagnétique, par
exemple, le déroulement du programme peut étre altéré : Le compteur programme peut alors essayer d’exécuter du code
dans une zone mémoire non prévue. Un chien de garde, par exemple, armé toutes les 500 millisecondes, peut alors resetter le
programme et le remettre dans un déroulement normal.

Registre MCUCSR

[-[-1]-1-] WDRF | BORF | EXTRF | PORF |

o WD RF Watchdog Reset Flag: mis & un pour activer le watchdog, raz par un reset ou par une écriture d’un 0
e BORF : mis & un lors d’une panne d’électricité partielle, raz par reset ou écriture de 0.

o EXTR et PORF : Détermine la source d’un reset.

15

1.4 Les Ports

43

Dans un systéme a base de microcontroleur on appelle d’entrées-sorties”, des ensembles de 8 connections entre
le microcontroleur et lextérieur (cf figures 1.7,1.8,1.9). Par ces ports, le systéme peut réagir & des modifications de son
environnement, voire le controler. Elles sont parfois désignées par 'acronyme I/O, issu de l'anglais Input/Output ou encore

E/S pour Entrées/Sorties. Ces sont programmables en entrée ou en sortie.
— 1 28 — (Reset) PCs — | 28 — PCs (ADC5/SCL) — 1 28 —
— 2 27 — — 2 27— PCs (ADC4/SDA) (RzD) PDy — 9 27 +—
— 3 26 — — 3 26 — PCs (ADC3) (TzD) PDy — 3 26 —
— 4 25 — — 4 25 — PC: (ADCh) (INTy) PD; — 4. 25 —
— 5 24 +— — 5 24 +— PCi (ADCY) (INTy) PDs — § 24 +—
—6 ATMEGAs 23|~ 6 ATMEGAg 23 [—rowre coamrn—6 ATMEGAs 23
—7 22 — —7 22 — —7 22 —
— 8 21 — — 8 21 — — 8 21 —
(XTAL:/TOSCy) PBs — Q 20 — — 9 20 — — 9 20 —
(XTAL:/TOSCy) PB: — 1() 19 — PBs (sCK) — 10 19 — — 10 19 — PBs (sCK)
— 11 18 +— PB: (M150) — 11 18 — (ry) PDs — 11 18 +— PBi (MI50)
— 12 17 PBs (MOsI/OC;) — 12 17 — (AINo) PDs — 12 17 — PBs (MOSI/OCs)
— 13 16 — PB: (88/0C15) — 13 16 — (1N PD: — 13 16 — PB: (8S/0Ci)
(1cP) PBy— 14 15 — PBi (0C1a) — 14 15 — — 14 15 PBi (0C14)
Figure 1.7: Brochage du port B Figure 1.8: Brochage du port C Figure 1.9: Brochage du port D
Des buffers sont associés aux , ils ont la capacité d’étre a la fois source ou drain de courant ou en haute impédance
Une ligne d’un d’entrées est essentiellement composé d’un tampon a trois états. Ceux-ci se comportent comme des

interrupteurs électroniques qui font apparaitre, au moment voulu, soit deux niveaux logiques : zéro ou un et un état de haute
impédance. Les niveaux logiques sont mémorisés dans un registre du processeur.

Nom | B7 | B6 [B | B4 [B3 [B [Bl [BO
PORT D
PIND | PIND7 | PIND6 | PIND5 | PIND4 PIND3 | PIND2 | PINDI PINDO

DDRD DDRD7 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRDO
PORTD | PORTD7 | PORTD6 | PORTD5 | PORTD4 | PORTD3 | PORTD2 | PORTD1 | PORTDO

PORT C
PINC - PINC6 PINC5H PINC4 PINC3 PINC2 PINCI1 PINCO
DDRC - DDRC6 DDRC5H DDRC4 DDRC3 DDRC2 DDRC1 DDRCO
PORTC - PC6 PC5 PC4 PC3 PC2 PCl1 PCO
PORT B

PINB PINB7 PINBG6 PINB5 PINB4 PINB3 PINB2 PINBI1 PINBO
DDRB DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRBO
PORTB PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO0
Controle des Ports
SFIOR \ - \ - - \ - \ ACME PUD \ PSR2 \ PSR10

1.4.1 Usage des

On peut effectuer les lectures ou des écritures sur les ports. Dans le cas d’une écriture, chaque ligne du port peut fournir 20 mA
de courant tandis que chaque de 8 bits est limité & un courant total de 200 mA. Dans le cas d’une lecture sur le Port,
le port devient drain de courant et peux accepter aussi 20 mA de courant. C’est le registre PIN, qui permet la lecture. A
chaque bit du registre PIN,, est associée une bascule D qui permet de de stabiliser la lecture en la synchronisant sur un front
de I'horloge systéeme. Cette stabilisation se fait au détriment d’un délai de lecture qui correspond & une période d’horloge. On
peut, par ailleurs, positionner des résistances de tirage sur les lignes d’un port.

16

Déclaration des lignes en entrées ou en sortie

DDRp,DDRc,DDRp : Permet de programmer le sens des lignes (1 : sortie, 0 entrée)

Port B : Seules les pattes 2 et 3 sont en entrées, les autres sont en sortie

DDRB = Ob1111 0011;
Port C : Seules la patte O est en entrée, les autres sont en sortie

DDRC = OxFE;
Port D : Toutes les pattes sont en sorties
DDRD = 255;

Ecritures sur les ports

PORTp, PORT:, PORTp : Permet d’écrire sur les ports

Port B : Les sorties 0,1 4,5,6,7 sont actives :
PORTB = Ob1111 0011;

Port C : Les sorties 1,2,3,4,5,6,7 sont actives
PORTC = OxFE;

Port D : Toutes les sorties sont actives :
PORTD = 255;

Lecture des ports

PINp,PINg, PINp : Permet de lire les ports

Port B : Lecture du PORTB dans la variable i qui a été déclarée sur 16 bits
int i = PINB;

Port C : Lecture du PORTC dans la variable i qui a été déclarée sur 8 bits
char ¢ = PINC;

Port D : Lecture du PORTD dans la variable 1 qui a été déclarée sur 8 bits

avec masquage des 4 bits de poids fort
char 1 = PIND & OxOF;

1.4.2 Codes complets d’écriture et de lecture d’un port

int main(void) { // Ecriture sur un port

DDRD = OxFF; // PORTD en sortie
PORTD = 0x7A; //Allume leds 1,3,4,5,6
while (1) { //boucle infinie
PORTD ~= 0x7A; // ~= : ou-exzclusif fait clignoter les

_delay_ms (20) ;
}

leds

int main(void) { // Lecture d’un port
DDRC = 0x00; // PORTC en entree

DDRD = OxFF; // port D en sortie
int 1lu;
while (1) { //boucle infinie

lu = PINC;

PORTD = 1lu; //PORTD recoit PORTC
_delay_ms (20) ;
}

17

1.4.3 Fonction de manipulation de bits dans un port (ou un registre)

Plusieurs opérateurs permettent de manipuler des ports de fagon globale : | est un OU logique et il permet de rajouter des
bits & un dans un registre. & correspond au ET logique et il permet de mettre des bits & zéro dans un registre. << est un
opérateur de décalage & gauche de bits. Cet opérateur permet de positionner un bit au bon endroit avant une mise a "zéro"
ou une mise a "un".

// Mise a un d’un bit sans affecter les autres bits
PORTD = PORTD | (1<<PORTD4);
PORTD |= (1<<4); // mise a un du bit 4

// Mise a un des 4 bits de poids faible sans affecter les autres bits
PORTB = PORTB | O0xOF // ou
PORTB |= 0xOF;

// Mise a zero d’un bit sans affecter les autres bits
PORTB &="(1<<PB3); // mise a zero du bit 3

// Mise a zero de 4 bits sans affecter les autres bits
PORTB &= 0xOF; // mise a zero des 4 bits de poids Fort

// Commutation du bit 4 sans affecter les autres bits
PORTD = PORTD"0x10;
PORTD ~= 0x10;

1.4.4 Reésistance de tirage : Pull Up Resistor

Activation de la résistance de ti;z;ge Pull Up

V(// PUD
DDRz,
PORT,

x : B,C, ou D, correspond au port

n : numéro de bit

Rr

AT Megasg

Px,

h ; inti = PINz, :

I—

Figure 1.10: Résitance de tirage de type "pull up"

Pour poser des résistances de pull-up il est nécessaire d’avoir les trois conditions suivantes (porte AND du schéma) :
e Définir les lignes en entrée avec une action sur DD Rz, ;
e Ecrire un “1” sur ces lignes, PORT, =1 ;
e PUD mis a zéro dans SFIOR : SFIOR & = (1 << PUD);

Si tel est le cas, méme si le transistor 77 est ouvert alors on aura 5v, et donc un "un logique", lors de lecture de PINz,,.

18

Résistances de tirage : le registre SFIOR

ADTS2 [ADTSI [ADTSO | - | ACME [PUD | PSR2 | PSR10

PU D=*Pull Up Disable”
e 1: Les résistances de tirages sont désactivées, les entrées sont en mode 3-états.

e 0 : Les résistances de tirages sont activées.

19

Chapter 2

Le traitement des valeurs Analogiques

2.1 Le Comparateur Analogique

2.1.1 Fonctionnement global

Cet élément offre la possibilité de comparer deux valeurs analogiques sur les pattes P Dg et PD7. AINy(PDg) est appelé broche
positive et AIN; (P D7) broche négative. Lorsque AN, > AIN; alors AC0 « 1, on peut alors déclencher une interruption
(avec bit AC'IE=1) de comparaison.

ACSRA ‘ ‘ SFIOR ‘ ‘ ACSR ‘
zlol 2| gl a|ld|a|d al ol ol 2 alolol olelolzlg
HEBEEEREE HAEIEE IR
<l <2< <223 AR <l <] < <| <| 2| <

1.3v

+
Comp. (w IT c . Analog.

Sélection d’IT

Sortie du multiplexeur gnalogique

Figure 2.1: Comparateur

On a de plus, la possibilité de changer la référence "négative" : AIN; par I'une des broches ADCy, ADC, ..., ADC5 une
des sorties du multiplexeur analogique. Les bits ACTS1, AC'IS0 peremettent a l'utilisateur de sélectionner comme événement
de déclenchement, un front montant, un front descendant ou une inversion.

En outre, toute entrée ADC, ..., ADC| peut jouer le role de AIN;. Pour réaliser cela il faut positionner a un le bit de
multiplexage ACM E du registre SFIOR quand PADC est OFF (ADEN a zéro) les bits MU X2, MUX 1, MU X0 du registre
ADMUX permettent de modifier la source AINj.

20

Les bits MU X qui remplacent AIN; selon le tableau suivant :

ACME ADEN MUX2:0 AINI
0 T rxx AIN1
1 1 T AIN1
1 0 000 ADC
1 0 001 ADC,
1 0 010 ADC,
1 0 011 ADCjy
1 0 100 ADCy
1 0 101 ADCj
1 0 110 ADCg
1 0 111 ADCy

2.1.2 Les registres
Registre ACSR: Analog Comparator Status Register ACSR

[ACD [- [ACO | ACI [ACIE [ACIC | ACIS1 | ACISO

e AC'D Analog Comparator Disable : Bit de mise en marche du comparateur analogique,

0 : mise en marche,

1: arrét
e ACO Analog Comparator Output : Contient le résultat de la comparaison : si VAINy > VAIN; alors ACO = 1.
e ACT : Analog Comparator Interrupt : Flag Bit de demande d’interruption (bit raz ds le sp d’IT)
e Condition IT : ACTS1 et ASCI0). Ce bit est remis & 0 automatiquement apreés le traitement de I'interruption
e Masque d'IT : ACTE.
o AC'IFE Analog Comparator Interrupt enable : Bit de validation de I'interruption ANA COMP.

e ACIC : Analog Comparator Input Capture Enable : La mise a 1 de ce bit connecte la sortie du comparateur a I’entrée
de capture du Timerl.

o ACTST et AC'SIO gére le comportement de la sortie AC :

Activation de AC, ACIS1 ACISO
1—-00ul—1 0 0
non utilisé 0 1
front montant 0 0
front descendant 1 1
Registre SFIOR
[ADTS2 | ADTS1 [ADTSO0 [- | ACME | PUD | PSR2 [PSR10 |

AC'M E Analog Comparator Multiplexer Enable

e Quand ACME=1 et ADC est éteint (ADEN = 0 et ADSC = 0) alors le multiplexeur ADC choisit ’entrée négative
du comparateur analogique.

e Quand ACM E= 0 alors AI Nyest appliqué a I’entrée négative du comparateur analogique.

21

2.2 Le Convertisseur Analogique-Numeérique : ADC

Le convertisseur (ADC) convertit une tension d’entrée analogique en une valeur a 10 bits digitale par approximations successives.
Il posséde 6 entrées simultanées avec une non-linéarité inférieure & +/ — 2 LSB avec une erreur & 0 V inférieure & 1 LSB.
Le résultat de la conversion est positionné dans les registes Analog to Digital Converter High (ADCH) et Analog to Digital

Converter Low (ADCL).
ADOT J

ADMUX ADCSRA ADCH
o]l m|a|l ~]| o a| | o
NI RR IV IV BV IS ZO&&U)U)U)
THEHBEHEE
N N R e << < U= = =

Prédiviseur

Logique de conversion

10 bits DAC

Mux

b il

Figure 2.2: ADC

Le temps de conversion prend au minimum 13 cycles d’horloge. De plus, le convertisseur a une alimentation découplée du
micro : AVee tq AVee € [Vee—0,3,Vee+0,3] : Ve est la tension de référence qui peut étre externe ou interne : AREF ou

AVee ou = 2,56 v.

2.2.1 Fonctionnement et caractéristiques

On peut le programmer en générant une interruption de fin de conversion. De plus, il est possible du faire fonctionner en
limitant le bruit en mode de sommeil. Le résultat d’une conversion numérique sur 10 bits est donné par la relation :

Résultat numérique = P. Entiére(Tension d’entrée/Tension de référence x 1024)

Ou la tension de référence est soit ARFEF soit AV,.. soit 2,56v.

ADC_0= 2.5 V, AREF = 3.3 V
ADCH-ADCL = PE(2.5/3.3 x 1024) = 774

22

Réduction des bruits lors de la conversion Pour réduire au maximum la précision de la conversions on pourra :

e Mettre en sommeil 'unité centrale avant le lancement d’une conversion.

Découpler soigneusement l'alimentation AV.. avec des condensateurs.

Regles élémentaires du routage : connexions courtes, plan de masse, ...
e Effectuer un filtre numérique des résultats (amortissement ,moyenne, ...).

e Pour minimiser le bruit on peut ajuster la tension de référence

Ajustement de la tension On peut ajuster la tension de référence : La valeur minimale de conversion est GN D tandis
que a valeur maximale est soit la tension sur la broche AREF' soit le tension sur la broche AV,. ou bien une tension interne
de 2,56 V (cf bits REF'S,,).

Choix de I’entrée a convertir Chacune des 6 broches d’entrée ADC peuvent étre choisies comme des entrées simples de
I’ADC . De plus, ’ADC contient un mécanisme d’échantillonneur-bloqueur qui assure que I’entrée est tenue constante pendant
1,5 cycle d’horloge.

ADCL doit étre lu en premier puis ADCH pour assurer la cohérence des données qui appartiennent & la méme conversion.
Une fois ADCL lu, laccés aux registres de commandes est bloqué afin d’empécher une nouvelle conversion tant que ADC H
n’est pas lu. Quand ADCH est lu, ’ADC est & nouveau opérationnel. I’ADC a sa propre interruption qui peut étre déclenchée
quand une conversion est achevée. La lecture de TADCL et ’ADCH interdit 'accés aux registres de commande de ’ADC,
mais si une interruption de fin conversion se produit alors que la lecture précédente n’a pas été encore faite le résultat sera
perdu. Il faut donc faire attention a lire rapidement un résultat de conversion.

Programmation

L’ensemble des registres a programmer PADC est ADMUX, ADCSRA, ADCH, ADCL, étudions d’abord ADCSRA :

ADEN | ADSC [ADFR [ADIF | ADIE | ADPS2 | ADPSI | ADPS0 |

L’ADC est activé avec le bit ADEN a 1.

e [’ADC est déclenché par ADSC a 1.

e La référence de tension et le choix du canal d’entrée n’entrera pas en vigueur quand ADFE /N est mis a 1, il faut d’abord
désactiver ADEN.

e ADC produit un résultat sur 10 bits qui est présenté dans les registres ADCH et ADCL .

e Par défaut, le résultat est présenté ajusté a droite, mais peut facultativement étre présenté ajusté a gauche en mettant le
bit ADLAR aun dans ADMU X . Pour un résultat sur 8 bits avec un ajustement a gauche, on ne lit alors que le registre
ADCH .

Cycle de conversion

Début d’une conversion Une conversion simple est lancée en positionnant ADSC & 1.
Si 'on change le canal tandis qu’une conversion est en cours, ’ADC finira la conversion actuelle avant ’exécution du
changement de canal.

Durée d’une conversion Une conversion normale prend 13 cycles d’horloge.

Fin de conversion Dés lors, qu'une conversion est en cours, 4D SC reste & un tant que la conversion se réalise et il redescend
a 0 quand la conversion est achevée. Quand une conversion est finie, le résultat est écrit dans les registres de données ADC H
et ADCL et ADIF est mis a 1. ADCL doit étre lu en premier puis ADCH. Une fois que ADCL est lu, 'accés aux registres
est bloqué afin d’empécher une nouvelle conversion. Quand 'ADCL et ADCH sont lus, alors P’ADC est & nouveau étre
opérationnel.

Le programme peut alors lancer ADSC' de nouveau et une nouvelle conversion sera amorcée sur le premier front montant
de I’horloge.

23

2.2.2 Les différentes méthodes de programmation d’une conversion
Conversion échantillonnée

Pour réaliser une conversion échantillonnée, on doit utiliser un timer qui va définir une période d’échantillonnage. On va
associer a une interruption de débordement de ce timer dans laquelle on va déclencher la conversion analogique-numérique.
Un exemple de codage est donnée dans la section suivante (cf section 2.2.3).

Free Running mode : Mode de fonctionnement libre

Dans ce mode, on n’utilise pas d’interruption et 'ADC échantillonne en permanence, sans aucune action du programmeur
autre que le lancement initial et la mise a jour les registres de données (ADCH et ADCL) est automatique. Ce mode est
positionné par la valeur 1 dans ADFR € ADCSRA. La premiére conversion doit étre lancée par ADSC € ADCSRA. Dans
ce mode ’ADC effectue des conversions sans se préoccuper du flag d’interruption ADIF. Un exemple de codage est donnée
dans la section suivante (cf section 2.2.3).

Conversion avec attente active

L’attente active est du au fait que, aprés avoir lancée la conversion par ADSC, on realise une boucle qui attend que ADSC'
retombe & zéro. Un exemple de codage est donnée dans la section suivante (cf section 2.2.3).

Aspects numériques Par défaut, la fréquence d’horloge d’entrée est entre 50 kHz et 200 kHz pour obtenir la résolution
maximale. Si une résolution plus basse que 10 bits est nécessaire, la fréquence d’horloge d’entrée de I’ADC peut alors étre plus
haute que 200 kH z.

Temps de conversion Le temps de conversion qui est égal & 13 fois I’horloge systéme, peut, de plus, étre multiplié, par un
facteur de pré-division (cf bits ADPS>_g). Le pré-diviseur produit une fréquence d’horloge acceptable pour PADC a partir de
celle du Control Process Unit (CPU). La mise en marche pré-diviseur se fait en positionnant une valeur sur les bit ADPS €
ADCSRA et le pré-diviseur commencera a compter dés que ’ADC est allumé en mettant le bit ADEN a1 .

Les bits ADPS2, ADPS1, ADPS0 sélectionnent 1’horloge :

ADEN
STARTE Prédiviseur 7 bits de ’ADC

CK

clk/2

clk/4

clk/8
clk/16
clk/32
clk/64
clk/128

ADPS, —
ADPS; ——
ADPS; ~ —

Horloge de l’ADCl

Figure 2.3: Pré-diviseur

2.2.3 Les Registres de ’ADC : ADMUX, ADCSRA, ADCH, ADCL
e ADMUX

[REFS, | REFS, | ADLAR |- | MUX;

MUX, | MUX, | MUX,

24

— REFS1,REFS,

REFS1 REFS0 Tension de Référence
0 0 AREF
0 1 AV.. avec capacité externe sur AREF
1 0 non utilisé
1 1 2,56 v

— ADLAR : ADC Left Adjust Result Ajustement a gauche & 1 ou a droite & 0 du résultat dans le registre ADCL et
ADCH.

— MUX535 1 : Choix du canal ADC .

e ADCSRA

| ADEN | ADSC [ADFR | ADIF | ADIE | ADPS, [ADPS, | ADPS,]

— ADEN : (AD ENable) Mise en marche du convertisseur avec la mise a 1 du bit, Uarrét avec la mise a 0, la conversion
en cours sera terminée.

— ADSC': (AD Start Conversion) Lancement de la conversion de la voie sélectionnée (retourne & 0 en fin de conversion).
En mode simple conversion, il faut remettre & 1 & chaque nouvelle conversion. En mode libre, la premiére conversion
dure 25 cycles puis les suivantes 15, il n’est pas nécessaire de remettre le bit & 1 & chaque conversion.

— ADFR : (Analog Digital Free Running mode) La mise a 1 de ce bit permet de mettre en le convertisseur en mode
conversion libre : mode de fonctionnement ou les conversions ont lieu en permanence sans avoir besoin dus re-lancer.

— ADIF : (AD Interrupt Flag) Passe a 1 une fois la conversion terminée et déclenche Pinterruption si AD/F=1. Ce
bit repasse automatiquement & 0 lors du traitement de la routine d’interruption.

— ADIFE : “AD Interrupt Enable” : Validation de I'interruption du convertisseur.

— ADPSs, ..., ADPS, : Bits de Sélection du facteur de pré-division de 1’horloge interne du convertisseur en fonction
du quartz (cf figure 2.3)

e ADCH — ADCL:

— Avec ADLAR = 0 : On cherche un résultat sur 10 bits

[- [- 1T - T - T - T - T1TA4ADG, [ADCq |
[ADC; | ADCs | ADC; | ADCy | ADCs | ADC, | ADCy | ADCy |

int L = ADCL;

int H = ADCH;

int res = (H<<8)+L;

— Avec ADLAR =1 : On cherche un résultat sur 8 bits en laissant tomber ADCL

[ADC, [ADCs | ADC; | ADC, | ADCs | ADC, | ADCs | ADC, |
(ApC [ADG [- [- [- [- [- [- |

int res = ADCH;

Programmes relatifs a ’ADC

-1- Mode scrutatif : on réalise des conversions en mode mode "attente active".

25

volatile int lu; // wvariable globale

void lecture_analogique_scrutative (){
ADCSRA |= (1<<ADSC);
while (ADCSRA & (1<<ADSC)) {3};
lu=ADCH; // lecture sur 8 bits

}

int main(void){
DDRB=0x1F; DDRC=0x00; // C : entree, B : Sortie
ADMUX=(1<<ADLAR); //ajust Gauch, PCO entree analog.
ADCSRA= (1<<ADEN); // Mise 0On ADC
do {
_delay_ms (200) ;
lecture_analogique_scrutative () ;
} while (1) ;
return (0) ;

-2- Mode échantillonné : on réalise ici, un déclenchement échantilloné par le timer 1, de la conversion analogique

volatile int F;
ISR(ADC_vect){char L=ADCL;F=ADCH; }
ISR(TIMER1_OVF_vect) {ADCSRA |= (1<<ADSC) ; PORTB~=1;}

int main(void){
DDRB=0x01 ; DDRC=0x00;
ADMUX=(1<<ADLAR); // ajust Gauche, Lecture sur PCO
ADCSRA= (1<<ADEN)+(1<<ADIE) ; // mise ON du can, IT CAN
TCCR1A=0; TCCR1B = (1 << CS11); // prediv du \timer\| Fcpu/8
TIMSK = (1<<TOIEl1); // Validation It de debordement */
sei(); // toute les its autorisees
do {

PORTB~=1; _delay_ms (50) ;

}while (1) ;
return (0) ;

-3- Free Running : On lance ’ADC une seule fois, puis on lit a la volée ADCH et ADCL.

int main(void){
int H,L;
DDRB=0x01; DDRC=0x00;
ADMUX=(1<<ADLAR) ;
ADCSRA= (1<<ADEN) + (1<<ADSC)+ (1<<ADFR);

do {
PORTB~=1;
delai (50) ;

L=ADCL; H = ADCH;
Res = (H<<8)+L;
} while (1) ;
return (0) ;

3

26

-4- Mode beuggué : Sans timer relance de '’ADC dans l'interruption de conversion. Le programme principal n’a plus le
temps de s’exécuter.

volatile int F;
ISR(ADC_vect){F=ADCH; ADCSRA |= (1<<ADSC)} // Aie !1!!

int main(void){
DDRB=0x01; DDRC=0x00;
ADMUX=(1<<ADLAR); // ajust Gauche, Lecture sur PCO
ADCSRA= (1<<ADEN)+(1<<ADCS)+(1<<ADIE); // mise ON du can, IT
CAN
sei(); // toute les its autorisees
do A
PORTB~=1; _delay_ms (50) ;
}while (1) ;
return (0) ;

27

Chapter 3
Les Timers

Les fonctions d’un timer concernant d’abord les fonctions de temporisation avec la définition de base de temps, la génération
de formes (signaux carrés, MLI) ansi que le comptage d’événements. Un timer permet aussi de mesurer un temps entre deux

événements.
Dans la figure suivante (figure 3) nous illustrons une base de temps et la génération de formes et le comptage d’événement.
Pour le comptage, la troisiéme partie de la figure 3 indique que I'on peut compter des fronts qui viennent de la patte 77.

I O

Base de temps

LT,

Forme périodique, M LI

Comptage d’événements

ﬂ Détecteur de front
\% Controle logique

(LTI Ter

TCNT

AT M EGAg posséde 3 timers : timer 0, timer 1 et timer 2. Les timers 0 et 2 sont des timers 8 bits tandis que les timers
1 est un timer 16 bits. Le timer 2 est plus élaboré que le timer 0, il permet en plus de faire de la MLI et de produire une
interruption de comparaison.

Drapeaux : Un drapeau n’est pas un bit au sens usuel. Il a pour role de signaler un événement et est généralement associé

a une interruption. Ce qui le distingue d’un bit est qu'un drapeau ne peux pas étre mis a un ou remis a zéro de facon simple.

Dans VAT M EG Ag, le registre TIF R contient 7 drapeaux qui correspondent & des interruptions liées aux timers 0,1 et 2.
TIFR

| OCF, [TOV, | ICF, [OCFi4 [OCFig [TOVA | - [TOV,

e OC'Fy: "Output Compare Match Flag T5"
o T'OV5: "TiOutput Compare Match Flag To"

28

e /C'Fy: "Input Capture Flag T1"

— Ce drapeau regoit un quand la patte /C'P; regoit un front.

— [C'Fy est raz quant I “interruption est exécuté.
e OCF1,/p: "Output Compare A ou B Match Flag T1"
— Ce drapeau recoit un lors de ’égalité de OCRlg et TCNTj.

— OCF B est raz quant I'interruption est exécuté.
e 7OV, 5: "Timer Overflow T7 0"

— TOV) est mis & un sur un dépassement de capacité

— TOV, g est raz quant Iinterruption est exécuté.

3.1 Le timer O

3.1.1 Caractéristiques
Ses fonctions de base
e timer a sortie unique

o Générateur de fréquences

Comptage d’événements externes

Pré-diviseur d’horloge 10 bits

Le timer 0 se manipule a ’aide de seulement 3 registres :

— TCNT,
— TCCR,
— TIMSK

Apercu global du timer 0 Le timer 0 est un timer 8 bits. Un débordement provoque 1'événement TIM ERO OV F _wvect
et la mise & un du drapeau 7OV} (dans le registre TIFR) et possiblement une interruption se produit. Le masquage ou
I’autorisation de cette interruption est réalisé par le bit 7'O1 FE du registre TIMSK . Comme le montre le schéma précédent
TCNTy s'incrémente par la patte externe timer 0 ou bien le prescaler (pré-diviseur d’horloge). Ce choix étant fait par les bits
(:VASV(JQ;L) S TCCRQ

Source d’horloge

Détecteur de front
Prescaler /\>1>

TCCRy

Controdle du prescaler

Controle logique TOVy It débordement timer 0

top

++

TCNT

Figure 3.1: Apercu de timer 0
Suivant la fréquence clkTj, le bloc logique provoque l'incrément du registre TCNTO0. Et lorsque TCNTj atteint la valeur

0z F'F il repasse & la valeur 0 et dans le méme temps le bit 7701}, passe & un. 7°0OV} agit comme un 9™ bit. Si une interruption
a 6té mise en place alors ce bit est remis a zéro (raz) lors de 'exécution du sous-programme d’interruption associé.

29

3.1.2 Les registres qui pilotent le timer 0 : TCCR0, TCNTO0 TIMSK
e TCCRy

[-T-T-T-T-1CS00; [CS00: [CS0 |

A\
wn
o
~
Q
W

Description

To en pause
clkr;o » Horloge Systéme
clkrjo/8
clkr;o0/64
clkr;0/256
clkr;0/1024

source externe : front descendant sur la patte 70

—= === O O O O
— R O O R ~ O O
_ O R O Rk O Rk O

source externe : front montant sur la patte 70

Remarque 3.1.1 Si, par ailleurs, la patte Ty est utilisée en entrée, alors un front sur cette patte affectera quand méme
timer 0 si les modes 6 ou 7 ont été choisis.

e TCNTy : Accessible en lecture ou écriture : Registre de comptage courant.

e TIMSK

[OCIE, | OCIE, | TICIE, | OCIE4 | OCIE,z

TOIE, | - | TOIE, |

La condition d’autorisation de V'interruption de débordement de timer 0 est TOIEy = 1ET I = 1 €SR). Sur un
débordement de TC'NTj, on a :

— TOV, € TIFR qui passe & un, et le programme associé a l'interruption est alors exécuté.

— T OV est alors automatiquement remis & zéro dés le début du sous-programme d’IT.

Sinon en mode non interruptif, c.a.d. en mode scrutatif il faut remettre a zéro ce bit EN Y ECRIVANT UN "1".

Exemple d’utilisation du timer zéro avec la mise en place d’une interruption de débordement. Dans ce exemple, la variable
compteur sert & diviser la fréquence de commutation du port B par 50.

ISR (TIMERO_OVF_vect) {
static int Compteur;
if (Compteur++ == 50) {
Compteur=0;
PortB~=1 // permet de mesurer la periode
¥
}

void configTimer0 (){

TCCRO = (1<<CS02) + (1<<CS00) ; // clkio/102/4

TIMSK = 1<<TOIEO; // Autorisation IT de debordement
}

int main() {
DDRB=0xFF ;
configTimerO () ;
sei(); // autorise ttes les interruptions
while (1) ;

30

3.2 Le timer 1

3.2.1 Caractéristiques générales
Ses fonctions de base

Le timer 1 de PATM EG Ag posséde 16 bits, il posséde 2 sorties indépendantes OC'1A et OC1B, sur lesquelles il peut générer
16 formes d’ondes différentes dont 12 MLI. De plus, il a une entrée de capture /C'P1, avec annulation de bruit, lui permettant
de compter des événements externes. Il a aussi 4 sources d’it 7OV, OC'Fy 4, OCF g, ICF}

La figure suivante illustre tous les éléments et registres du timer 1 :

Edge TOV;
detector
Controle log; B
ontrole logique
Prescaler de clkio J
t
op bottom
TCNTy
/]\
= ——
A i~

OCRA VAN

Générateur ==
de MLI ! 4
: Top A
|
- __ --- OCRy4
OCF\B
. 4

Générateur i __
do NILI ;

OCR;B
ICF, o ____ .
Noise | ICR;
canceller detector
Analog.
Comp.
Output
TCCRyp TCCR14

Registres & programmer pour le pilotage du timer 1

Figure 3.2: Apergu de timer 1

31

Les registres 16 bits
e le registre de comptage TCNT}
e les registre de sortie de comparaison : OCRy4 - OCR1p

e le registre de capture d’entrée IC'R;

les registres 8 bits

e Les registres de contréle du timer TCCRy14 -TCCR1p

e le registre de sortie de comparaison : OCR14 - OCR1p

o le registre de capture d’entrée IC' Ry
Les interruptions du timer 1 : Tous les signaux d’I'T sont visibles depuis T1TF R. Toutes les interruptions sont masquables
individuellement dans TIMSK Les 4 I'Ts du timerl sont :

e TOV, : Interruption de débordement du 1 ;

o OCF'1, : Interruption de égalité entre TCNT; et OCR1 4 ;

o OCF1p : Interruption de égalité entre TCNT; et OCRl1p ;

o [C'Fy : Interruption de capture de front sur /C'P; ;
Ces signaux d’interruption sont visibles dans avec des drapeaux contenus dans TIFR. De plus, ces interruptions sont
masquables individuellement dans TIMSK.

TIMSK Ce registre regroupe toutes les interruptions liés aux timers 2,1 et 0.

OCIE; TOIE,; TICIE, OCIE;A OCIE\B TOIE, — TOIEy (TIMSK)

e T JCIFy: "Timer 1, Input Capture Interrupt Enable" Dés que T/CTFE; et I sont & un, Uinterruption de capture est
activée. L’interruption ad hoc est alors exécutée lorsque /C'F'1 + 1

e OCIFEL, p: "Timer 1, Output Compare A /B Match Interrupt Enable". Dés que OC' /1 4,5 et [sont a un, l'interruption
de comparaison est activée. L'interruption ad hoc est alors exécutée lorsque OCF'1 4,5 1

o TOIFE,)y : "Timer 1/0, Overflow Interrupt Enabled" Dés que 7O/,), et I sont a un, l'interruption de débordement
est activée.

Controle de TCNT;: TCNT; peut étre incrémenté ou décrémenté de fagon interne par le prédiviseur ou par une source
externe patte T7. Le bloc logique détermine comment la source est utilisée pour incrémenter ou décrémenter TC' NT;. Le timer
1 est inactif quand il n’y a aucune source. La source clkT; de la figure (en haut a droite de la figure ??) est sélectionnée par
05’12 , € TCCR;B.

Source d’horloge

Détecteur de front
Prescaler /\4>

TCCRp

Controéle du prescaler

Controle logique TOV; It débordement

top

[T TR verr

Figure 3.3: Controle du comptage du timer 1

32

Le choix de la valeur maximum de TCNT; : La valeur TOP est soit le maximum du timer (0zFFFF) ou bien une
valeur définie dans IC'Ry ou OC' Ry 4. L’utilisation de OC' Ry 4 pour définir la valeur TOP, bloque la génération de PWM pour
la sortie OC'1A. Lorsque 'on utilise IC' Ry pour définir la valeur TOP les deux sorties PWM sont alors disponible (OCR; 4 et
OCR;), par contre l’entrée de capture n’est plus disponible.

BOTTOM BOTTOM = 0x0000
MAX MAX =0xFFFF
TOP TCNT; atteind TOP

c.a.d quand il atteint soit :
— 0xFF, Oz1FF, 0z3FF
— OCRI1A, ou bien ICR;

Comparaison de seuil : Les deux registres de comparaison OCR14 - OCR;p sont utilisés comme des seuils qui sont
comparés avec TCNT;. Le résultat ces comparaisons peut étre utilisé pour générer une forme de type PWM ou bien une
fréquence variable sur les pattes OC1p, OC15. Ces comparaisons d’égalité vont positionner les flags OCF, 4 ou OCF, 5 qui
peuvent alors étre utilisé pour générer I'interruption correspondante.

Unité de capture

L’unité de capture peut capturer des événements externes en leur attachant une étiquette temporelle ! attachée a cette
occurrence. Le signal externe indiquant ’occurrence d’un ou de plusieurs événements est disponible sur la patte /C'P; ou par
le comparateur analogique. Les étiquettes temporelles peuvent étre utilisées pour calculer une fréquence, un rapport cyclique
ou d’autres. Ces étiquettes temporelles sont parfois utilisées pour créer un "log" d’événements.

Apercgu de I’Unité de Capture Quand un événement (front) se produit (cf figure ??) sur /C'P1, ou sur ACO, ce signal
passe par le réducteur de bruit et le détecteur de front. Si il passe cet étage, il déclenche I'écriture de TCNT; dans ICRy,
TCNT; constitue alors ce que 'on appelle une étiquette temporelle. Dans le méme temps le drapeau /C'F} passe & un.

ICR, TCNTy
WRITE

Annul. Détect. ICF
de bruit de front
Sortie

Comp.
Analog.

Figure 3.4: Capture d’événement

En mode interruptif, Si 7/C'I F/; passe & un, une interruption de capture est déclenchée. IC'F; est automatiquement remis
a zéro dans le sous-programme d’IT.

Remarque 3.2.1 ICRine peut étre mis a jour que lorque l’on utilise le mode qui utilise IC Ry fizant la valeur TOP. Dans
ce cas, les bits WG M 13, doivent étre positionnés avant que IC Ry soit initialisé avec la valeur TOP. On écrira dans IC Ry
d’abord octet de poids faible puis le poids Fort.

1qui est la valeur courante de TCNTy

33

La source de capture : La patte de capture est ICP1. Cette source peut aussi étre connectée au comparateur analogique.
Le comparateur est sélectionné avec le bit AC'7C' du registre AC'S.

Remarque 3.2.2 Attention, changer la source peut provoquer une capture, le flag [C'I' doit donc étre raz aprés ce changement.

Les pattes IC'P; et la patte de sortie AC'O sont échantillonnées avec les mémes techniques déja évoquées : Le détecteur de
front est identique. Quand le réducteur de bruit est activé, de la logique est rajoutée avant le détecteur de front ce qui ralentit
le signal de 4 cycles d’horloge. Une entrée de capture peut étre déclenchée par programme en contrélant le contenant
la patte IC'P1.

Réducteur de bruit C’est en fait un filtre numérique qui délivre la sortie ssi les 4 signaux échantillonnés consécutifs sont
égaux. Le réducteur est activé par le bite /C'NC'; du registre TCCR; 5.

Capture des événements Tout événement capturé écrase le précédent méme si il n’a a pas été traité par le CPU. Aussi,
dans un sous-programme d’interruption il faudra lire ICR; au plus t6t. On prendra garde & ne pas changer la valeur TOP
lors de l'utilisation de capture. Lors de la mesure d’un signal de type PWM | la détection est changée aprés chaque capture
et cela doit donc étre fait aussitot que ICR; a été lu.

Fonctionnement de I’Unité de Comptage

Le registre TCNT est piloté par le bloc logique via les signaux clear, increment ou decrement et part la source clkTy. clkT}
peut étre généré par une source externe ou interne selon les bits /512 : 0. Quand C'S12 : 0 = 0, le timer 1 est arrété, la valeur
de TCNT; étant toujours accessible par le CPU. Une écriture par le CPU sur TCNT} a la priorité sur toute autre opération.

La séquence de comptage peut alors déterminer une forme d’onde (waveform) sur la patte OC1A selon les bits WG M 15,
des registres TCCR14 et TCCR;p. Les formes d’onde dépendent en fait des modes de comptage (cf section 3.2.3) sur TCNT.
Le bit de débordement 7'OV; dépend aussi du mode choisi sur WG M 13.0.

Unité de Comparaison de sorties

Les sorties OC'1A/B sont controlées par les bits COM 1x1 : 0. Un de ces bits & un provoque la sortie du générateur de forme.

r—

COM1z
comn, | Générateur
_ de formes = Q
OCly,p
D Q—
PORTg
D Q
DDRp
Clkio

Figure 3.5: Comparateur

34

La figure indique que le port doit étre configuré en sortie a ’aide du registre DD Rp et que la sortie sur les pattes OC1A
ou OC'1B deviendrons une sortie du générateur de forme (a la place de PORT5) en fonction des modes de comparaison défini
par COM 1x1 : 0, ainsi que du bit F'OC,.

3.2.2 Les 16 modes du timer 1

Les 4 bits WG M 13,9 permettent de définir 15 modes (le mode 13 est inutilisé) regroupés 5 catégories :

e 1 mode Normal

e 2 mode Clear To Compare

e 5 modes PWM rapide

e 5 modes & phase correcte PWM

e 2 modes a phase et fréquence correcte PWM (MLI centrée)

3.2.3 Les 16 Modes du générateur de formes : 1/'G'\ /15,

a) Le mode Normal : WG 15,,=0000

Dans ce mode, le compteur s’incrémente (cf figure 3.2.3) jusqu’a la valeur TOP=0xFFFF et recommence & BOTTOM =0x0000,
tov] passe alors a 1. Ce mode ne sert pas & générer une PWM, mais il est plutot utilisé pour générer une IT de débordement
ou une it d’égalité avec un seuil défini dans le registre OC' Ry 4. 1l peut aussi étre utilisé pour dater des captures d’événements.

Timer 1 en mode normal : IT de débordement possible sur les TOP

TCNT,

>t

b) Le mode Clear Timer on Compare Match (CTC) WG A 15, = 0100 ou 1100

Dans ce mode, OCR14 (mode 4) ou ICR; (mode 12) peuvent définir TOP. Le compteur s’incrémente puis est raz quand
il atteint TOP puis il recommence. Des its de débordement ou d’égalité sur seuil peuvent étre mises en place.

Dans le cas ou OC'1A a été déclarée en sortie (DDRB) et que COMI1AL : 0 a été positionné a 10 alors on se place Cette
patte va alors commuter & chaque fois que le compteur atteint TOP. (Voir la table Table 3.1 (hyperlien) pour le positionnement
des bits com1x1:0)

Mode CTC: Commutation de OC;g sur TOP

TCNTY 4

N 1 [.

35

c¢) Le mode Fast PWM : WG M 15.,=5,6,7,14 ou 15

Cette PWM a simple pente permet de générer des PWM deux fois plus rapide. Ce mode peut étre utile pour les applications
de regulation de puissance, ou de conversion numérique-analogique. TC' NT; compte de BOTTOM & TOP et recommence a
partir de BOTTOM .

Comme l'indique la figure (Figure 3.2.3 (hyperlien)), en mode non inversé, lorsque TCNT; atteint le seuil OCRy 4, OC1 4
est raz sur égalité de seuil et set 8 BOTTOM. Des its de débordement ou d’égalité sur seuil peuvent étre mises en place. TOP
peut étre défini avec les valeurs 0x00FF, 0x01FF, or 0x03FF (mode 5, 6, ou 7) ou par ICR; (mode 14) ou bien par OCR; 4
(mode 15). Utiliser /C'Ry pour définir le TOP permet d’utiliser OC Ry 4 comme registre de seuil et de générer une PWM sur
OC1x. Positionner les bits comlzl: 0 (voir la table Table 3.2) permet de définir un mode inversé (ou non). La PWM est
obtenu par des set ou des raz de OC'lx

NB : On peut générer un front étroit en mettant OCR1, & BOTTOM. En mettant OCR;, & TOP on a un niveau haut.

—: Egalité de comparaison de TCNT; avec OCR1p

TCNTy 4

e 1] g

Figure 3.6: Chronogramme du mode Fast PWM

feiky 0

Fréquence Dans ce mode la fréquence est définie par : foc, ,pwam = N.(TTOP)

ou N représente le facteur de prédivision (1,8,64,256,1024)

c) Le mode PWM a phase correcte W GM15,=1,2,3,10 ou 11

Ce mode permet d’obtenir une haute résolution de PWM & phase correcte. On est, cette fois ci, sur du double pente
avec comparaison de seuil. Le compteur compte de la valeur BOTTOM & TOP puis il décrémente jusqu’a BOTTOM et
recommence indéfiniment. TOP est défini par les valeurs 0x00FF, 0x01FF, ou 0x03FF (mode 1, 2, or 3), ou bien par ICR; en
mode 10, ou encore par OC R4 en mode 11.

Instant de commutation de OC'1, Les instants de commutations correspondent aux moment ou le registre OC R, est égal
a TCNT;. On aura le méme principe pour le mode suivant (Phase et fréquence correcte). On voit ces instants de commutation
dans la figure 7?7 ou les événements se produisent lors des montées et des descentes :

e En mode non inversé, OC'1, est raz sur I'égalité de TCNT; avec OCR;, en comptant, et mis & un sur ’égalité de
TCNT; avec OCRy, en décomptant.

e En mode inversé, OC'l, est mis & un sur I'égalité de TCNT; avec OCR;, en comptant, et raz sur ’égalité de TCNT}
avec OC Ry, en décomptant.

(cliquer sur le lien Table 3.3 pour le positionnement des modes inversés ou non inversés)

Remarque 3.2.3 La différence avec le mode “Phase et fréquence correcte” se situe dans la mise a jour de OC Ry, . En phase
correcte OCRy, et TOP sont mis a jour sur TOP. Cela signifie que si OCRy, est modifié pendant une pente, sa nouvelle
valeur n’est prise en compte que sur le prochain TOP.

36

En application de cette remarque, on peut voir sur la figure 3.2.3 sur le quatriéme triangle on a changé OCR;, et il est pris
en en, compte apres le top sur la pente descendante.

Ce mode a double pente et son caractére symétrique (MLI centrée) le rend plus utilisé dans les applications de commande de
moteurs. Pour des valeur de TOP statiques les modes phase correcte et phase et fréquences correctes sont presque identiques.
Cependant, si I’on veux changer T'OP alors il vaut mieux utiliser le mode phase et fréquence correcte. En mode phase correcte
il y a des asymétries dues, & la remarque précédente, qui apparaissent lors du changement de TOP si la nouvelle valeur est
inférieure & I’ancienne.

TOV; est positionné sur débordement du compteur et peut étre utilisé pour declencher une it. Une autre it est celle de
comparaison sur égalité de seuil.

— : Egalité de comparaison avec de TOP avec OCR1p

TCNTy 4

|
|
|
|
T
|
|
|
|
A~ h
|

e I

>t
Figure 3.7: Chronogramme du mode phase correcte
Fréquence Dans ce mode la fréquence est définie par : foc, ,ropwm = %
ou N représente le facteur de prédivision (1,8,64,256,1024)
Mode inversé ou non En positionnant les bits COM 121 : 0 & 2 on aura du non inversé. En positionnant les bits COM 121 : 0

a 3 on aura de I'inversé. (consulter la table Table 3.3 pour le positionnement des modes inversés ou non inversés)

d) Le mode PWM a phase et fréquence correcte : "MLI Centrée" WG M 15, = 8 ou 9

En mode non inversé (cf figure suivante) les sorties OC1A et OC'1B sont remises & zéro sur 1"égalité entre TCNT; et
OCR;1, en comptant et mis & un sur égalité en décomptant. En mode inversé c’est I'inverse.

Remarque 3.2.4 OCR;, sont mis a jout sur BOTTOM. Cela signifie que si OCR1, est modifié dans une pente alors sa
nouvelle valeur n’est prise en compte que sur le prochain BOTTOM.

L’opération en double pente donne une fréquence minimum plus basse comparée a celle en simple pente. Cependant son
caractére trés symétrique en fait le mode le plus utilisé en terme de contréle moteur.

37

Egalité de comparaison avec OCR1p

TCNTy 4,

OCp

Figure 3.8: Mode Phase et fréquence correcte

Au contraire du mode précédent il y a une symétrie dans le signal quand on examine sa période. De plus, OC1x ne sera
visible sur que si il a été programmé en sortie via DDRp.

Inversé/non inversé En positionnant les bits COM 121 : 0 42 on aura du non inversé. En positionnant les bits COM 121 : 0
a 3 on aura de l'inversé.

fclkI/o
2.N.(1+TOP)

ou N représente le facteur de prédivision (1,8,64,256,1024)

Fréquence Dans ce mode la fréquence est définie par : foc,,Propwm =

3.2.4 Inventaire des registres utiles au timer 1

Le registre TCC R4

[COMia, [COMyao | COM i | COMip | FOCi4 | FOC1p

WGMy, | WGMyg

COM1x1 COM1x0 Description
0 0 P libre OC'1z déconnectés
0 1 changement d ’état quand OClx = TCNT1
1 0 raz sur égalité
1 1 mis & un sur égalité

Table 3.1: Mode normal et CTC

COM1x1 COM1x0 Description
0 0 P libre OC'1, déconnectés
0 1 WGM15.9 =15

OC'1 g4commute sur égalité

OC1p déconnectés

1 0 raz OC'lx sur égalité
mis & un sur BOTTOM
1 1 mis a4 un sur égalité

raz sur BOTTOM

Table 3.2: Mode Fast PWM

38

COMI1A, | COMI1A4,

COM1B; | COM1B, Description
0 0 P libre OC'1, déconnectés
0 1 OC1 4 commmute sur égalité, OC'1 3 déconnecté
0 raz OC'1, sur égalité en incrémentant

mis 4 un en décrémentant sur égalité

1 1 mis & un sur égalité en incrémentant

raz sur égalité en décrémentant

Table 3.3: Mode phase correcte et phase et fréquence correcte

Bits FOC1, Ces bits FOC'l, ne sont actifs que si on n’est pas en PWM mode. Cependant ces bits doivent étre raz en
PWM mode. FOC1,4+ 1 force a U'instant choisi, une comparaison entre TCNT; et OCR;4 (par ex.). Ce sont des bits
d’échantillonage. En lecture ces bits valent zéro.

WGM1,., Waveform Generation Mode Ces bits déterminent le sens du comptage, TOP et le type de forme et on 'a
vu précédement, ils déterminent aussi le mode : normal, C'T'C, et les trois modes PWM :

e PWM rapide : Fast PWM
e PWM a phase correcte : Phase correct PWM .
e PWM a phase et fréquence correcte : Phase and frequency correct PWM .

Le registre TCCR1p
[ICNC, [ICES, [- | WGMT; | WGMI, | 051 | O [O |

ICNC, : Réduction de bruit La réduction de bruit se fait par /CNC : Input Capture Noise Canceler. Si /CNC, «+ 1
cela active le réducteur de bruit de I’entrée de capture.

Quand le réducteur de bruit est activé l'entrée de capture /C'P; est filtrée. Le filtre affecte sa sortie si on a 4 sorties
successives égales ce qui induira un délai de 4 cycles d’horloges.

ICES, : La sélection du type d’événement La sélection du type d’événement se fait par /C'FS; : Input Capture Edge
Select. Ce bit sélectionne quel type de front permet de déclencher la capture. Quand /C'S; = 0 c’est un front descendant,
lorsque /C'ES;] =1 c’est un front montant.

Quand une capture est déclenchée, TC NT} est vidé dans ICR;. [C'F'l est positionné a un et peut générer une interruption
. Quand c’est IC' Ry qui détermine T'OP alors /C' P, est déconnectée et le mécanisme de capture ne fonctionne plus.

WGM13 - 2 Waveform Generation Mode (cf 3.2.2)

Bit CS12:0 Clock Select Ces trois bits sélectionnent la prédivision : division de Cllk;, par N = (1,8, 64,256, 1024).
Les Registres TCNTy, OCR1,,ICR;

TCNT; est accessible en lecture et en écriture. Modifier TC'NT; pendant le comptage peut produire un effet indésirable
si la nouvelle valeur est supérieure aux valeurs de comparaison : on manque alors une comparaison.

OC R, les registres de comparaison contiennent une valeur 16 bits qui est continument comparée avec la valeur courante
de TCNT;. L’égalité est utilisée pour générer une interruption ou une forme sur la patte OC'1,,.

ICR; est mis a jour avec la valeur du compteur TC'NT; a chaque fois qu'un événement se produit sur la patte /C'P1 . Ce
registre peut aussi étre utilisé pour définir la valeur TOP.

Le registre TIMSK
[OCIE, [OCIE, | TICIE, | OCIE4 | OCIE.p | TOIE, | - | TOIE,

39

TICIFE;: "Timer/Counterl, Input Capture Interrupt Enable"

Quand TICTE;+ 1, le bit I du registre d’état est mis & un, toutes les interruptions sont donc globalement autorisées et
en particulier I'interruption de capture. L'interruption ad hoc est alors exécutée lorsque /C' Iy, € TIF R regoit un.

OCTFE; 4: "Timer/Counterl, Output Compare A Match Interrupt Enable" : Quand OCTFE;,+ 1, le bit / du
registre d’état est mis & un, toutes les interruptions sont donc globalement autorisées et en particulier I'interruption de
comparaison. L’interruption ad hoc est alors exécutée lorsque OC'F'1,€TITF R regoit un.

OCIE;p: "Timer/Counterl, Output Compare B Match Interrupt Enable" : Quand OCIE; < 1, le bit / du
registre d’état est mis a un, toutes les interruptions sont donc globalement autorisées et en particulier l'interruption de
comparaison. L’interruption ad hoc est alors exécutée lorsque OC' Il € TIF R regoit un.

TOIE: "Timer/Counterl, Overflow Interrupt Enable"

Quand T'OIF1<+ 1, le bit du registre d’état est mis & un, toutes les interruptions sont donc globalement autorisées et en
particulier I'interruption de comparaison. L’interruption ad hoc est alors exécutée lorsque 7OV, € TIF R regoit un.

Le registre TIF R

| OCF, [TOV, [IC, | OCFi4 | OCFip | TOV, [- [TOVy

[C'Fy: "Timer/Counterl, Input Capture Flag"
IC'Fy est un drapeau (flag) qui regoit un quand la patte IC'P1 regoit un signal. Quand IC'R; est utilisé pour stocker TOP

avec un mode de WG M 15 : 0, ICF, est positionné & un quand le compteur atteint TOP. /C'Fest automatiquement raz par
le sous-programme d’interruption est exécuté. Sinon /C'F) peut étre raz en y écrivant un un.

OCF14: "Timer/Counterl, Output Compare B Match Flag"

OC'F'1 4 est un drapeau (flag) qui regoit un quand 1'égalité de OC Ry 4 avec TC' NT; se produit. OC'F'1 4 est automatiquement
raz par le sous-programme d’interruption est exécuté. Sinon OC'F'l 4 peut étre raz en y écrivant un un.

OCF1p: "Timer/Counterl, Output Compare B Match Flag"

Ce bit est un drapeau (flag) qui regoit un quand 1’égalité de OC'R1 avec TCNTj se produit. OC'F'l ; est automatiquement
raz par le sous-programme d’interruption est exécuté. SinonOC'['1 5 peut étre raz en y écrivant un un.

TOVi: "Timer/Counterl, Overflow Flag"

Dans les modes normal et CTC modes, 7OV, est mis a un sur un dépassement de capacité 7OV est automatiquement
raz par le sous-programme d’interruption est exécuté. Sinon T'OV; peut étre raz en y écrivant un un.

40

3.2.5 Résumé des 16 modes de MLI du timer 1

v WG M3 WG Mo WG My WG Mo M ode TOP Mise a jour Mise a un
des Timers de OCR1, de T'OV,

0 0 0 0 0 Normal OzFFFF Immediate MAX

1 0 0 0 1 PWM Phase Correcte 8-bit 0z00F F TOP BOTTOM
2 0 0 1 0 PWM Phase Correcte 9-bit 0z01FF TOP BOTTOM
3 0 0 1 1 PWM Phase Correcte 10-bit 0z03FF TOP BOTTOM
4 0 1 0 0 CcTC OCR14 immediate MAX

5 0 1 0 1 Fast PWM 8-bit 0z0F F BOTTOM TOP

6 0 1 1 0 Fast PWM 9-bit 0z1FF BOTTOM TOP

7 0 1 1 1 Fast PWM 10-bit 0z3FF BOTTOM TOP

8 1 0 0 0 PWM Phase, freq. correctes ICR; BOTTOM BOTTOM
9 1 0 0 1 PWM Phase, freq. correctes OCR14 BOTTOM BOTTOM
10 1 0 1 0 PWM Phase Correcte IC R, TOP BOTTOM
11 1 0 1 1 PWM Phase Correcte OCR14 TOP BOTTOM
12 1 1 0 0 cTC ICR, immediate MAX
13 1 1 0 1 Réservé — - -

14 1 1 1 0 Fast PWM ICR; BOTTOM TOP

15 1 1 1 1 Fast PW M OCR14 BOTTOM TOP

3.2.6 Exemples d’utilisation du timer 1

-1- MLI centrée de 66% sur la patte PBo(OC1p).

int main (void) {
int 1i;
DDRB = 0x04; //PB2 en sortie

TCCR1A= (1<<COM1B1)+(1<<WGM10); //Mli centree
TCCR1B= (1<<WGM13)+(1<<CS10); // Prediv N=1
OCR1A= 532; // Fh = 15khz, Th = 66 mus
OCR1B= 361; // Ton/Thash = 0.66

while (1) {}

-2- Interruption de débordement du timer 1:

ISR (TIMER1_OVF_vect) {
static byte Compteur;
if (Compteur++ == 50) {// commuter led 1/50
Compteur=0;
PortB~=1; // clignotement PBO
}
}

int main() {
DDRB=0x01; //PB0O sortie

TCCR1A = 0; // Mode mormal
TCCR1B = 1<<CS10; //Prediv N=1
TIMSK = 1<<TOIE1; //It debordement
sei();

while (1) {2}

41

3.3 Le timer 2

Les fonctions du timer 2 sont la génération de fréquences, le comptage, le mode raz de TC' NT5 sur comparaison avec recharge-
ment automatique et la fonction génération de formes (waveform). Celle-ci permet les modes suivant :

e mode sans erreur N

e mode PWM a phase correcte ;

3.3.1 Apercu du timer 2

TOV,
Controle logique T e
top bottom '
‘ TCNT, ‘
D
= A~
3 Top
3 préfixés
0Css |
|
- | W
e [==]
SR - | OCRaA |
0OCsp
CoB
W
e =]
\ OCRap \
TCCRax | [TCOR.s || rimsk |

Figure 3.9: Apercu du timer 2

Le timer 2 est un compteur 8 bits aussi, TCNTs, OCRy sont des registres de 8 bits. Les ITs sont visibles dans TIFR
et masquables dans TIMSK. Le timer peut étre clocké de fagon interne par le prédiviseur ou de fagon asynchrone par
TOSC,, TOSC5. Cette synchronisation est controlée par le registre ASSR. Le block logique sélectionne la source d’incrémentation.
OC'R3 est comparé a tout moment & TCNT; et le test de cette égalité peut étre utilisé & tout moment pour générer des formes

42

de type PWM ou pour faire varier une fréquence sur les pattes OC54 OC5p. Le débordement génére sur une interruption par
le flag OC'F, On a BOTTOM =0, MAX = 0xF'F, de plus TOP peut étre soit M AX soit la valeur placée dans OC Ry

Controéle du comptage

TOV,

Controle logique

Count | Clear| Dirgction

‘ TCNT, ‘

1

Top Bottom

Figure 3.10: Controle du comptage du timer 2

Comptage : incrémentation ou dé-crémentation ou remise a zéro ;

clkT2 horloge d’incrément

TOP : signale que TCNT5, a atteint sa valeur haute ;
e BOTTOM : signale que TCNT; a atteint O ;

Controle de la fréquence
e (522 :0 sélectionne la clock ;
e si (S22 : 0= 0 le timer est au repos ;

o WGM2y WGEM2,e TCCR, permettent de déterminer la séquence de comptage.

3.3.2 Génération de forme : pulse, PWM,...

Les Mli sont obtenues en comparant a tout moment les registres ocr2 et tent2 :

OCRy TCNT,

Top —
Bottom ——|
FOCy; —|

Générateur
de formes

WGM2; WGM2g
Figure 3.11: Génération de formes

OCR; est un registre a buffer double en mode PWM . On n’a pas la double bufferisation en mode normal et CTC. Quand
on est en double buffer le CPU accéde au buffer de OCR; , quand ce mode est désactivé le CPU accéde au registre lui-méme.
Mise & jour du buffer et de OCR; :
La mise & jour d’OC R; est retardée au moment ou TCNTy atteint soit TOP ou BOTTOM évitant ainsi de créer des PWM
non symétriques rendant la sortie "Glitch Free".

43

En mode non PWM , on peut forcer la comparaison par FFOC, si il y a égalité OC5 prend une valeur. C’est COM?2;.
qui définissent ce qui se passe alors sur OC2 (1, 0 ou commutation). Toute écriture du CPU bloque toute comparaison avec
TCNT5; ce qui permet de positionner une méme valeur d’initialisation sur OCRs et TC' NT5 . Par contre, si on met une valeur
dans OCR;y égale & TCNT, le test d’égalité va étre perdu.

Unité de comparaison

Le schéma suivant (3.3.2) exprime que, si on a configuré le registre DDR en sortie (porte avant la pin oc2), alors la patte oc2
pourra recevoir le signal du bloc générateur de formes (ou bien PORT) :

r—

COM?2y

con, Générateur

de formes = Q

0Csy
0Csy
D Q—

PORT

D Q@

DDR
Clkio

Figure 3.12: Unité de comparaison

e (COM?24.9 controéle 2 fonctions :

— La sortie de comparaison du générateur de formes

— Ce que recoit OC; dans le cas ou I'un des deux bits est & un.
e Cette patte recoit soit :

— La sortie du générateur de formes

— soit un bit d’un , suivant la configuration du Port fixé par DDR

3.3.3 Les modes du timer 2

Les modes sont programmeés par les bits WG M 2,0 et COM24.4. Les bits COM?2;.o controlent si la PWM est inversée ou non.
Pour les modes non PWM (tel que le mode comparaison), les bits C'OM2,., controlent aussi, si OC'F, doit étre raz,mis a
un, ou commuté (toggle). Enfin, WG A2, controlent les modes.

44

Mode normal WGM2,.0=0

Dans ce mode TCNT5, s’incrémente jusqu'a 0X F'F' puis recommence depuis 0. 7OV, passe & un quand TCNT; retombe a
zero. TOV; sert alors de 91°™¢ bits, il sert aussi & déclencher une interruption . L’interruption est raz automatiquement par
I’exécution du sous-programme d’interruption et en mode non interruptif il faut faire une raz par une mise a un.

Mode Clear timer on Compare CTC : WGM2.g = 2

Dans ce mode OC R, définit le top et donc la résolution. TC'NT; est raz quand TCNT2 devient égal & OC Ry qui définit la
valeur TOP (cf figure 3.3.3).

Mode CTC: Commutation de OCy sur TOP

TCNT,

i s B e — y

Figure 3.13: le timer 2 : Mode Clear timer on Compare

Interruption: Une interruption peut étre générée a chaque TOP. Dans le sous-programme d’interruption on peut changer
le TOP. Attention : ne pas changer TOP avec une valeur & TCNT5.

fc”‘"I/O

Pour ce mode, la fréquence s’obtient par la formule : foc, = SN (ITOCR)

Mode PWM a fréquence rapide avec WGM2,.g = 3

C’est un mode a simple front. 7'OV; est mis & un quand TCNT5, atteint M AXn Uinterruption peut mettre a jour OCRs .
TCNT, compte de BOTTOM a M AX et repart de BOTTOM ; En mode non inversé, OC?2 est raz sur égalité de TCNT5 et

feikr o

OCR3 , et mis & un sur BOTTOM Pour ce mode, la fréquence s’obtient par la formule : foc,pwar = N{TOCE)

45

—: Egalité de comparaison de TC'NT; avec OC Ry

TCNT,
>t
0Cs
> i
Figure 3.14: le timer 2 : Mode PWM rapide
Le mode PWM a phase correcte
Dans ce mode WG M2,.0= 1, on a une PWM & phase correcte. Elle est basée sur un mode double front. 7OV5 est mis a

un quand TCNTy atteint BOTTOM et Vinterruption peut mettre & jour OC Ry TC N1y compte de BOTTOM a MAX et
repart de M AX jusqu'a BOTTOM ;

inversé/non inversé En mode non inversé, en comptant OC2F est raz sur égalité de TCNT, et OCR, , tandis que en
décomptant, OC5a ou OC5b sont mis & un sur sur égalité de TCNT; et OCRy . On a un mode ici symétrique : "phase

fclkI/O

n A I 3 . —
correcte". Pour ce mode, la fréquence s’obtient par la formule : foc, = SN.(ATOCH:)

—: Egalité de comparaison avec TOP avec OCRy

TCNT;, 4,

°c]

Figure 3.15: Génération de formes

3.3.4 Les registres utiles au timer 2
Le registre TCCR;
Le registre TCC Ry

[FOC, [WGM, | COM2, | COM2, | CS2, [CS2, | CS2, | TCCR, |

Bit 7 : FOC5: Force Output Compare FOC, est actif quand on est pas en mode PWM . Cependant ce bit doit étr
raz quand TCCR; est mis a jour en mode PWM . Quand F'OC54 1 une comparaison immédiate est forcée selon la valeur
des bits de COM?2,.c OC5 sera mis & jour. F'OC5 est un bit provoquant un échantillonnage.

46

Bit 6,3 : WG M2,.0: Waveform Generation Mode Ces Bits controlent la séquence de comptage, le maximum et le type
de forme :

v WGM2, WGM2y Mode TOP maj OC Ry TOVy « 17
0 0 0 Normal 0xFF Immédiatement MAX
1 0 1 PWM phase correcte OxFF TOP BOTTOM
2 1 0 cTC OCR> Immédiatement MAX
3 1 1 PWM rapide OXFF BOTTOM MAX

Bit COM2,..: Compare Match Output Mode En mode de comparaison

COM2; COM?2, description
0 0 OC', est deconnectée du P
0 1 OC5 est commutée sur égalité
1 0 OC), est raz sur égalité
1 1 OC', est mise a un sur égalité

Bit COM?2,.,: Compare Match Output Mode En mode de comparaison et PWM rapide

COM2, COM?2, description
0 0 OC', est deconnectée du P
0 1 réservé
1 0 OC', est raz sur égalité, mise a un sur BOTTOM
1 1 OC5 est mise a un sur égalité, raz sur BOTTOM

Bit 5:4 : COM2,.0: Compare Match Output Mode En mode de comparaison et PWM a phase correcte

COM2; COM2 description
0 0 OC5 est deconnectée du P
0 1 réservé
1 0 OC5 est raz sur égalité en comptant, mise 4 un sur égalité en décomptant
1 1 OC5 est mise a un sur égalité en comptant, raz sur égalité en décomptant

Bit 2:0 : CS525.9: Clock Select

CcS52, (CS2 52, description

0 pas d’horloge, le timer 2 est stoppé
1 clkr/o

0 clkrjo/8

1 clkr o0/32

0 clkr;o /64

1 clkr/o0/128

0 clkr;o/256

1 clkr;0/1024

= = = =2 O O O O

= = O O = = O O

ASSR
Le registre ASSR

[-T-T-]-TAS [TCN2Us | OCR2Ug [TCR2Ug

Bit A5,: Asynchronous Timer/Counter2 Quand A5,= 0, le timer 2 est cadencé par clk;;o Quand AS,= 1, le timer 2
est cadencé par le quartz connecté a TOSCy

47

Bit TCN2Up: Timer/Counter2 Update Busy Quand le timer 2 fonctionne en mode asynchrone, et que TCNTy est
mis a jour alors TCN2Up <+ 1. Un niveau bas sur ce bit indique que TCNT5 est prét a étre mis & jour avec une nouvelle
valeur.

Bit 1 : OCR2Upz: Output Compare Register2 Update Busy Quand le timer 2 fonctionne en mode asynchrone, et
que OCR5 est mis a jour alors OCR2Up < 1. Un niveau bas sur ce bit indique que OC Ry est prét a étre mis a jour avec
une nouvelle valeur.

Bit 0: 7C'R2U B : Timer/Counter Control Register2 Update Busy Quand le timer 2 fonctionne en mode asynchrone,
et que TCC Ry est mis & jour alors TCCR2Up < 1. Un niveau bads sur ce bit indique que TCC Ry est prét a étre mis a
jour avec une nouvelle valeur.

Definition 3.3.1 Accés auz registres "busy" Si une écriture est réalisée sur un des trois registres : TCNTy , OCRs ou TCC R,
alors que les flags correspondants sont busy alors on peut corrompre les calculs ou provoquer une interruption non désirée.

Précautions sur le passage en mode asynchrone Lors des changements synchrones-asynchrones les valeurs des registres
TCNT; , OCRy ou TCC R, peuvent étre erronées. La procédure de change vers le mode asynchrone est la suivante :

e Désactiver les interruptions relatives a le timer 2 par raz de OC'[F5 et OC'TE,
e Sélectionner la source avec AS5
e Ecrire les nouvelles valeurs dans TCNT; , OCRy ou TCCR,

e Passer en mode Asynchrone : Attendre que les bits TC'N2Uz, OCR2U; ou T'C'R2Up passe de "busy" a "libre" (valeur
0).

e raz les flags d'interruption relatifs a le timer 2
e Ré-autoriser les I'T's
e L’oscillateur est optimisé pour utiliser un quartz de 32,768 khz.

e Attention la fréquence du quartz principal doit étre au moins 4 fois supérieure a celle du quartz que 'on utliserait en
mode asynchrone connecté a TOSCh.

e Lors d’une écriture dans TCNT, , OCRs ou TCC Ro, la nouvelle valeur passe par TEM P et n’est accessible que aprés
deux fronts positifs sur T7OSC;. Il faudra a I'utilisateur scruter les bits "busy" déja évoqués avant d’écrire de nouvelles
valeurs.

3.3.5 Les interruptions du timer 2

3.3.6 TIMSK

e Bit 7: OCIFE5: Timer/Counter2 Output Compare Match Interrupt Enable
Quand OCTEy« 1 et que I = 1(€ SREG) alors linterruption de comparaison du timer 2 est active. Si une égalité
entre TCNT, et OCR;y se produit alors OC'Fy<— 1(€TIFR)

e Bit 6 : OCIE,: Timer/Counter2 Overflow Interrupt Enable
Quand TOIF>4+ 1 et que I = 1(€ SREG) interruption de débordement est active et TOV; < 1(€ TIRF)

3.3.7 TIFR

e Bit 7: OCFy: Output Compare Flag 2
OC'F54 1 quand une égalité de comparaison se produit entre TCNTs et OCR .

— OCF54 1 par le hard dans le sous-programme d’interruption.
— Sinon, OC'F54 0 en écrivant un un.

— C’est quand on a I = 1(€ SREG) et TOCTE>=1 et OCF,= 1 que le sous-programme d’interruption est exécuteé.

48

e Bit 6 :70V5: Timer/Counter2 Overflow Flag

— TOV54 1 quand un overflow se produit.
— TOV54 0 par le hard dans le sous-programme d’'IT.

— Sinon, TOV54- 0 en écrivant un un.
e C’est quand on a I = 1(€ SREG) et TOIE; =1 et TOV,5=1 que le sous-programme d'IT est exécuté.
e En mode PWM T OV, regoit un quand il y a un changement de direction a 0200

Exemple d’utilisation du timer 2 avec la mise en place d’une interruption de débordement :

#define LedToggle PortB~=1
volatile byte Compteur;

ISR (TIMER2_OVF_vect)

{ byte ij;
TCNT2 = 0;
if (Compteur++ == 50) {

Compteur=0;
LedToggle; // mesurer la periode
}
}

void configTimer2(){
TCCR2A = 0; // Mode mnormal
TCCR2B = (1<<CS22) + (1<<CS21) ; // clkio/256 est incremente toutes les 16uS
TIMSK2 = 1<<TOIE2; // TOIE2
}
int main() {
DDRB=0xFF;
configTimer2 () ;
sei(); // autorise les interruptions
while (1) ;

49

Chapter 4

La programmation en langage C

4.1 Structure de programme

Un programme C sur microcontréleur est composé de trois parties. Les entétes, les fonctions nécessaires et le programme
principal (main) qui contiendra la boucle infinie.

Y ENTETE
#define M1 Ox1F
#define maxDelai 262

Y/ FONCTIONS
void sleep(int dizaines){
int i=0;
for(i=0;i<10*dizaines;i++) _delay_ms (10) ;

int main(void)
{
DDRD = 0Ob1111011;
do A
PORTD ~=0x0F;
sleep (10) ;
} while (1) ;

4.1.1 Entéte

Sous I'IDE Arduino, il n’y a pas besoin d’inclure de bibliothéques, et par contre, on peut y définir des constantes non modifiables
ou des fichiers a inclure.

#define Max_del 262

#include "mesfonctions.c" // Inclusions de fichier c

#include "interface.h" // Inclusion de bibliotheque utilisateur
#define CommutelLed PORTB ~=0x01 // Macro qui commute PBO

50

4.1.2 Main

Un main commence par des initialisations et se termine généralement par une boucle infinie :

void fonctionl1 (){...}

int fonction2(){int a; ... ; returmn a}
int main(void)
{
DDRC = 0x00; // PORTC en entree
DDRB = 0x01; // PB0 en sortie
DDRD = 0b1111011; // PORTD en sortie, PD2 en entree
int j;
do {

sleep (10) ;

fonctionl () ;

j=fonction2();
} while (1) ;
return (1) ;

4.1.3 Fonctions

Elles apparaissent de préférence (sinon on mettra les prototypes) avant le main :

int carre(int d){return dxd;}

void sleep(int dzs){
int i=0;
int delai=carre (10) ;
for(i=0;i<10*dzs;i++) _delay_ms (delai);

3

void entier (int nbtours, int sens){
int i,3;
int Tentier [4]={1,2,4,8%};
for (j=0;j<nbtours*12;j++) {
for(i=3;i>=0;i--){

sleep(2);

PORTB=Tentier [i];
}

}

4.1.4 Déclaration de variable globales : attribut volatile

Pour les variables globales, on aura parfois besoin d’utiliser ’attribut volatile qui est une directive qui indique au compilateur
de déclarer une variable dans la RAM et non dans la zone de registres. On utilisera cet attribut quand une variable dans deux
cas :

e Quand la variable peut étre, a la fois, modifiée dans un programme d’interruption et a la fois lue dans le programme
principal. On évite alors des problémes de mise en cache et de synchronisation entre I'interruption et la boucle principale
qui font que la variable a peut étre une valeur qui ne sera pas mise a jour.

e Détection d’un changement d’état : Si vous utilisez une interruption pour détecter un changement d’état sur une broche
(par exemple, un bouton-poussoir), vous pouvez déclarer la variable de détection comme "volatile" pour vous assurer
qu’elle sera mise & jour instantanément, elle ne sera pas mise en cache.

e Attention, cet attribut dégrade par contre le temps d’accés a la variable.

51

4.1.5 Fonction de manipulation de bits

e Mise & un par masque avec opérateur “ou” |:
e Mise a zéro par masque avec opérateur “et” &:

e Inversion avec opérateur “xor” A:

// Mise a zero des 4 bits de poids faible
PORTB=PORTB & O0xFO; // ou bien
PORTB &= OxFO;

// Mise a un des 4 bits de poids faible d’un port

PORTB = PORTB | OxOF // ou bien
PORTB |= 0xFO;
// Le Pipe : 0On utilise un pipe quant on veuxr modifier un registre

// Si l’on veuxz simplement initialiser un registre on utilise l’affectation
// Mise a un du bit 4 de PORTD et seulement luti !
PORTD |= 1<<PORTD4;

//Mise a zero du bit PORTD/ et seulement lut !
PORTD &= ~(1<<PORTD4);

// Commutation du bit PORTD/ et seulement lui !
PORTD ~= (1<<PORTD4) ;

)=

4.2 Les interruptions

4.2.1 Mise en oeuvre

Une interruption se met en oeuvre par :
e L’autorisation de la source d’IT : Par exemple pour le timer 7'O/ F; pour le timer ¢, ou le AC'IE pour PADC.
e autorisation de toutes les I'Ts : sei();
e la déclaration de la routine d’interruption : Directive ISR.

La directive ISR associe une source d’interruption & une routine :

ISR(TIMERO_QVF_vect){ // routine d’interruption
PORTD = PORTD"0x10; // Commutation du but num 4

TCNTO=0;
}
int main(void)
{
DDRD = 0b1111011; // Port D en sortie, PORTD2 en entree
TCNTO= 0; // waleur initiale du compteur
TCCRO = 5; // facteur de predivision de clk/I0
sei(); // Toutes les ITs sont possibles
TIMSK |= (1<<TOIEOQ); // Validation de 1l’It de debordement
do {} while(1);
return (1) ;
}

52

4.2.2 Description des sources d’Interruptions de 'AT M EG Ag

4.2.3 Convertisseur Analogique Numérique

Nom de l'interruption

Description

ADC_ vect

ANALOG_COMP_0_vect
ANALOG_COMP 1 vect
ANALOG_COMP_2 wvect

ADC Conversion Complete

Analog Comparator 0
Analog Comparator 1
Analog Comparator 2

ANALOG_COMP _vect

ANA COMP_ vect Analog

Analog Comparator
Comparator

4.2.4 Mémoire EEPROM

Nom de l'interruption

Description

EE RDY vect
EE READY vect
EXT _INTO_ vect

EEPROM Ready
EEPROM Ready
External Interrupt Request 0

4.2.5 Interruptions externes

Nom de l'interruption

Description

EXT INTO vect
INTO _vect

INT1 vect

IO PINS vect

External Interrupt Request 0
External Interrupt 0
External Interrupt Request 1
External Interrupt Request 0

4.2.6 Interruptions Diverses

4.2.7 Timer 0

Nom de l'interruption

Description

LCD _vect

LOWLEVEL IO PINS vect

OVRIT _vect CAN
PCINTO _vect
PCINT1 _vect
PSCO_ CAPT vect
PSCO0_EC_vect
PSC1_CAPT _vect
PSC1_EC_vect
PSC2 CAPT vect
PSC2_EC_vect
SPI STC_vect
SPM_RDY _vect
SPM_READY vect

LCD Start of Frame
Low-level Input on Port B
timer Overrun
Pin Change Interrupt Request 0
Pin Change Interrupt Request 1
PSCO Capture Event
PSCO End Cycle
PSC1 Capture Event
PSC1 End Cycle
PSC2 Capture Event
PSC2 End Cycle
Serial Transfer Complete
Store Program Memory Ready
Store Program Memory Read

Nom de l'interruption

Description

TIMO COMPA _vect
TIMO COMPB _vect
TIMO OVF _vect
TIMERO CAPT vect
TIMERO COMPA _vect
TIMERO _COMPB_ vect
TIMERO COMP A vect
TIMERO COMP vect
TIMERO OVFO_vect
TIMERO OVF _vect

Timer/Counter Compare Match A
Timer/Counter Compare Match B
Timer/Counter0 Overflow
ADC Conversion Complete
TimerCounter0 Compare Match A
timer Counter 0 Compare Match B
Timer/Counter0 Compare Match A
Timer/Counter0 Compare Match
Timer/Counter0 Overflow
Timer/Counter0 Overflow

53

4.2.8 Timer 1

4.2.9 Timer 2

4.2.10 TWI

4.2.11 UART

Nom de l'interruption

Description

TIM1 CAPT _vect Timer/Counterl
TIM1 COMPA vect
TIM1 COMPB _vect
TIM1 OVF _vect
TIMER1 CAPT1_vect
TIMER1 CAPT vect
TIMER1 CMPA vect
TIMER1 CMPB_vect
TIMER1 COMP1_vect
TIMER1 COMPA _ vect
TIMER1 COMPB _vect
TIMER1 COMPC _vect
TIMER1 COMPD vect
TIMER1 COMP _ vect
TIMER1 OVF1_vect
TIMER1 OVF _vect

Capture Event
Timer/Counterl Compare Match A
Timer/Counterl Compare Match B

Timer/Counterl Overflow
Timer/Counterl Capture Event
Timer/Counter Capture Event
Timer/Counterl Compare Match 1A
Timer/Counterl Compare Match 1B
Timer/Counterl Compare Match
Timer/Counterl Compare Match A
Timer/Counterl Compare MatchB
Timer/Counterl Compare Match C
Timer/Counterl Compare Match D
Timer/Counterl Compare Match
Timer/Counterl Overflow
Timer/Counterl Overflow

Nom de l'interruption

Description

TIMER2 COMPA _vect
TIMER2 COMPB _vect
TIMER2 COMP vect
TIMER2 OVF vect

Timer/Counter2 Compare Match A
Timer/Counter2 Compare Match A
Timer/Counter2 Compare Match
Timer/Counter2 Overflow

Nom de l'interruption | Description

TWI_vect
TXDONE vect
TXEMPTY vect

2-wire Serial Interface
Transmission Done, Bit timer Flag 2 Interrupt
Transmit Buffer Empty, Bit Itmer Flag 0 Interrupt

Nom de l'interruption

Description

UARTO0 RX vect
UARTO0_TX_vect

UART1 RX wvect
UART1 TX vect

UART RX vect
UART TX vect

UARTO0_ UDRE vect

UART1 UDRE_vect

UART_UDRE_vect

UARTO, Rx Complete
UARTO0, Tx Complete
UARTO Data Register Empty
UART1, Rx Complete
UART1, Tx Complete
UART1 Data Register Empty
UART, Rx Complete

UART, Tx Complete

UART Data Register Empty

54

4.2.12 USART

4.2.13 USI

4.2.14 Watchdog

Nom de l'interruption

Description

USARTO_RXC _vect
USART0 RX vect
USART0 TXC vect
USARTO_ TX vect
USART0 UDRE vect
USART1_RXC _vect
USART1_ RX _vect
USART1 TXC vect
USART1 TX vect
USART1 UDRE vect
USART2 RX vect
USART2 TX vect
USART2 UDRE vect
USART3 RX vect
USART3 TX vect
USART3_UDRE _vect
USART_ RXC _vect
USART RX vect
USART TXC vect
USART TX vect
USART UDRE vect

USARTO0, Rx Complete
USARTO, Rx Complete
USARTO0, Tx Complete
USARTO0, Tx Complete
USARTO Data Register Empty
USART1, Rx Complete
USART1, Rx Complete
USART1, Tx Complete
USART1, Tx Complete
USART1, Data Register Empty
USART2, Rx Complete
USART?2, Tx Complete
USART?2 Data register Empty
USART3, Rx Complete
USARTS3, Tx Complete
USARTS3 Data register Empty
USART, Rx Complete
USART, Rx Complete
USART, Tx Complete
USART, Tx Complete
USART Data Register Empty

Nom de l'interruption

Description

USI_OVF _vect

USI_OVERFLOW _vect

USI_START _vect

USI Overflow
USI Overflow
USI Start Condition

USI_STRT _vect USI Start
USI_STR_ vect USI START
Nom de l'interruption Description

WATCHDOG _ vect

WDT_OVERFLOW _ vect

WDT _vect

Watchdog Time-out
Watchdog timer Overflow
Watchdog Timeout Interrupt

55

