
Polytech’Nantes

Informatique Industrielle II : Microcontrôleur

David Delfieu

Département Génie Electrique 3ieme année

Acronyms

ACIC Analog Comparator Input Capture Enable. 29

ACO Analog Comparator Output. 29, 30

COM1A1 : 0 Compare Output Mode A 1:0. 32

COM1x1 : 0 Compare Output Mode x(A or B) 1:0. 30, 31, 34, 35

ICF1 Input Compare Flag 1. 27, 29

ICNC1 Input Capture Noise Canceller 1. 30

OCF1A Output Compare Flag 1 A. 27, 28

OCF1B Output Compare Flag 1 B. 27, 28

TICIE1 Timer Input Capture Interrupt Enable 1. 29

TOV1 Timer Overflow 1. 27, 29

WGM13:0 Wave Generation Modes 3:0. 2, 29–31

ACS ACD ACO ACI ACIE ACIC ACIS1 ACIS0. 29

ADCH Analog to Digital Converter High. 18

ADCL Analog to Digital Converter Low. 18

ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0. 19

ASSR Asynchronous Status Register. 44

DDRB Data Direction Register B. 32

GICR General Interrupt Control Register. 11, 12

ICR1 Input Capture Register. 28–30, 32, 33, 36, 37

MCUCR Management Control Unit Control Register. 8, 11

MCUCSR MCU Control and Status Register. 12

OCR1A Output Compare Register 1 A. 28, 30–33, 36, 37

OCR1B Output Compare Register 1 B. 28, 31

OCR1x Output Compare Register 1 x=A ou B. 32–34, 36

OCR2 Output Compare Register 2. 39–45

OC1A Sortie MLI A du timer 1. 32

OC1X Sorties MLI A ou B du timer 1. 34

SFIOR ADTS2 ADTS1 ADTS0 − ACME PUD PSR2 PSR10. 15

1

SPI Serial Peripheral Interface. 5

SRAM Static Random Access Memory. 4

SREG I T H S V N Z C. 7

TCCR0 − − − − − CS02 CS01 CS00. 25

TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 FOC11 FOC1B WGM11 WGM10. 28, 29, 35

TCCR1B ICN1 ICES − WGM13 WGM12 CS12 CS11 CS10. 28–30, 36

TCCR2 Timer Counter Control Register 2. 40, 43

TCNT0 Timer Counter Timer 0. 25, 26

TCNT1 Timer Counter Timer 1. 28–34, 36, 37

TCNT2 Timer Counter Timer 2. 39–45

TIFR OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 − TOV0. 24, 25, 28, 37, 39

TIMSK OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 − TOIE0. 3, 25, 26, 28, 36, 45

USART Universal Synchronous and Asynchronous Serial Receiver. 5

ACSR Comparateur analogique. 17

ADCH Poids fort de la conversion analogique. 2, 20

ADCL Poids faible de la conversion analogique. 2, 20

ADCSRA Contrôle du convertisseur analogique. 2, 19, 20

ADMUX Multiplexeur analogique. 2, 20

EEPROM Petite mémoire non volatile qui contient des données dynamiques. Elle a un temps d’accès très lent, autour de 5
millisecondes pour un ATMEGA8. 4, 6

FLASH Mémoire non volatile qui contient le programme et les données statiques. Par rapport à la SRAM , elle a un temps
d’accès plus lent ainsi qu’une durée de vie est assez limitée, par contre elle a une consommation faible. 4, 6

GICR Gestion des interruptions. 11

ICP1 Patte du timer 1 sur laquelle on peut réaliser une entrée de capture (PB0). 29

MCUCR Gère notamment les activations des interruptions externes. 11

MLI Modulation de Largeur d’Impulsions. 5

OC1A Patte du timer 1 sur laquelle on peut observer une MLI (PB1). 31

OC1B Patte du timer 1 sur laquelle on peut observer une MLI (PB2). 31

OSCCAL Calibration et gestion du résonnateur. 8

PUD Inhibe les résistances de tirage. 15

SFIOR Résistances de tirage et le pré-diviseur des timer 0 et 1. 15, 17

SRAM Mémoire volatile qui contient les données dynamiques. Elle est contient notamment tous les registres du microcon-
trôleur. 4, 6

2

SREG Registre qui contrôle les bits d’état du microcontrôleur comme la Carry, le bit Zero, le bit Négatif, 7

TCCR0 Pré-diviseur du timer 0. 2, 25

TCNT0 Registre de comptage du timer 0. 2, 25

TIMSK Registre de masquage des interruptions des timers. 2, 25

3

Contents

1 Présentation générale 6
1.1 Introduction . 6

1.1.1 Les différents blocs mémoire de l’ATMEGA8 . 6
1.1.2 Fonctionnalités . 7
1.1.3 Les modes de communication de l’ATMEGA8 . 7

1.2 Architecture . 7
1.2.1 Architecture interne . 8
1.2.2 Registres Systèmes . 10

1.3 Les interruptions de l’ATMEGA8 . 13
1.3.1 Le concept d’interruption . 13
1.3.2 Gestion des interruptions . 14
1.3.3 Les interruptions externes INT0 et INT1 . 14
1.3.4 Le chien de garde . 15

1.4 Les Ports . 16
1.4.1 Usage des PORTS . 16
1.4.2 Codes complets d’écriture et de lecture d’un port . 17
1.4.3 Fonction de manipulation de bits dans un port (ou un registre) . 18
1.4.4 Résistance de tirage : Pull Up Resistor . 18

2 Le traitement des valeurs Analogiques 20
2.1 Le Comparateur Analogique . 20

2.1.1 Fonctionnement global . 20
2.1.2 Les registres . 21

2.2 Le Convertisseur Analogique-Numérique : ADC . 22
2.2.1 Fonctionnement et caractéristiques . 22
2.2.2 Les différentes méthodes de programmation d’une conversion . 24
2.2.3 Les Registres de l’ADC : ADMUX, ADCSRA, ADCH, ADCL . 24

3 Les Timers 28
3.1 Le timer 0 . 29

3.1.1 Caractéristiques . 29
3.1.2 Les registres qui pilotent le timer 0 : TCCR0, TCNT0 TIMSK . 30

3.2 Le timer 1 . 31
3.2.1 Caractéristiques générales . 31
3.2.2 Les 16 modes du timer 1 . 35
3.2.3 Les 16 Modes du générateur de formes : WGM13:0 . 35
3.2.4 Inventaire des registres utiles au timer 1 . 38
3.2.5 Résumé des 16 modes de MLI du timer 1 . 41
3.2.6 Exemples d’utilisation du timer 1 . 41

3.3 Le timer 2 . 42
3.3.1 Aperçu du timer 2 . 42
3.3.2 Génération de forme : pulse, PWM,. 43
3.3.3 Les modes du timer 2 . 44
3.3.4 Les registres utiles au timer 2 . 46
3.3.5 Les interruptions du timer 2 . 48

4

3.3.6 TIMSK . 48
3.3.7 TIFR . 48

4 La programmation en langage C 50
4.1 Structure de programme . 50

4.1.1 Entête . 50
4.1.2 Main . 51
4.1.3 Fonctions . 51
4.1.4 Déclaration de variable globales : attribut volatile . 51
4.1.5 Fonction de manipulation de bits . 52

4.2 Les interruptions . 52
4.2.1 Mise en oeuvre . 52
4.2.2 Description des sources d’Interruptions de l’ATMEGA8 . 53
4.2.3 Convertisseur Analogique Numérique . 53
4.2.4 Mémoire EEPROM . 53
4.2.5 Interruptions externes . 53
4.2.6 Interruptions Diverses . 53
4.2.7 Timer 0 . 53
4.2.8 Timer 1 . 54
4.2.9 Timer 2 . 54
4.2.10 TWI . 54
4.2.11 UART . 54
4.2.12 USART . 55
4.2.13 USI . 55
4.2.14 Watchdog . 55

5

Chapter 1

Présentation générale

1.1 Introduction
Un microcontrôleur est un microprocesseur dédié au contrôle, il contient dans un même composant une unité de calcul CPU,
comme dans un micro-processeur, mais il a, par contre la possibilité d’adresser directement des Ports d’entrées-sorties (im-
possible pour un microprocesseur. Il a de plus, spécifiquement, des timers, des convertisseurs analogiques, des unités de
communication et de la mémoire.

Ce cours présente l’ATMEGA8, microcontrôleur de la famille Arduino (Microchip anciennement Atmel) sur lequel on
développera des programmes en langage C dans l’environnement Arduino. On n’utilisera pas cependant le langage Arduino leur
préférant un structure C et la manipulation de registres.

La famille des ATMEGA8

Modèle Flash EEPROM RAM I0 PWM Interfaces CAN
ATMEGA8 8K 512 1024 23 3 SPI-USART 10 bits
ATMEGA16 16K 512 1024 32 4 SPI-USART 10 bits
ATMEGA32 32K 1k 2k 32 4 SPI - USART 10 bits
ATMEGA64 64K 2k 4k 53 8 SPI - USART(2) 10 bits
ATMEGA128 128K 4k 4k 53 8 SPI - USART(2) 10 bits
ATMEGA256 256K 4k 8k 53 16 SPI - USART(2) 10 bits

Dans cette famille, l’ATMEGA8 et l’ATMEGA16 sont compatibles broches à broches et il n’y a que très peu de différences
au niveau du code. On pourrait sur la carte de TP remplacer facilement un ATMEGA8 par un ATMEGA16.

1.1.1 Les différents blocs mémoire de l’ATMEGA8

La mémoire de l’ATMEGA8 est constituée de 1ko de Mémoire vive (SRAM), de 512 octets de EEPROM et de 8ko de mémoire
FLASH.

La mémoire de type SRAM contient les registres et la pile système. La mémoire de type Static Random Access Memory
(SRAM) est un type de mémoire vive “volatile” utilisant des bascules pour mémoriser les données. En l’absence d’alimentation
les données sont perdues. On placera ces variables dans cet espace, lorsqu’elles sont partagées par le prpgramma principal et
un sous-programme d’intérruption. On peut utilise alors l’attribut volatile. Par exemple : volatile int i; Cet attribut assure
que la variable sera déclarée dans la SRAM, en dehors de la zone des registres spéciaux. Les accès à la variable sont plus lent,
par contre, il n’y a pas de mise en cache de la variable et donc pas de problème de synchronisation (cf annexe 4.1.4)

La mémoire FLASH permet 10.000 cycles d’écriture. Elle contient le programme et les données. C’est une mémoire non
volatile. Par rapport à la SRAM, elle a un des temps d’accès moins rapide, une durée de vie est assez limitée mais une
consommation faible. Elle est même nulle au repos. La FLASH utilise comme cellule de base un transistor MOS possédant
une grille flottante enfouie au milieu de l’oxyde de grille, entre le canal et la grille. L’information est stockée grâce au piégeage
d’électrons dans cette grille flottante. Cette technologie se décline sous deux principales formes : NOR et NAND, d’après
le type de porte logique utilisée pour chaque cellule de stockage. Dans l’ATMEGA8 on a une FLASH de type NOR. Les
mémoires de type NAND sont plutôt consacrées aux mémoires de masse externes telles que les Cartes SD, disque dur,. . .

Les mémoires de type EEPROM sont les plus chères. Elle autorisent 100.000 cycles d’écriture. Elles ont un temps d’accès
un peu plus long, et donc on y stocke des données qui n’ont pas vocation a être modifiée souvent. Une autre différence avec la
FLASH classique est que l’on y écrit octet par octet.

6

1.1.2 Fonctionnalités
Les différentes fonctionnalités sont les timers, le convertisseur analogique (ADC), les possibilités de communication, les mé-
moires et les PORTSd’entrées/sorties. Un timer peut définir des bases de temps, faire du comptage d’événements, ou bien
générer des MLI ou de gérer un watchdog 1. L’ADC permet de convertir en valeurs numériques codées sur 10 bits des tensions
entre 0v et 5v. Les PORTS permettent d’adresser et de communiquer avec des composants externes.

1.1.3 Les modes de communication de l’ATMEGA8

L’ATMEGA8 dispose de manière interne d’un circuit dénommé Universal Synchronous and Asynchronous Serial Receiver
(USART). A noter qu’on entend couramment parler d’UART, mais qu’Atmel a ajouté ici un S pour Synchronous. Ce qui
veut dire que cette interface peut servir à faire aussi bien de la communication série synchrone ou asynchrone, c’est à dire avec
des bits de start et de stop, mais aussi synchrone dans laquelle les bits de données sont envoyés de manière cadencée par un
signal de clock, piloté par un maître du protocole de communication. Elle utilise deux fils : un pour l’émission et un pour la
réception.

La communication série de type SPI est un bus de donnée série synchrone baptisé ainsi par Motorola, et qui opère en Full
Duplex. Les circuits communiquent selon un schéma maître-esclaves, où le maître s’occupe totalement de la communication.
Plusieurs esclaves peuvent co-exister sur un bus, la sélection du destinataire se fait par une ligne dédiée entre le maître et
l’esclave appelée chip select.

Le bus Serial Peripheral Interface (SPI) contient 4 signaux logiques :

• SCLK : Horloge (généré par le maître)

• MOSI : Master Output, Slave Input (généré par le maître)

• MISO : Master Input, Slave Output (généré par l’esclave)

• SS : Slave Select, Actif à l’état bas, (généré par le maître)

La liaison SPI est utilisée pour la programmation de l’ATMEGA8.
Grâce à une liaison série de l’ATMEGA8 on peut loader un programme à exécuter dans le microcontrôleur

1.2 Architecture
L’architecture du microcontrôleur est illustrée dans la figure suivante :

1Système de surveillance de bon déroulement de programme : Un wachtdog est capable de détecter si un programme sort de sa boucle infinie
déclenchant alors un reset qui remettra le programme dans se boucle

7

UAL

SR

Z

Y

X

Blocs de registres

SRam

SPPC

Flash

CNA

SPI

TWI

Timers

Watchdog

IT

EEprom

Usart

PORT D

PORT BPORT C

Aref

Agnd

PB7PB6PB5PB4PB3PB2PB1PB0PC6PC5PC4PC3PC2PC1PC0

PD7PD6PD5PD4PD3PD2PD1PD0

VCC

GND

Figure 1.1: synoptique d’un Atmega

1.2.1 Architecture interne
Comme on l’a vu, il y a trois sortes de mémoires :

La mémoire FLASH : stocke le programme (10.000 cycles)

La mémoire SRAM (mémoire donnée) :

les 32 accus ;

les registres à fonctions spéciales ;

8

la pile.

La mémoire EEPROM : on y place des données stratégiques (100 000 cycles)

Les 32 registres internes sont :

Registres Adresse Fonction
R0 $00 Accumulateur
R1 $01 Accumulateur
... ... accu
R25 $19 Accumulateur
R26 $1A X poids faible
R27 $1B X poids Fort
R28 $1C Y poids faible
R29 $1D Y poids Fort
R30 $1E Z poids faible
R31 $1F Z poids Fort

Mémoire Flash 8 ko Mémoire SRAM 1024o Mémoire EEPROM 512o

$0000 $0000 $0000

32 registres accumulateurs

$001F

Registres à fonctions spéciales

$005F

$1FFF

$01FF

Figure 1.2: synoptique d’un Atmega

Un mapping signifie une projection d’un plan mémoire sur l’espace d’adressage. Dans l’ATMEGA8, certains plans partagent
un même espace d’adressage. On distinguera alors l’accès aux variables partageant ce même espace par l’utilisation de modes
d’adressage spécifiques.

9

Mémoire SRAM Espace d’adressage

$0000 $0000

32 registres accumulateurs
R0-R31

Registres à fonctions spéciales

$FFFF

$03F

Figure 1.3: synoptique d’un Atmega

1.2.2 Registres Systèmes
Ces registres agissent sur le contrôle ou indiquent l’état du processeur.

Registres SREG: SREG est un registre crucial dans ce micro-contrôleur. C’est lui qui surveille en permanence le mi-
crocontrôleur et positionne ces bits en fonction de la dernière opération arithmétique ou logique. Par exemple si la dernière
opération donne un résultat négatif le bit N de SR passe à un.

I T H S V N Z C

• C: Carry

• Z : Zero

• N : Negative

• V : oVerflow = C8 ⊕ C7

• S : V ⊕N

10

• H : Half carry

• T : copy sTorage : bit tampon pour manipuler un bit

• I : autorisation générale des interruptions : sei() − cli()

Registre de pile SP Ce registre permet les appels de sous-programmes et le passage de paramètres et la sauvegarde de
l’état courant d’un programme. En assembleur, une pile se manipule par les instructions :

PUSH : Empile une donnée, décrémente SP

POP : Dépile une donnée, incrémente SP

Comme les piles Motorola, la pile de l’Atmel, fonctionne par adresses décroissantes. Par défaut SP contient : 0x60 et il faudra
changer cette valeur par la valeur : 0x1FF

Registre MCUCR Ce registre définit les différents modes de sommeil dans lequel le micro peut être plongé :

SE SM2 SM1 SM0 ISC11 ISC10 ISC01 ISC00

Les bits de configuration des modes de sommeil SMi:

SM2 SM1 SM0 Mode de Sommeil
0 0 0 Mode attente
0 0 1 Mode réduction de bruit pour l’ADC
0 1 0 Mode sommeil (Power down)
0 1 1 Mode économie d’énergie (Power save)
1 0 0 Réservé
1 0 1 Réservé
1 1 0 Non utilisé
1 1 1 En pause

Domaines d’horloges actives Oscillateurs Sources de reveil
Sommeil CPU FLA IO ADC ASY QTZ TIM INT TWI T2 EEP ADC IOs

Power Down X X
En pause X X X

Power Save X X X X X
Réd. bruit X X X X X X X X X
Attente X X X X X X X X X X X

Calibration et le contrôle de l’horloge OSCCAL

CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0

Valeur de calibrage de l’oscillateur pour la programmation de la mémoire flash ou de l’eeprom.
Suivant la configuration de certains bits, on peut utiliser les résonateurs suivants :

• Résonateur externe type céramique ou crystal

• Cristal externe basse fréquence

• Oscillateur externe ou interne de type RC

• Oscillateur calibré interne de type RC

• Horloge externe de type quelconque

11

La figure suivante (fig. ??) présente un montage en quartz externe basse fréquence :

ATMega8

XTAL1

XTAL2

GND

Montage quartz externe

16 MHzC1

C2

ATMega8

XTAL1

XTAL2

GND

Montage quartz interne
avec génération d’horloge externe

Horloge

Figure 1.4: synoptique d’un Atmega

On parle d’horloge temps réel lorsqu’elle permet de générer des diviseurs ou des multiples entier de la seconde. La figure
suivante (fig. ??) combine le positionnement d’un quartz externe et d’une horloge temps réel :

ATMega8

XTAL1

XTAL2

TOSC1

TOSC2

GND

16 MHzC1

C2

32768 Hz

Génration d’une horloge temps réel

Figure 1.5: synoptique d’un Atmega

La figure suivante (fig. 1.2.2) présente un montage en résonateur externe :

12

C

R

+5 V

GND

XTAL1

XTAL2

Figure 1.6: Résonateur externe

Tableau récapitulatif de tous les registres systèmes :

Addresse Nom Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x31 (0x51) OSCCAL Registre de calibration et de contrôle de l’horloge
0x34 (0x54) MCUCSR - - - - WDRF BORF EXTRF PORF
0x35 (0x55) MCUCR SE SM2 SM1 SM0 ISC11 ISC10 ISC01 ISC00
0x37 (0x57) SPMCR SPMIE RWWSB - RWWSRE BLBSET PGWRT PGERS SPMEN
0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0
0x3E (0x5E) SPH - - - - - SP10 SP9 SP8
0x3F (0x5F) SREG I T H S V N Z C

1.3 Les interruptions de l’ATMEGA8

Un microcontrôleur fonctionne de façon normale en exécutant la boucle infinie de son programme principal. Il peut aussi être
interrompu par un événement unique ou récurrent pour exécuter un sous-programme associé.

1.3.1 Le concept d’interruption
Une interruption externe correspond à la prise en compte d’un évènement dont l’occurrence est possiblement aléatoire. Lors de
la survenue de cet évènement l’exécution d’un sous-programme associé est lancée automatiquement. Ces événements peuvent
être par exemple :

• La fin d’un délai,

• La fin de conversion,

• Le compteur d’un timer atteint un seuil

• Un front sur une patte du microcontrôleur

Un front sur une patte peut correspondre au niveau applicatif à :

• Un arrêt d’urgence provoqué par l’appui d’un bouton ad. hoc.

• Capteur de choc ou de contact

• Dépassement de seuil sur un capteur de température, ...

D’un point de vue programmation, il serait donc peu intéressent d’utiliser des boucles d’attentes de cette alarme. Par exemple
il est déconseillée de faire appel aux fonctions de la bibliothèque Serial (lentes) dans une interruption. Son traitement est donc
réalisé en associant un sous-programme à un événement. On associe un évènement à un sous-programme par la primitive ISR.

13

1.3.2 Gestion des interruptions

Interruptions imbriquées : Dans la famille Arduino, une interruption n’est pas interruptible par défaut par une nouvelle
interruption (sauf par un reset), en effet I de SREG est mis à zéro à l’entrée de l’interruption. Toute nouvelle interruption
sera alors prise en compte lorsque l’interruption en cours sera terminée. Pour autoriser une nouvelle interruption dans
l’interruption en cours il faut donc basculer I à un dans l’interruption en cours.

Deadlock : Il ne faut pas appeler de fonctions qui se mettent en attente d’une autre interruption. Comme l’interruption
est in-interruptible par défaut, la fonction attendra indéfiniment et tout le système se bloquera. C’est ce que l’on appelle un
Deadlock.

Plusieurs interruptions en même temps ? Les interruptions ont chacune une priorité. Par exemple, les interruptions
externes sont plus prioritaires que les interruptions des Timers. L’Arduino exécutera les interruptions dans leur ordre de
priorité. Dans la table ci-dessous, les priorités les plus petits numéros correspondent aux priorités les plus fortes :

Table 1.1: Tableaux des interruptions de l’ATMEGA8

Priorité Nom de l’interruption Description
1 RESET External Pin, Power-on Reset, Brown-out Reset, and Watchdog Reset
2 INT0 External Interrupt Request 0
3 INT1 External Interrupt Request 1
4 TIMER2 COMP Timer/Counter2 Compare Match
5 TIMER2 OVF Timer/Counter2 Overflow
6 TIMER1 CAPT Timer/Counter1 Capture Event
7 TIMER1 COMPA Timer/Counter1 Compare Match A
8 TIMER1 COMPB Timer/Counter1 Compare Match B
9 TIMER1 OVF Timer/Counter1 Overflow
10 TIMER0 OVF Timer/Counter0 Overflow
11 SPI, STC Serial Transfer Complete
12 USART, RXC USART, Rx Complete
13 USART, UDRE USART Data Register Empty
14 USART, TXC USART, Tx Complete
15 ADC ADC Conversion Complete
16 EE_RDY EEPROM Ready
17 ANA_COMP Analog Comparator
18 TWI Two-wire Serial Interface
19 SPM_RDY Store Program Memory Ready

1.3.3 Les interruptions externes INT0 et INT1

L’ATMEGA8 offre deux interruptions externes sur deux pattes : PD2 et PD3 respectivement appelées INT0 et INT1.
Les événements qui peuvent se produire sur ce type de patte sont soit un front montant, soit un front descendant, soit un
changement de niveau.

Associer un événement à un sous-programme se fait en utilisant l’instruction ISR auquel on passe un nom d’évènement :
ISR(Nom_evenement) et du code entre accolades. L’ensemble des évènements est données dans les tables de la section 4.2.2
Exemple :

ISR(INT0_vect){
PORTD ^= 0xF0; // code associe a l’interruption

}
int main(){

DDRD=0xF0;
GICR |= 1<<INT0;
MCUCR |= 1<<ISC01; // Front descendant
sei();
while (1){}

}

14

Si l’événement INT0 (front sur la patte PD2) se produit, quel que soit le comportement de la boucle infinie du programme
principal (main), le travail est interrompu pour exécuter le sous-programme associé qui est défini entre les deux accolades
du bloc ISR. A la fin du sous-programme d’interruption on revient là où l’on a été interrompu. La mise en oeuvre d’une
interruption externe se fait grâce aux registre GICR et MCUCR :

• GICR :
INT1 INT0 - - - - IVSEL IVCE

– INT0 : à un, autorise une interruption externe sur la patte PD2

– INT1 : à un, autorise une interruption externe sur la patte PD3

• MCUCR :

SE SM2 SM1 SM0 ISC11 ISC10 ISC01 ISC00

Considérons une interruption externe INT0. Les bits ISC01, ISC00 correspondent alors à la patte PD2 et le niveau
d’activité est défini par le tableau suivant :

- 00 : niveau bas

- 01 : front montant ou descendant

- 10 : front descendant

- 11 : front montant

Autres bits du registre GICR

• IV SEL : Interrupt Vector Select
Quand le bit IV SEL est mis à zéro, les vecteurs d’interruption sont placés au début de la la mémoire flash. Quand ce bit
est mis à un, les vecteurs d’interruption sont déplacés au début de la zone du boot loader de la mémoire flash. L’adresse
de cette zone est modifiable par les bits "fusibles" BOOTSZ.

• IV SEL : à un, autorise le changement du bit IV SEL

Parmi les différents modes de fonctionnement d’un micro-contrôleur on peut citer le fonctionnement "chien de garde".

1.3.4 Le chien de garde
Un chien de garde permet de relancer/réinitialiser le programme. En effet lors d’une perturbation électromagnétique, par
exemple, le déroulement du programme peut être altéré : Le compteur programme peut alors essayer d’exécuter du code
dans une zone mémoire non prévue. Un chien de garde, par exemple, armé toutes les 500 millisecondes, peut alors resetter le
programme et le remettre dans un déroulement normal.

Registre MCUCSR
- - - - WDRF BORF EXTRF PORF

• WDRF Watchdog Reset Flag: mis à un pour activer le watchdog, raz par un reset ou par une écriture d’un 0

• BORF : mis à un lors d’une panne d’électricité partielle, raz par reset ou écriture de 0.

• EXTR et PORF : Détermine la source d’un reset.

15

1.4 Les Ports
Dans un système à base de microcontrôleur on appelle “PORT d’entrées-sorties”, des ensembles de 8 connections entre
le microcontrôleur et l’extérieur (cf figures 1.7,1.8,1.9). Par ces ports, le système peut réagir à des modifications de son
environnement, voire le contrôler. Elles sont parfois désignées par l’acronyme I/O, issu de l’anglais Input/Output ou encore
E/S pour Entrées/Sorties. Ces PORTS sont programmables en entrée ou en sortie.

ATMEGA8

14(ICP1) PB0

13
12
11
10(XTAL1/TOSC1) PB7

9(XTAL1/TOSC1) PB6

8
7
6
5
4
3
2
1

PB1 (OC1A)15
PB2 (SS/OC1B)16
PB3 (MOSI/OC2)17
PB4 (MISO)18
PB5 (SCK)19

20
21
22
23
24
25
26
27
28

Figure 1.7: Brochage du port B

ATMEGA8

14
13
12
11
10
9
8
7
6
5
4
3
2
1(Reset) PC6

15
16
17
18
19
20
21
22

PC0 (ADC0)23
PC1 (ADC1)24
PC2 (ADC2)25
PC3 (ADC3)26
PC4 (ADC4/SDA)27
PC5 (ADC5/SCL)28

Figure 1.8: Brochage du port C

ATMEGA8

14
13(AIN1) PD7

12(AIN0) PD6

11(T1) PD5

10
9
8
7
6(XCK/T0) PD4

5(INT1) PD3

4(INT0) PD2

3(TxD) PD1

2(RxD) PD0

1

PB1 (OC1A)15
PB2 (SS/OC1B)16
PB3 (MOSI/OC2)17
PB4 (MISO)18
PB5 (SCK)19

20
21
22
23
24
25
26
27
28

Figure 1.9: Brochage du port D

Des buffers sont associés aux PORTS, ils ont la capacité d’être à la fois source ou drain de courant ou en haute impédance
Une ligne d’un port d’entrées est essentiellement composé d’un tampon à trois états. Ceux-ci se comportent comme des
interrupteurs électroniques qui font apparaître, au moment voulu, soit deux niveaux logiques : zéro ou un et un état de haute
impédance. Les niveaux logiques sont mémorisés dans un registre du processeur.

Nom B7 B6 B5 B4 B3 B2 B1 B0
PORT D

PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0
DDRD DDRD7 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0
PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0

PORT C
PINC - PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0
DDRC - DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0
PORTC - PC6 PC5 PC4 PC3 PC2 PC1 PC0

PORT B
PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0
DDRB DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0
PORTB PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

Contrôle des Ports
SFIOR - - - - ACME PUD PSR2 PSR10

1.4.1 Usage des PORTS

On peut effectuer les lectures ou des écritures sur les ports. Dans le cas d’une écriture, chaque ligne du port peut fournir 20 mA
de courant tandis que chaque port de 8 bits est limité à un courant total de 200 mA. Dans le cas d’une lecture sur le Port,
le port devient drain de courant et peux accepter aussi 20 mA de courant. C’est le registre PINx qui permet la lecture. A
chaque bit du registre PINx est associée une bascule D qui permet de de stabiliser la lecture en la synchronisant sur un front
de l’horloge système. Cette stabilisation se fait au détriment d’un délai de lecture qui correspond à une période d’horloge. On
peut, par ailleurs, positionner des résistances de tirage sur les lignes d’un port.

16

Déclaration des lignes en entrées ou en sortie

DDRB , DDRC , DDRD : Permet de programmer le sens des lignes (1 : sortie, 0 entrée)

Port B : Seules les pattes 2 et 3 sont en entrées, les autres sont en sortie :
DDRB = 0b1111 0011;

Port C : Seules la patte 0 est en entrée, les autres sont en sortie :
DDRC = 0xFE;

Port D : Toutes les pattes sont en sorties :
DDRD = 255;

Ecritures sur les ports

PORTB , PORTC , PORTD : Permet d’écrire sur les ports

Port B : Les sorties 0,1 4,5,6,7 sont actives :
PORTB = 0b1111 0011;

Port C : Les sorties 1,2,3,4,5,6,7 sont actives :
PORTC = 0xFE;

Port D : Toutes les sorties sont actives :
PORTD = 255;

Lecture des ports

PINB , P INC , P IND : Permet de lire les ports

Port B : Lecture du PORTB dans la variable i qui a été déclarée sur 16 bits
int i = PINB;

Port C : Lecture du PORTC dans la variable i qui a été déclarée sur 8 bits
char c = PINC;

Port D : Lecture du PORTD dans la variable l qui a été déclarée sur 8 bits
avec masquage des 4 bits de poids fort

char l = PIND & 0x0F;

1.4.2 Codes complets d’écriture et de lecture d’un port

int main(void) { // Ecriture sur un port
DDRD = 0xFF; // PORTD en sortie
PORTD = 0x7A; // Allume leds 1,3,4,5,6
while (1){ // boucle infinie

PORTD ^= 0x7A; // ^= : ou-exclusif fait clignoter les leds
_delay_ms (20);

}
}

int main(void) { // Lecture d’un port
DDRC = 0x00; // PORTC en entree

DDRD = 0xFF; // port D en sortie
int lu;
while (1){ // boucle infinie

lu = PINC;
PORTD = lu; // PORTD recoit PORTC
_delay_ms (20);

}
}

17

1.4.3 Fonction de manipulation de bits dans un port (ou un registre)
Plusieurs opérateurs permettent de manipuler des ports de façon globale : | est un OU logique et il permet de rajouter des
bits à un dans un registre. & correspond au ET logique et il permet de mettre des bits à zéro dans un registre. << est un
opérateur de décalage à gauche de bits. Cet opérateur permet de positionner un bit au bon endroit avant une mise à "zéro"
ou une mise à "un".

// Mise a un d’un bit sans affecter les autres bits
PORTD = PORTD | (1<<PORTD4);
PORTD |= (1<<4); // mise a un du bit 4

// Mise a un des 4 bits de poids faible sans affecter les autres bits
PORTB = PORTB | 0x0F // ou
PORTB |= 0x0F;

// Mise a zero d’un bit sans affecter les autres bits
PORTB &=~(1<<PB3); // mise a zero du bit 3

// Mise a zero de 4 bits sans affecter les autres bits
PORTB &= 0x0F; // mise a zero des 4 bits de poids Fort

// Commutation du bit 4 sans affecter les autres bits
PORTD = PORTD ^0x10;
PORTD ^= 0x10;

1.4.4 Résistance de tirage : Pull Up Resistor

Pxn

5v

int i = PINxn ;

PORTxn

DDRxn

PUD

x : B,C, ou D, correspond au port
n : numéro de bit

Activation de la résistance de tirage Pull Up

T1

RT

ATMega8

Figure 1.10: Résitance de tirage de type "pull up"

Pour poser des résistances de pull-up il est nécessaire d’avoir les trois conditions suivantes (porte AND du schéma) :

• Définir les lignes en entrée avec une action sur DDRxn ;

• Ecrire un “1” sur ces lignes, PORTx = 1 ;

• PUD mis à zéro dans SFIOR : SFIOR & = (1 << PUD);

Si tel est le cas, même si le transistor T1 est ouvert alors on aura 5v, et donc un "un logique", lors de lecture de PINxn.

18

Résistances de tirage : le registre SFIOR

ADTS2 ADTS1 ADTS0 - ACME PUD PSR2 PSR10

PUD=“Pull Up Disable”

• 1: Les résistances de tirages sont désactivées, les entrées sont en mode 3-états.

• 0 : Les résistances de tirages sont activées.

19

Chapter 2

Le traitement des valeurs Analogiques

2.1 Le Comparateur Analogique

2.1.1 Fonctionnement global
Cet élément offre la possibilité de comparer deux valeurs analogiques sur les pattes PD6 et PD7. AIN0(PD6) est appelé broche
positive et AIN1 (PD7) broche négative. Lorsque AIN0 > AIN1 alors AC0 ← 1, on peut alors déclencher une interruption
(avec bit ACIE= 1) de comparaison.

ACSRA

A
D

E
N

A
D

S
C

A
D

F
R

A
D

IF

A
D

IE

A
D

P
S
2

A
D

P
S
1

A
D

P
S
0

ACSR
A

C
D

A
B
C

G

A
C

O

A
C

I

A
C

IE

A
C

IC

A
C

IS
1

A
C

IS
0

SFIOR

A
C

M
E

P
U

D

P
S
R

2

P
S
R

1
0

+

−
Comp. IT comp. Analog.

Sélection d’IT

Mux

AIN1

Sortie du multiplexeur analogique

Mux

AIN0

1.3v

Figure 2.1: Comparateur

On a de plus, la possibilité de changer la référence "négative" : AIN1 par l’une des broches ADC0, ADC1, ..., ADC5 une
des sorties du multiplexeur analogique. Les bits ACIS1, ACIS0 peremettent à l’utilisateur de sélectionner comme évènement
de déclenchement, un front montant, un front descendant ou une inversion.

En outre, toute entrée ADC5, ..., ADC0 peut jouer le rôle de AIN1. Pour réaliser cela il faut positionner à un le bit de
multiplexage ACME du registre SFIOR quand l’ADC est OFF (ADEN à zéro) les bits MUX2,MUX1,MUX0 du registre
ADMUX permettent de modifier la source AIN1.

20

Les bits MUX qui remplacent AIN1 selon le tableau suivant :∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ACME ADEN MUX2 : 0 AIN1

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2.1.2 Les registres
Registre ACSR: Analog Comparator Status Register ACSR

ACD - ACO ACI ACIE ACIC ACIS1 ACIS0

• ACD Analog Comparator Disable : Bit de mise en marche du comparateur analogique,

0 : mise en marche,

1 : arrêt

• ACO Analog Comparator Output : Contient le résultat de la comparaison : si V AIN0 > V AIN1 alors ACO = 1.

• ACI : Analog Comparator Interrupt : Flag Bit de demande d’interruption (bit raz ds le sp d’IT)

• Condition IT : ACIS1 et ASCI0). Ce bit est remis à 0 automatiquement après le traitement de l’interruption

• Masque d’IT : ACIE.

• ACIE Analog Comparator Interrupt enable : Bit de validation de l’interruption ANA_COMP .

• ACIC : Analog Comparator Input Capture Enable : La mise à 1 de ce bit connecte la sortie du comparateur à l’entrée
de capture du Timer1.

• ACIS1 et ACSI0 gère le comportement de la sortie AC0 :∣∣∣∣∣∣∣∣∣∣∣∣∣

Activation de AC0 ACIS1 ACIS0

1→ 0 ou 0→ 1 0 0

non utilisé 0 1

front montant 0 0

front descendant 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
Registre SFIOR

ADTS2 ADTS1 ADTS0 - ACME PUD PSR2 PSR10

ACME Analog Comparator Multiplexer Enable

• Quand ACME= 1 et ADC est éteint (ADEN = 0 et ADSC = 0) alors le multiplexeur ADC choisit l’entrée négative
du comparateur analogique.

• Quand ACME= 0 alors AIN1est appliqué à l’entrée négative du comparateur analogique.

21

2.2 Le Convertisseur Analogique-Numérique : ADC
Le convertisseur (ADC) convertit une tension d’entrée analogique en une valeur à 10 bits digitale par approximations successives.
Il possède 6 entrées simultanées avec une non-linéarité inférieure à +/ − 2 LSB avec une erreur à 0 V inférieure à 1 LSB.
Le résultat de la conversion est positionné dans les registes Analog to Digital Converter High (ADCH) et Analog to Digital
Converter Low (ADCL).

ADMUX
R

E
F

S
1

R
E

F
S
0

A
D

L
A

R

M
U

X
3

M
U

X
2

M
U

X
1

M
U

X
0

ADCSRA

A
D

E
N

A
D

S
C

A
D

F
R

A
D

IF

A
D

P
S
2

A
D

P
S
1

A
D

P
S
0

ADCL
ADCH

Prédiviseur

Logique de conversion

+

−
Comp.

10 bits DAC

GND

ADC7

ADC6

ADC5

ADC4

ADC3

ADC2

ADC1

ADC0

Mux

Mux

AV CC

AREF

2, 56v

Figure 2.2: ADC

Le temps de conversion prend au minimum 13 cycles d’horloge. De plus, le convertisseur a une alimentation découplée du
micro : AV cc tq AV cc ∈ [V cc− 0, 3, V cc+ 0, 3] : V cc est la tension de référence qui peut être externe ou interne : AREF ou
AV cc ou = 2, 56 v.

2.2.1 Fonctionnement et caractéristiques
On peut le programmer en générant une interruption de fin de conversion. De plus, il est possible du faire fonctionner en
limitant le bruit en mode de sommeil. Le résultat d’une conversion numérique sur 10 bits est donné par la relation :

Résultat numérique = P. Entière(Tension d’entrée/Tension de référence ∗ 1024)

Ou la tension de référence est soit AREF soit AVcc soit 2,56v.

ADC_0= 2.5 V, AREF = 3.3 V
ADCH-ADCL = PE(2.5/3.3 x 1024) = 774

22

Réduction des bruits lors de la conversion Pour réduire au maximum la précision de la conversions on pourra :

• Mettre en sommeil l’unité centrale avant le lancement d’une conversion.

• Découpler soigneusement l’alimentation AVcc avec des condensateurs.

• Règles élémentaires du routage : connexions courtes, plan de masse, ...

• Effectuer un filtre numérique des résultats (amortissement ,moyenne, ...).

• Pour minimiser le bruit on peut ajuster la tension de référence

Ajustement de la tension On peut ajuster la tension de référence : La valeur minimale de conversion est GND tandis
que a valeur maximale est soit la tension sur la broche AREF soit le tension sur la broche AVcc ou bien une tension interne
de 2,56 V (cf bits REFSn).

Choix de l’entrée à convertir Chacune des 6 broches d’entrée ADC peuvent être choisies comme des entrées simples de
l’ADC . De plus, l’ADC contient un mécanisme d’échantillonneur-bloqueur qui assure que l’entrée est tenue constante pendant
1,5 cycle d’horloge.

ADCL doit être lu en premier puis ADCH pour assurer la cohérence des données qui appartiennent à la même conversion.
Une fois ADCL lu, l’accès aux registres de commandes est bloqué afin d’empêcher une nouvelle conversion tant que ADCH
n’est pas lu. Quand ADCH est lu, l’ADC est à nouveau opérationnel. L’ADC a sa propre interruption qui peut être déclenchée
quand une conversion est achevée. La lecture de l’ADCL et d’ADCH interdit l’accès aux registres de commande de l’ADC,
mais si une interruption de fin conversion se produit alors que la lecture précédente n’a pas été encore faite le résultat sera
perdu. Il faut donc faire attention à lire rapidement un résultat de conversion.

Programmation

L’ensemble des registres à programmer l’ADC est ADMUX,ADCSRA,ADCH,ADCL, étudions d’abord ADCSRA :

ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0

• L’ADC est activé avec le bit ADEN à 1.

• L’ADC est déclenché par ADSC à 1.

• La référence de tension et le choix du canal d’entrée n’entrera pas en vigueur quand ADEN est mis à 1, il faut d’abord
désactiver ADEN .

• ADC produit un résultat sur 10 bits qui est présenté dans les registres ADCH et ADCL .

• Par défaut, le résultat est présenté ajusté à droite, mais peut facultativement être présenté ajusté à gauche en mettant le
bit ADLAR à un dans ADMUX. Pour un résultat sur 8 bits avec un ajustement à gauche, on ne lit alors que le registre
ADCH .

Cycle de conversion

Début d’une conversion Une conversion simple est lancée en positionnant ADSC à 1.
Si l’on change le canal tandis qu’une conversion est en cours, l’ADC finira la conversion actuelle avant l’exécution du

changement de canal.

Durée d’une conversion Une conversion normale prend 13 cycles d’horloge.

Fin de conversion Dès lors, qu’une conversion est en cours, ADSC reste à un tant que la conversion se réalise et il redescend
à 0 quand la conversion est achevée. Quand une conversion est finie, le résultat est écrit dans les registres de données ADCH
et ADCL et ADIF est mis à 1. ADCL doit être lu en premier puis ADCH. Une fois que ADCL est lu, l’accès aux registres
est bloqué afin d’empêcher une nouvelle conversion. Quand l’ADCL et ADCH sont lus, alors l’ADC est à nouveau être
opérationnel.

Le programme peut alors lancer ADSC de nouveau et une nouvelle conversion sera amorcée sur le premier front montant
de l’horloge.

23

2.2.2 Les différentes méthodes de programmation d’une conversion
Conversion échantillonnée

Pour réaliser une conversion échantillonnée, on doit utiliser un timer qui va définir une période d’échantillonnage. On va
associer à une interruption de débordement de ce timer dans laquelle on va déclencher la conversion analogique-numérique.
Un exemple de codage est donnée dans la section suivante (cf section 2.2.3).

Free Running mode : Mode de fonctionnement libre

Dans ce mode, on n’utilise pas d’interruption et l’ADC échantillonne en permanence, sans aucune action du programmeur
autre que le lancement initial et la mise à jour les registres de données (ADCH et ADCL) est automatique. Ce mode est
positionné par la valeur 1 dans ADFR ∈ ADCSRA. La première conversion doit être lancée par ADSC ∈ ADCSRA. Dans
ce mode l’ADC effectue des conversions sans se préoccuper du flag d’interruption ADIF . Un exemple de codage est donnée
dans la section suivante (cf section 2.2.3).

Conversion avec attente active

L’attente active est du au fait que, après avoir lancée la conversion par ADSC, on realise une boucle qui attend que ADSC
retombe à zéro. Un exemple de codage est donnée dans la section suivante (cf section 2.2.3).

Aspects numériques Par défaut, la fréquence d’horloge d’entrée est entre 50 kHz et 200 kHz pour obtenir la résolution
maximale. Si une résolution plus basse que 10 bits est nécessaire, la fréquence d’horloge d’entrée de l’ADC peut alors être plus
haute que 200 kHz.

Temps de conversion Le temps de conversion qui est égal à 13 fois l’horloge système, peut, de plus, être multiplié, par un
facteur de pré-division (cf bits ADPS2−0). Le pré-diviseur produit une fréquence d’horloge acceptable pour l’ADC à partir de
celle du Control Process Unit (CPU). La mise en marche pré-diviseur se fait en positionnant une valeur sur les bit ADPS ∈
ADCSRA et le pré-diviseur commencera à compter dès que l’ADC est allumé en mettant le bit ADEN à 1 .

Les bits ADPS2, ADPS1, ADPS0 sélectionnent l’horloge :

cl
k/

2

cl
k/

4

cl
k/

8

cl
k/

16

cl
k/

32

cl
k/

64

cl
k/

12
8

Prédiviseur 7 bits de l’ADC

CK

ADEN

START

ADPS0

ADPS1

ADPS2

Horloge de l’ADC

Figure 2.3: Pré-diviseur

2.2.3 Les Registres de l’ADC : ADMUX, ADCSRA, ADCH, ADCL
• ADMUX

REFS1 REFS0 ADLAR - MUX3 MUX2 MUX1 MUX0

24

– REFS1, REFS0 ∣∣∣∣∣∣∣∣∣∣∣∣∣

REFS1 REFS0 Tension de Référence

0 0 AREF
0 1 AVcc avec capacité externe sur AREF
1 0 non utilisé
1 1 2, 56 v

∣∣∣∣∣∣∣∣∣∣∣∣∣
– ADLAR : ADC Left Adjust Result Ajustement à gauche à 1 ou à droite à 0 du résultat dans le registre ADCL et

ADCH.

– MUX3,2,1,0 : Choix du canal ADC .

• ADCSRA
ADEN ADSC ADFR ADIF ADIE ADPS2 ADPS1 ADPS0

– ADEN : (AD ENable) Mise en marche du convertisseur avec la mise à 1 du bit, l’arrêt avec la mise à 0, la conversion
en cours sera terminée.

– ADSC : (AD Start Conversion) Lancement de la conversion de la voie sélectionnée (retourne à 0 en fin de conversion).
En mode simple conversion, il faut remettre à 1 à chaque nouvelle conversion. En mode libre, la première conversion
dure 25 cycles puis les suivantes 15, il n’est pas nécessaire de remettre le bit à 1 à chaque conversion.

– ADFR : (Analog Digital Free Running mode) La mise à 1 de ce bit permet de mettre en le convertisseur en mode
conversion libre : mode de fonctionnement ou les conversions ont lieu en permanence sans avoir besoin dus re-lancer.

– ADIF : (AD Interrupt Flag) Passe à 1 une fois la conversion terminée et déclenche l’interruption si ADIE= 1. Ce
bit repasse automatiquement à 0 lors du traitement de la routine d’interruption.

– ADIE : “AD Interrupt Enable” : Validation de l’interruption du convertisseur.

– ADPS2, ..., ADPS0 : Bits de Sélection du facteur de pré-division de l’horloge interne du convertisseur en fonction
du quartz (cf figure 2.3)

• ADCH − ADCL:

– Avec ADLAR = 0 : On cherche un résultat sur 10 bits

- - - - - - ADC9 ADC8

ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0

int L = ADCL;
int H = ADCH;
int res = (H<<8)+L;

– Avec ADLAR = 1 : On cherche un résultat sur 8 bits en laissant tomber ADCL

ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2

ADC1 ADC0 - - - - - -

int res = ADCH;

Programmes relatifs à l’ADC

-1- Mode scrutatif : on réalise des conversions en mode mode "attente active".

25

volatile int lu; // variable globale

void lecture_analogique_scrutative (){
ADCSRA |= (1<<ADSC);
while (ADCSRA & (1<<ADSC)) {};
lu=ADCH; // lecture sur 8 bits

}

int main(void){
DDRB=0x1F; DDRC=0x00; // C : entree , B : Sortie
ADMUX=(1<<ADLAR); // ajust Gauch , PC0 entree analog.
ADCSRA= (1<<ADEN); // Mise On ADC
do {

_delay_ms (200);
lecture_analogique_scrutative ();

} while (1);
return (0);

}

-2- Mode échantillonné : on réalise ici, un déclenchement échantilloné par le timer 1, de la conversion analogique

volatile int F;

ISR(ADC_vect){char L=ADCL;F=ADCH; }

ISR(TIMER1_OVF_vect) {ADCSRA |= (1<<ADSC);PORTB ^=1;}

int main(void){
DDRB=0x01;DDRC=0x00;
ADMUX=(1<<ADLAR); // ajust Gauche , Lecture sur PC0
ADCSRA= (1<<ADEN)+(1<<ADIE); // mise ON du can , IT CAN
TCCR1A =0; TCCR1B = (1 << CS11); // prediv du \timer\ Fcpu/8
TIMSK = (1<<TOIE1); // Validation It de debordement */
sei(); // toute les its autorisees
do {

PORTB ^=1; _delay_ms (50);
}while (1);
return (0);

}

-3- Free Running : On lance l’ADC une seule fois, puis on lit à la volée ADCH et ADCL.

int main(void){
int H,L;
DDRB=0x01; DDRC=0x00;
ADMUX=(1<<ADLAR);
ADCSRA= (1<<ADEN) + (1<<ADSC)+ (1<<ADFR);
do {

PORTB ^=1;
delai (50);
L=ADCL; H = ADCH;
Res = (H<<8)+L;

} while (1);
return (0);

}

26

-4- Mode beuggué : Sans timer relance de l’ADC dans l’interruption de conversion. Le programme principal n’a plus le
temps de s’exécuter.

volatile int F;

ISR(ADC_vect){F=ADCH; ADCSRA |= (1<<ADSC)} // Aie !!!

int main(void){
DDRB=0x01;DDRC=0x00;
ADMUX=(1<<ADLAR); // ajust Gauche , Lecture sur PC0
ADCSRA= (1<<ADEN)+(1<<ADCS)+(1<<ADIE); // mise ON du can , IT

CAN
sei(); // toute les its autorisees
do {

PORTB ^=1; _delay_ms (50);
}while (1);
return (0);

}

27

Chapter 3

Les Timers

Les fonctions d’un timer concernant d’abord les fonctions de temporisation avec la définition de base de temps, la génération
de formes (signaux carrés, MLI) ansi que le comptage d’événements. Un timer permet aussi de mesurer un temps entre deux
événements.

Dans la figure suivante (figure 3) nous illustrons une base de temps et la génération de formes et le comptage d’évènement.
Pour le comptage, la troisième partie de la figure 3 indique que l’on peut compter des fronts qui viennent de la patte T1.

t

Base de temps

t

Forme périodique, MLI

T Détecteur de front

Contrôle logique

101

TCNT

Comptage d’événements

L’ATMEGA8 possède 3 timers : timer 0, timer 1 et timer 2. Les timers 0 et 2 sont des timers 8 bits tandis que les timers
1 est un timer 16 bits. Le timer 2 est plus élaboré que le timer 0, il permet en plus de faire de la MLI et de produire une
interruption de comparaison.

Drapeaux : Un drapeau n’est pas un bit au sens usuel. Il a pour rôle de signaler un évènement et est généralement associé
à une interruption. Ce qui le distingue d’un bit est qu’un drapeau ne peux pas être mis à un ou remis à zéro de façon simple.
Dans l’ATMEGA8, le registre TIFR contient 7 drapeaux qui correspondent à des interruptions liées aux timers 0,1 et 2.

TIFR
OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 - TOV0

• OCF2: "Output Compare Match Flag T2"

• TOV2: "TiOutput Compare Match Flag T2"

28

• ICF1: "Input Capture Flag T1"

– Ce drapeau reçoit un quand la patte ICP1 reçoit un front.
– ICF1 est raz quant l’ ’interruption est exécuté.

• OCF1A/B : "Output Compare A ou B Match Flag T1"

– Ce drapeau reçoit un lors de l’égalité de OCR1B et TCNT1.
– OCF1B est raz quant l’interruption est exécuté.

• TOV1/0: "Timer Overflow T1/0"

– TOV1/0 est mis à un sur un dépassement de capacité
– TOV1/0 est raz quant l’interruption est exécuté.

3.1 Le timer 0

3.1.1 Caractéristiques
Ses fonctions de base

• timer à sortie unique

• Générateur de fréquences

• Comptage d’événements externes

• Pré-diviseur d’horloge 10 bits

• Le timer 0 se manipule à l’aide de seulement 3 registres :

– TCNT0

– TCCR0

– TIMSK

Aperçu global du timer 0 Le timer 0 est un timer 8 bits. Un débordement provoque l’évènement TIMER0_OV F_vect
et la mise à un du drapeau TOV0 (dans le registre TIFR) et possiblement une interruption se produit. Le masquage ou
l’autorisation de cette interruption est réalisé par le bit TOIE0 du registre TIMSK . Comme le montre le schéma précédent
TCNT0 s’incrémente par la patte externe timer 0 ou bien le prescaler (pré-diviseur d’horloge). Ce choix étant fait par les bits
CS02:0 ∈ TCCR0

T0 Détecteur de front

Prescaler

Source d’horloge

TCCR0

Contrôle du prescaler

Contrôle logique
clkT0

TCNT

++
== 0xFF

TOV0 It débordement timer 0

top

Figure 3.1: Aperçu de timer 0

Suivant la fréquence clkT0, le bloc logique provoque l’incrément du registre TCNT0. Et lorsque TCNT0 atteint la valeur
0xFF il repasse à la valeur 0 et dans le même temps le bit TOV0 passe à un. TOV0 agit comme un 9ième bit. Si une interruption
a été mise en place alors ce bit est remis à zéro (raz) lors de l’exécution du sous-programme d’interruption associé.

29

3.1.2 Les registres qui pilotent le timer 0 : TCCR0, TCNT0 TIMSK
• TCCR0

- - - - - CS002 CS001 CS000

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

CS02 CS01 CS00 Description

0 0 0 T0 en pause
0 0 1 clkI/O : Horloge Système
0 1 0 clkI/O/8

0 1 1 clkI/O/64

1 0 0 clkI/O/256

1 0 1 clkI/O/1024

1 1 0 source externe : front descendant sur la patte T0

1 1 1 source externe : front montant sur la patte T0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Remarque 3.1.1 Si, par ailleurs, la patte T0 est utilisée en entrée, alors un front sur cette patte affectera quand même
timer 0 si les modes 6 ou 7 ont été choisis.

• TCNT0 : Accessible en lecture ou écriture : Registre de comptage courant.

• TIMSK
OCIE2 OCIE2 TICIE1 OCIE1A OCIE1B TOIE1 - TOIE0

La condition d’autorisation de l’interruption de débordement de timer 0 est TOIE0 = 1 ET I = 1 ∈SR). Sur un
débordement de TCNT0, on a :

– TOV0 ∈ TIFR qui passe à un, et le programme associé à l’interruption est alors exécuté.

– TOV0 est alors automatiquement remis à zéro dés le début du sous-programme d’IT.

Sinon en mode non interruptif, c.a.d. en mode scrutatif il faut remettre a zéro ce bit EN Y ECRIVANT UN "1".

Exemple d’utilisation du timer zéro avec la mise en place d’une interruption de débordement. Dans ce exemple, la variable
compteur sert à diviser la fréquence de commutation du port B par 50.

ISR (TIMER0_OVF_vect) {
static int Compteur;
if (Compteur ++ == 50) {

Compteur =0;
PortB ^=1 // permet de mesurer la periode

}
}

void configTimer0 (){
TCCR0 = (1<<CS02) + (1<<CS00) ; // clkio /1024
TIMSK = 1<<TOIE0; // Autorisation IT de debordement

}

int main() {
DDRB=0xFF;
configTimer0 ();
sei(); // autorise ttes les interruptions
while (1);

}

30

3.2 Le timer 1

3.2.1 Caractéristiques générales
Ses fonctions de base

Le timer 1 de l’ATMEGA8 possède 16 bits, il possède 2 sorties indépendantes OC1A et OC1B, sur lesquelles il peut générer
16 formes d’ondes différentes dont 12 MLI . De plus, il a une entrée de capture ICP1, avec annulation de bruit, lui permettant
de compter des évènements externes. Il a aussi 4 sources d’it TOV1, OCF1A, OCF1B , ICF1

La figure suivante illustre tous les éléments et registres du timer 1 :

T1
Edge
detector

Prescaler de clkio
Contrôle logique

clkT1

TOV1

OC1A

OC1B

ICP1

Générateur
de MLI

==

TCNT1

++, –, raz

OCR1A

OCR1B

ICR1

top

==

Top
préfixés

== 0

==Générateur
de MLI

OCF1A

OCF1B

ICF1

bottom

Noise
canceller

Edge
detector

Analog.
Comp.
Output

TCCR1ATCCR1B

Registres à programmer pour le pilotage du timer 1

Figure 3.2: Aperçu de timer 1

31

Les registres 16 bits

• le registre de comptage TCNT1

• les registre de sortie de comparaison : OCR1A - OCR1B

• le registre de capture d’entrée ICR1

les registres 8 bits

• Les registres de contrôle du timer TCCR1A -TCCR1B

• le registre de sortie de comparaison : OCR1A - OCR1B

• le registre de capture d’entrée ICR1

Les interruptions du timer 1 : Tous les signaux d’IT sont visibles depuis TIFR. Toutes les interruptions sont masquables
individuellement dans TIMSK Les 4 ITs du timer1 sont :

• TOV1 : Interruption de débordement du 1 ;

• OCF1A : Interruption de égalité entre TCNT1 et OCR1A ;

• OCF1B : Interruption de égalité entre TCNT1 et OCR1B ;

• ICF1 : Interruption de capture de front sur ICP1 ;

Ces signaux d’interruption sont visibles dans avec des drapeaux contenus dans TIFR. De plus, ces interruptions sont
masquables individuellement dans TIMSK.

TIMSK Ce registre regroupe toutes les interruptions liés aux timers 2,1 et 0.
OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 − TOIE0 (TIMSK)

• TICIE1: "Timer 1, Input Capture Interrupt Enable" Dès que TICIE1 et I sont à un, l’interruption de capture est
activée. L’interruption ad hoc est alors exécutée lorsque ICF1 ← 1

• OCIE1A/B : "Timer 1, Output Compare A/B Match Interrupt Enable". Dès que OCIE1A/B et I sont à un, l’interruption
de comparaison est activée. L’interruption ad hoc est alors exécutée lorsque OCF1A/B ← 1

• TOIE1/0 : "Timer 1/0, Overflow Interrupt Enabled" Dès que TOIE1/0 et I sont à un, l’interruption de débordement
est activée.

Contrôle de TCNT1: TCNT1 peut être incrémenté ou décrémenté de façon interne par le prédiviseur ou par une source
externe patte T1. Le bloc logique détermine comment la source est utilisée pour incrémenter ou décrémenter TCNT1. Le timer
1 est inactif quand il n’y a aucune source. La source clkT1 de la figure (en haut à droite de la figure ??) est sélectionnée par
CS12:0 ∈ TCCR1B .

T1 Détecteur de front

Prescaler

Source d’horloge

TCCRB

Contrôle du prescaler

Contrôle logique
clkT1

TCNT1

+/–
== 0xFFFF

TOV1 It débordement

top

Figure 3.3: Controle du comptage du timer 1

32

Le choix de la valeur maximum de TCNT1 : La valeur TOP est soit le maximum du timer (0xFFFF) ou bien une
valeur définie dans ICR1 ou OCR1A. L’utilisation de OCR1A pour définir la valeur TOP, bloque la génération de PWM pour
la sortie OC1A. Lorsque l’on utilise ICR1 pour définir la valeur TOP les deux sorties PWM sont alors disponible (OCR1A et
OCR1B), par contre l’entrée de capture n’est plus disponible.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

BOTTOM BOTTOM = 0x0000

MAX MAX = 0xFFFF

TOP TCNT1 atteind TOP

c.a.d quand il atteint soit :
− 0xFF, 0x1FF, 0x3FF

− OCR1A, ou bien ICR1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Comparaison de seuil : Les deux registres de comparaison OCR1A - OCR1B sont utilisés comme des seuils qui sont
comparés avec TCNT1. Le résultat ces comparaisons peut être utilisé pour générer une forme de type PWM ou bien une
fréquence variable sur les pattes OC1B , OC1B . Ces comparaisons d’égalité vont positionner les flags OCF1A ou OCF1B qui
peuvent alors être utilisé pour générer l’interruption correspondante.

Unité de capture

L’unité de capture peut capturer des événements externes en leur attachant une étiquette temporelle 1 attachée à cette
occurrence. Le signal externe indiquant l’occurrence d’un ou de plusieurs évènements est disponible sur la patte ICP1 ou par
le comparateur analogique. Les étiquettes temporelles peuvent être utilisées pour calculer une fréquence, un rapport cyclique
ou d’autres. Ces étiquettes temporelles sont parfois utilisées pour créer un "log" d’évènements.

Aperçu de l’Unité de Capture Quand un événement (front) se produit (cf figure ??) sur ICP1, ou sur ACO, ce signal
passe par le réducteur de bruit et le détecteur de front. Si il passe cet étage, il déclenche l’écriture de TCNT1 dans ICR1,
TCNT1 constitue alors ce que l’on appelle une étiquette temporelle. Dans le même temps le drapeau ICF1 passe à un.

ICR1 TCNT1

WRITE

ICP1
Annul.
de bruit

Détect.
de front

Sortie
Comp.
Analog.

ICF1

Figure 3.4: Capture d’évènement

En mode interruptif, Si TICIE1 passe à un, une interruption de capture est déclenchée. ICF1 est automatiquement remis
à zéro dans le sous-programme d’IT.

Remarque 3.2.1 ICR1ne peut être mis à jour que lorque l’on utilise le mode qui utilise ICR1 fixant la valeur TOP. Dans
ce cas, les bits WGM13:0 doivent être positionnés avant que ICR1 soit initialisé avec la valeur TOP. On écrira dans ICR1

d’abord l’octet de poids faible puis le poids Fort.
1qui est la valeur courante de TCNT1

33

La source de capture : La patte de capture est ICP1. Cette source peut aussi être connectée au comparateur analogique.
Le comparateur est sélectionné avec le bit ACIC du registre ACS.

Remarque 3.2.2 Attention, changer la source peut provoquer une capture, le flag ICF doit donc être raz après ce changement.

Les pattes ICP1 et la patte de sortie ACO sont échantillonnées avec les mêmes techniques déjà évoquées : Le détecteur de
front est identique. Quand le réducteur de bruit est activé, de la logique est rajoutée avant le détecteur de front ce qui ralentit
le signal de 4 cycles d’horloge. Une entrée de capture peut être déclenchée par programme en contrôlant le PORTC contenant
la patte ICP1.

Réducteur de bruit C’est en fait un filtre numérique qui délivre la sortie ssi les 4 signaux échantillonnés consécutifs sont
égaux. Le réducteur est activé par le bite ICNC1 du registre TCCR1B .

Capture des événements Tout évènement capturé écrase le précédent même si il n’a a pas été traité par le CPU. Aussi,
dans un sous-programme d’interruption il faudra lire ICR1 au plus tôt. On prendra garde à ne pas changer la valeur TOP
lors de l’utilisation de capture. Lors de la mesure d’un signal de type PWM , la détection est changée aprés chaque capture
et cela doit donc être fait aussitôt que ICR1 a été lu.

Fonctionnement de l’Unité de Comptage

Le registre TCNT1 est piloté par le bloc logique via les signaux clear, increment ou decrement et part la source clkT1. clkT1

peut être généré par une source externe ou interne selon les bits CS12 : 0. Quand CS12 : 0 = 0, le timer 1 est arrêté, la valeur
de TCNT1 étant toujours accessible par le CPU. Une écriture par le CPU sur TCNT1 à la priorité sur toute autre opération.

La séquence de comptage peut alors déterminer une forme d’onde (waveform) sur la patte OC1A selon les bits WGM13:0
des registres TCCR1A et TCCR1B . Les formes d’onde dépendent en fait des modes de comptage (cf section 3.2.3) sur TCNT1.
Le bit de débordement TOV1 dépend aussi du mode choisi sur WGM13:0.

Unité de Comparaison de sorties

Les sorties OC1A/B sont controlées par les bits COM1x1 : 0. Un de ces bits à un provoque la sortie du générateur de forme.

D Q

DDRB

D Q

PORTB

D Q

OC1A/B
1

0

Générateur
de formesFOCx0

COM1x0

COM1x1

clkio

Figure 3.5: Comparateur

34

La figure indique que le port doit être configuré en sortie à l’aide du registre DDRB et que la sortie sur les pattes OC1A
ou OC1B deviendrons une sortie du générateur de forme (à la place de PORTB) en fonction des modes de comparaison défini
par COM1x1 : 0, ainsi que du bit FOCx.

3.2.2 Les 16 modes du timer 1
Les 4 bits WGM13:0 permettent de définir 15 modes (le mode 13 est inutilisé) regroupés 5 catégories :

• 1 mode Normal

• 2 mode Clear To Compare

• 5 modes PWM rapide

• 5 modes à phase correcte PWM

• 2 modes à phase et fréquence correcte PWM(MLI centrée)

3.2.3 Les 16 Modes du générateur de formes : WGM13:0

a) Le mode Normal : WGM13:0=0000

Dans ce mode, le compteur s’incrémente (cf figure 3.2.3) jusqu’à la valeur TOP=0xFFFF et recommence à BOTTOM=0x0000,
tov1 passe alors à 1. Ce mode ne sert pas à générer une PWM , mais il est plutôt utilisé pour générer une IT de débordement
ou une it d’égalité avec un seuil défini dans le registre OCR1A. Il peut aussi être utilisé pour dater des captures d’évènements.

Timer 1 en mode normal : IT de débordement possible sur les TOP

t

TCNT1

b) Le mode Clear Timer on Compare Match (CTC) WGM13:0 = 0100 ou 1100
Dans ce mode, OCR1A (mode 4) ou ICR1 (mode 12) peuvent définir TOP. Le compteur s’incrémente puis est raz quand

il atteint TOP puis il recommence. Des its de débordement ou d’égalité sur seuil peuvent être mises en place.
Dans le cas ou OC1A a été déclarée en sortie (DDRB) et que COM1A1 : 0 a été positionné à 10 alors on se place Cette

patte va alors commuter à chaque fois que le compteur atteint TOP. (Voir la table Table 3.1 (hyperlien) pour le positionnement
des bits com1x1:0)

Mode CTC: Commutation de OC1B sur TOP

t

TCNT1

t

OC1B

35

c) Le mode Fast PWM : WGM13:0=5,6,7,14 ou 15

Cette PWM à simple pente permet de générer des PWM deux fois plus rapide. Ce mode peut être utile pour les applications
de regulation de puissance, ou de conversion numérique-analogique. TCNT1 compte de BOTTOM à TOP et recommence à
partir de BOTTOM .

Comme l’indique la figure (Figure 3.2.3 (hyperlien)), en mode non inversé, lorsque TCNT1 atteint le seuil OCR1A, OC1A

est raz sur égalité de seuil et set à BOTTOM . Des its de débordement ou d’égalité sur seuil peuvent être mises en place. TOP
peut être défini avec les valeurs 0x00FF, 0x01FF, or 0x03FF (mode 5, 6, ou 7) ou par ICR1 (mode 14) ou bien par OCR1A

(mode 15). Utiliser ICR1 pour définir le TOP permet d’utiliser OCR1A comme registre de seuil et de générer une PWM sur
OC1x. Positionner les bits com1x1 : 0 (voir la table Table 3.2) permet de définir un mode inversé (ou non). La PWM est
obtenu par des set ou des raz de OC1x

NB : On peut générer un front étroit en mettant OCR1x à BOTTOM . En mettant OCR1x à TOP on a un niveau haut.

– : Egalité de comparaison de TCNT1 avec OCR1B

t

TCNT1

t

OC1B

Figure 3.6: Chronogramme du mode Fast PWM

Fréquence Dans ce mode la fréquence est définie par : fOC1APWM =
fclkI/O

N.(1+TOP)

ou N représente le facteur de prédivision (1,8,64,256,1024)

c) Le mode PWM à phase correcte WGM13:0=1,2,3,10 ou 11

Ce mode permet d’obtenir une haute résolution de PWM à phase correcte. On est, cette fois ci, sur du double pente
avec comparaison de seuil. Le compteur compte de la valeur BOTTOM à TOP puis il décrémente jusqu’a BOTTOM et
recommence indéfiniment. TOP est défini par les valeurs 0x00FF, 0x01FF, ou 0x03FF (mode 1, 2, or 3), ou bien par ICR1 en
mode 10, ou encore par OCR1A en mode 11.

Instant de commutation de OC1x Les instants de commutations correspondent aux moment ou le registre OCR1x est égal
à TCNT1. On aura le même principe pour le mode suivant (Phase et fréquence correcte). On voit ces instants de commutation
dans la figure ?? ou les événements se produisent lors des montées et des descentes :

• En mode non inversé, OC1x est raz sur l’égalité de TCNT1 avec OCR1x en comptant, et mis à un sur l’égalité de
TCNT1 avec OCR1x en décomptant.

• En mode inversé, OC1x est mis à un sur l’égalité de TCNT1 avec OCR1x en comptant, et raz sur l’égalité de TCNT1

avec OCR1x en décomptant.

(cliquer sur le lien Table 3.3 pour le positionnement des modes inversés ou non inversés)

Remarque 3.2.3 La différence avec le mode “Phase et fréquence correcte” se situe dans la mise à jour de OCR1x . En phase
correcte OCR1x et TOP sont mis à jour sur TOP. Cela signifie que si OCR1x est modifié pendant une pente, sa nouvelle
valeur n’est prise en compte que sur le prochain TOP.

36

En application de cette remarque, on peut voir sur la figure 3.2.3 sur le quatrième triangle on a changé OCR1x et il est pris
en en, compte après le top sur la pente descendante.

Ce mode à double pente et son caractère symétrique (MLI centrée) le rend plus utilisé dans les applications de commande de
moteurs. Pour des valeur de TOP statiques les modes phase correcte et phase et fréquences correctes sont presque identiques.
Cependant, si l’on veux changer TOP alors il vaut mieux utiliser le mode phase et fréquence correcte. En mode phase correcte
il y a des asymétries dues, à la remarque précédente, qui apparaissent lors du changement de TOP si la nouvelle valeur est
inférieure à l’ancienne.

TOV1 est positionné sur débordement du compteur et peut être utilisé pour declencher une it. Une autre it est celle de
comparaison sur égalité de seuil.

– : Égalité de comparaison avec de TOP avec OCR1B

t

TCNT1

t

OC1B

Figure 3.7: Chronogramme du mode phase correcte

Fréquence Dans ce mode la fréquence est définie par : fOC1APCPWM =
fclkI/O

2.N.(TOP+1)

ou N représente le facteur de prédivision (1,8,64,256,1024)

Mode inversé ou non En positionnant les bits COM1x1 : 0 à 2 on aura du non inversé. En positionnant les bits COM1x1 : 0
à 3 on aura de l’inversé. (consulter la table Table 3.3 pour le positionnement des modes inversés ou non inversés)

d) Le mode PWM à phase et fréquence correcte : "MLI Centrée" WGM13:0 = 8 ou 9

En mode non inversé (cf figure suivante) les sorties OC1A et OC1B sont remises à zéro sur l"égalité entre TCNT1 et
OCR1x en comptant et mis à un sur égalité en décomptant. En mode inversé c’est l’inverse.

Remarque 3.2.4 OCR1x sont mis à jout sur BOTTOM. Cela signifie que si OCR1x est modifié dans une pente alors sa
nouvelle valeur n’est prise en compte que sur le prochain BOTTOM.

L’opération en double pente donne une fréquence minimum plus basse comparée à celle en simple pente. Cependant son
caractère très symétrique en fait le mode le plus utilisé en terme de contrôle moteur.

37

Egalité de comparaison avec OCR1B

t

TCNT1

tOC1B

Figure 3.8: Mode Phase et fréquence correcte

Au contraire du mode précédent il y a une symétrie dans le signal quand on examine sa période. De plus, OC1X ne sera
visible sur PORTB que si il a été programmé en sortie via DDRB .

Inversé/non inversé En positionnant les bits COM1x1 : 0 à 2 on aura du non inversé. En positionnant les bits COM1x1 : 0
à 3 on aura de l’inversé.

Fréquence Dans ce mode la fréquence est définie par : fOC1APFCPWM =
fclkI/O

2.N.(1+TOP)

ou N représente le facteur de prédivision (1,8,64,256,1024)

3.2.4 Inventaire des registres utiles au timer 1

Le registre TCCR1A

COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B WGM11 WGM10

∣∣∣∣∣∣∣∣∣∣∣∣∣

COM1x1 COM1x0 Description

0 0 P libre OC1x déconnectés
0 1 changement d ’état quand OC1x = TCNT1

1 0 raz sur égalité
1 1 mis à un sur égalité

∣∣∣∣∣∣∣∣∣∣∣∣∣
Table 3.1: Mode normal et CTC

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

COM1x1 COM1x0 Description

0 0 P libre OC1x déconnectés
0 1 WGM13:0 = 15

OC1Acommute sur égalité
OC1B déconnectés

1 0 raz OC1x sur égalité
mis à un sur BOTTOM

1 1 mis à un sur égalité
raz sur BOTTOM

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Table 3.2: Mode Fast PWM

38

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

COM1A1 COM1A0

COM1B1 COM1B0 Description

0 0 P libre OC1x déconnectés
0 1 OC1A commmute sur égalité, OC1B déconnecté
1 0 raz OC1x sur égalité en incrémentant

mis à un en décrémentant sur égalité
1 1 mis à un sur égalité en incrémentant

raz sur égalité en décrémentant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Table 3.3: Mode phase correcte et phase et fréquence correcte

Bits FOC1x Ces bits FOC1x ne sont actifs que si on n’est pas en PWM mode. Cependant ces bits doivent être raz en
PWM mode. FOC1x← 1 force à l’instant choisi, une comparaison entre TCNT1 et OCR1A (par ex.). Ce sont des bits
d’échantillonage. En lecture ces bits valent zéro.

WGM11:0 Waveform Generation Mode Ces bits déterminent le sens du comptage, TOP et le type de forme et on l’a
vu précédement, ils déterminent aussi le mode : normal, CTC, et les trois modes PWM :

• PWM rapide : Fast PWM

• PWM à phase correcte : Phase correct PWM .

• PWM à phase et fréquence correcte : Phase and frequency correct PWM .

Le registre TCCR1B

ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10

ICNC1 : Réduction de bruit La réduction de bruit se fait par ICNC1 : Input Capture Noise Canceler. Si ICNC1 ← 1
cela active le réducteur de bruit de l’entrée de capture.

Quand le réducteur de bruit est activé l’entrée de capture ICP1 est filtrée. Le filtre affecte sa sortie si on a 4 sorties
successives égales ce qui induira un délai de 4 cycles d’horloges.

ICES1 : La sélection du type d’évènement La sélection du type d’évènement se fait par ICES1 : Input Capture Edge
Select. Ce bit sélectionne quel type de front permet de déclencher la capture. Quand ICES1 = 0 c’est un front descendant,
lorsque ICES1 = 1 c’est un front montant.

Quand une capture est déclenchée, TCNT1 est vidé dans ICR1. ICF1 est positionné à un et peut générer une interruption
. Quand c’est ICR1 qui détermine TOP alors ICP1 est déconnectée et le mécanisme de capture ne fonctionne plus.

WGM13 : 2 Waveform Generation Mode (cf 3.2.2)

Bit CS12:0 Clock Select Ces trois bits sélectionnent la prédivision : division de Cllkio par N = (1, 8, 64, 256, 1024).

Les Registres TCNT1, OCR1x, ICR1

TCNT1 est accessible en lecture et en écriture. Modifier TCNT1 pendant le comptage peut produire un effet indésirable
si la nouvelle valeur est supérieure aux valeurs de comparaison : on manque alors une comparaison.

OCR1x, les registres de comparaison contiennent une valeur 16 bits qui est continument comparée avec la valeur courante
de TCNT1. L’égalité est utilisée pour générer une interruption ou une forme sur la patte OC1x.

ICR1 est mis à jour avec la valeur du compteur TCNT1 à chaque fois qu’un événement se produit sur la patte ICP1 . Ce
registre peut aussi être utilisé pour définir la valeur TOP.

Le registre TIMSK

OCIE2 OCIE2 TICIE1 OCIE1A OCIE1B TOIE1 - TOIE0

39

TICIE1: "Timer/Counter1, Input Capture Interrupt Enable" :

Quand TICIE1← 1, le bit I du registre d’état est mis à un, toutes les interruptions sont donc globalement autorisées et
en particulier l’interruption de capture. L’interruption ad hoc est alors exécutée lorsque ICF1 ∈ TIFR reçoit un.

OCIE1A: "Timer/Counter1, Output Compare A Match Interrupt Enable" : Quand OCIE1A← 1, le bit I du
registre d’état est mis à un, toutes les interruptions sont donc globalement autorisées et en particulier l’interruption de
comparaison. L’interruption ad hoc est alors exécutée lorsque OCF1A∈TIFR reçoit un.

OCIE1B: "Timer/Counter1, Output Compare B Match Interrupt Enable" : Quand OCIE1A← 1, le bit I du
registre d’état est mis à un, toutes les interruptions sont donc globalement autorisées et en particulier l’interruption de
comparaison. L’interruption ad hoc est alors exécutée lorsque OCF1B ∈ TIFR reçoit un.

TOIE1: "Timer/Counter1, Overflow Interrupt Enable" :

Quand TOIE1← 1, le bit I du registre d’état est mis à un, toutes les interruptions sont donc globalement autorisées et en
particulier l’interruption de comparaison. L’interruption ad hoc est alors exécutée lorsque TOV1 ∈ TIFR reçoit un.

Le registre TIFR

OCF2 TOV2 IC1 OCF1A OCF1B TOV1 - TOV0

ICF1: "Timer/Counter1, Input Capture Flag" :

ICF1 est un drapeau (flag) qui reçoit un quand la patte ICP1 reçoit un signal. Quand ICR1 est utilisé pour stocker TOP
avec un mode de WGM13 : 0, ICF1 est positionné à un quand le compteur atteint TOP. ICF1est automatiquement raz par
le sous-programme d’interruption est exécuté. Sinon ICF1 peut être raz en y écrivant un un.

OCF1A: "Timer/Counter1, Output Compare B Match Flag" :

OCF1A est un drapeau (flag) qui reçoit un quand l’égalité de OCR1A avec TCNT1 se produit. OCF1A est automatiquement
raz par le sous-programme d’interruption est exécuté. Sinon OCF1A peut être raz en y écrivant un un.

OCF1B: "Timer/Counter1, Output Compare B Match Flag" :

Ce bit est un drapeau (flag) qui reçoit un quand l’égalité de OCR1B avec TCNT1 se produit. OCF1B est automatiquement
raz par le sous-programme d’interruption est exécuté. SinonOCF1B peut être raz en y écrivant un un.

TOV1: "Timer/Counter1, Overflow Flag" :

Dans les modes normal et CTC modes, TOV1 est mis à un sur un dépassement de capacité TOV1 est automatiquement
raz par le sous-programme d’interruption est exécuté. Sinon TOV1 peut être raz en y écrivant un un.

40

3.2.5 Résumé des 16 modes de MLI du timer 1∣∣∣

v WGM13 WGM12 WGM11 WGM10 Mode TOP Mise à jour Mise à un
des Timers de OCR1x de TOV1

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM Phase Correcte 8-bit 0x00FF TOP BOTTOM
2 0 0 1 0 PWM Phase Correcte 9-bit 0x01FF TOP BOTTOM
3 0 0 1 1 PWM Phase Correcte 10-bit 0x03FF TOP BOTTOM
4 0 1 0 0 CTC OCR1A immediate MAX

5 0 1 0 1 Fast PWM 8-bit 0x0FF BOTTOM TOP
6 0 1 1 0 Fast PWM 9-bit 0x1FF BOTTOM TOP
7 0 1 1 1 Fast PWM 10-bit 0x3FF BOTTOM TOP
8 1 0 0 0 PWM Phase, freq. correctes ICR1 BOTTOM BOTTOM
9 1 0 0 1 PWM Phase, freq. correctes OCR1A BOTTOM BOTTOM
10 1 0 1 0 PWM Phase Correcte ICR1 TOP BOTTOM
11 1 0 1 1 PWM Phase Correcte OCR1A TOP BOTTOM
12 1 1 0 0 CTC ICR1 immediate MAX

13 1 1 0 1 Réservé − − −
14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP
15 1 1 1 1 Fast PWM OCR1A BOTTOM TOP

∣∣∣
3.2.6 Exemples d’utilisation du timer 1

-1- MLI centrée de 66% sur la patte PB2(OC1B).

int main (void) {
int i;
DDRB = 0x04; //PB2 en sortie

TCCR1A= (1<<COM1B1)+(1<<WGM10); //Mli centree
TCCR1B= (1<<WGM13)+(1<<CS10); // Prediv N=1
OCR1A= 532; // Fh = 15khz , Th = 66 mus
OCR1B= 361; // Ton/Thash = 0.66
while (1) {}

}

-2- Interruption de débordement du timer 1:

ISR (TIMER1_OVF_vect) {
static byte Compteur;
if (Compteur ++ == 50) {// commuter led 1/50

Compteur =0;
PortB ^=1; // clignotement PB0

}
}

int main() {
DDRB=0x01; //PB0 sortie

TCCR1A = 0; // Mode normal
TCCR1B = 1<<CS10; // Prediv N=1
TIMSK = 1<<TOIE1; //It debordement
sei();
while (1) {}

}

41

3.3 Le timer 2
Les fonctions du timer 2 sont la génération de fréquences, le comptage, le mode raz de TCNT2 sur comparaison avec recharge-
ment automatique et la fonction génération de formes (waveform). Celle-ci permet les modes suivant :

• mode sans erreur ;

• mode PWM à phase correcte ;

3.3.1 Aperçu du timer 2

Tosc1

Tosc2 External
Oscillator

clkio

Prescaller

Contrôle logique
clkT2

TOV2

OC2A

OC2B

==

==

TCNT2

++, –, raz

OCR2A

OCR2B

top

==

Top
préfixés

== 0

Générateur
de MLI

Générateur
de MLI

OC2A

OC2B

bottom

TCCR2A TCCR2B TIMSK

Figure 3.9: Aperçu du timer 2

Le timer 2 est un compteur 8 bits aussi, TCNT2, OCR2 sont des registres de 8 bits. Les ITs sont visibles dans TIFR
et masquables dans TIMSK. Le timer peut être clocké de façon interne par le prédiviseur ou de façon asynchrone par
TOSC1, TOSC2. Cette synchronisation est contrôlée par le registre ASSR. Le block logique sélectionne la source d’incrémentation.
OCR2 est comparé à tout moment à TCNT2 et le test de cette égalité peut être utilisé à tout moment pour générer des formes

42

de type PWM ou pour faire varier une fréquence sur les pattes OC2A OC2B . Le débordement génère sur une interruption par
le flag OCF2 On a BOTTOM = 0, MAX = 0xFF , de plus TOP peut être soit MAX soit la valeur placée dans OCR2

Contrôle du comptage

Tosc1

Tosc2 External
Oscillator

clkio

Prescaller

Contrôle logique
clkT2

TOV2

TCNT2

Count Clear Direction

Top Bottom

Figure 3.10: Controle du comptage du timer 2

• Comptage : incrémentation ou dé-crémentation ou remise à zéro ;

• clkT2 horloge d’incrément

• TOP : signale que TCNT2 a atteint sa valeur haute ;

• BOTTOM : signale que TCNT2 a atteint 0 ;

Contrôle de la fréquence

• CS22 : 0 sélectionne la clock ;

• si CS22 : 0= 0 le timer est au repos ;

• WGM21 WGM21∈ TCCR2 permettent de déterminer la séquence de comptage.

3.3.2 Génération de forme : pulse, PWM,. . .
Les Mli sont obtenues en comparant à tout moment les registres ocr2 et tcnt2 :

oc2

OCR2 TCNT2

==

Générateur
de formes

Top
Bottom
FOC2

WGM21 WGM20

Figure 3.11: Génération de formes

OCR2 est un registre à buffer double en mode PWM . On n’a pas la double bufferisation en mode normal et CTC. Quand
on est en double buffer le CPU accède au buffer de OCR2 , quand ce mode est désactivé le CPU accède au registre lui-même.

Mise à jour du buffer et de OCR2 :
La mise à jour d’OCR2 est retardée au moment ou TCNT2 atteint soit TOP ou BOTTOM évitant ainsi de créer des PWM
non symétriques rendant la sortie "Glitch Free".

43

En mode non PWM , on peut forcer la comparaison par FOC2 si il y a égalité OC2 prend une valeur. C’est COM21:0
qui définissent ce qui se passe alors sur OC2 (1, 0 ou commutation). Toute écriture du CPU bloque toute comparaison avec
TCNT2 ce qui permet de positionner une même valeur d’initialisation sur OCR2 et TCNT2 . Par contre, si on met une valeur
dans OCR2 égale à TCNT2 le test d’égalité va être perdu.

Unité de comparaison

Le schéma suivant (3.3.2) exprime que, si on a configuré le registre DDR en sortie (porte avant la pin oc2), alors la patte oc2
pourra recevoir le signal du bloc générateur de formes (ou bien PORT) :

D Q

DDR

D Q

PORT

D Q

D Q

OC2

OC2
1

0

Générateur
de formesFOC2

COM21

COM20

clkio

Figure 3.12: Unité de comparaison

• COM21:0 contrôle 2 fonctions :

– La sortie de comparaison du générateur de formes

– Ce que reçoit OC2 dans le cas ou l’un des deux bits est à un.

• Cette patte reçoit soit :

– La sortie du générateur de formes

– soit un bit d’un port , suivant la configuration du Port fixé par DDR

3.3.3 Les modes du timer 2
Les modes sont programmés par les bits WGM21:0 et COM21:0. Les bits COM21:0 contrôlent si la PWM est inversée ou non.
Pour les modes non PWM (tel que le mode comparaison), les bits COM21:0 contrôlent aussi, si OCF2 doit être raz,mis à
un, ou commuté (toggle). Enfin, WGM21:0 contrôlent les modes.

44

Mode normal WGM21:0= 0

Dans ce mode TCNT2 s’incrémente jusqu’a 0XFF puis recommence depuis 0. TOV2 passe à un quand TCNT2 retombe à
zero. TOV2 sert alors de 9ième bits, il sert aussi à déclencher une interruption . L’interruption est raz automatiquement par
l’exécution du sous-programme d’interruption et en mode non interruptif il faut faire une raz par une mise à un.

Mode Clear timer on Compare CTC : WGM21:0 = 2

Dans ce mode OCR2 définit le top et donc la résolution. TCNT2 est raz quand TCNT2 devient égal à OCR2 qui définit la
valeur TOP (cf figure 3.3.3).

Mode CTC: Commutation de OC2 sur TOP

t

TCNT2

t

OC2

Figure 3.13: le timer 2 : Mode Clear timer on Compare

Interruption: Une interruption peut être générée à chaque TOP. Dans le sous-programme d’interruption on peut changer
le TOP. Attention : ne pas changer TOP avec une valeur à TCNT2.

Pour ce mode, la fréquence s’obtient par la formule : fOC2
=

fclkI/O

2.N.(1+OCR2)

Mode PWM a fréquence rapide avec WGM21:0 = 3

C’est un mode à simple front. TOV2 est mis à un quand TCNT2 atteint MAXn l’interruption peut mettre à jour OCR2 .
TCNT2 compte de BOTTOM à MAX et repart de BOTTOM ; En mode non inversé, OC2 est raz sur égalité de TCNT2 et
OCR2 , et mis à un sur BOTTOM Pour ce mode, la fréquence s’obtient par la formule : fOC2PWM =

fclkI/O

N.(1+OCR2)

45

– : Egalité de comparaison de TCNT2 avec OCR2

t

TCNT1

t

OC2

Figure 3.14: le timer 2 : Mode PWM rapide

Le mode PWM à phase correcte

Dans ce mode WGM21:0= 1, on a une PWM à phase correcte. Elle est basée sur un mode double front. TOV2 est mis à
un quand TCNT2 atteint BOTTOM et l’interruption peut mettre à jour OCR2 TCNT2 compte de BOTTOM à MAX et
repart de MAX jusqu’a BOTTOM ;

inversé/non inversé En mode non inversé, en comptant OC2F est raz sur égalité de TCNT2 et OCR2 , tandis que en
décomptant, OC2a ou OC2b sont mis à un sur sur égalité de TCNT2 et OCR2 . On a un mode ici symétrique : "phase
correcte". Pour ce mode, la fréquence s’obtient par la formule : fOC2 =

fclkI/O

2.N.(1+OCR2)

– : Égalité de comparaison avec TOP avec OCR2

t

TCNT2

t

OC2

Figure 3.15: Génération de formes

3.3.4 Les registres utiles au timer 2
Le registre TCCR2

Le registre TCCR2

FOC2 WGM2 COM21 COM20 CS22 CS21 CS20 TCCR2

Bit 7 : FOC2: Force Output Compare FOC2 est actif quand on est pas en mode PWM . Cependant ce bit doit êtr
raz quand TCCR2 est mis à jour en mode PWM . Quand FOC2← 1 une comparaison immédiate est forcée selon la valeur
des bits de COM21:0 OC2 sera mis à jour. FOC2 est un bit provoquant un échantillonnage.

46

Bit 6,3 : WGM21:0: Waveform Generation Mode Ces Bits contrôlent la séquence de comptage, le maximum et le type
de forme : ∣∣∣∣∣∣∣∣∣∣∣

v WGM21 WGM20 Mode TOP maj OCR2 TOV2 ← 1?

0 0 0 Normal 0xFF Immédiatement MAX

1 0 1 PWM phase correcte 0xFF TOP BOTTOM
2 1 0 CTC OCR2 Immédiatement MAX

3 1 1 PWM rapide 0XFF BOTTOM MAX

∣∣∣∣∣∣∣∣∣∣∣
Bit COM21:0: Compare Match Output Mode En mode de comparaison∣∣∣∣∣∣∣∣∣∣∣∣∣

COM21 COM20 description

0 0 OC2 est deconnectée du P
0 1 OC2 est commutée sur égalité
1 0 OC2 est raz sur égalité
1 1 OC2 est mise à un sur égalité

∣∣∣∣∣∣∣∣∣∣∣∣∣
Bit COM21:0: Compare Match Output Mode En mode de comparaison et PWM rapide∣∣∣∣∣∣∣∣∣∣∣∣∣

COM21 COM20 description

0 0 OC2 est deconnectée du P
0 1 réservé
1 0 OC2 est raz sur égalité, mise à un sur BOTTOM

1 1 OC2 est mise à un sur égalité, raz sur BOTTOM

∣∣∣∣∣∣∣∣∣∣∣∣∣
Bit 5:4 : COM21:0: Compare Match Output Mode En mode de comparaison et PWM à phase correcte

∣∣∣∣∣∣∣∣∣∣∣∣∣

COM21 COM20 description

0 0 OC2 est deconnectée du P
0 1 réservé
1 0 OC2 est raz sur égalité en comptant, mise à un sur égalité en décomptant
1 1 OC2 est mise à un sur égalité en comptant, raz sur égalité en décomptant

∣∣∣∣∣∣∣∣∣∣∣∣∣
Bit 2:0 : CS22:0: Clock Select

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

CS22 CS21 CS20 description

0 0 0 pas d’horloge, le timer 2 est stoppé
0 0 1 clkI/O

0 1 0 clkI/O/8

0 1 1 clkI/O/32

1 0 0 clkI/O/64

1 0 1 clkI/O/128

1 1 0 clkI/O/256

1 1 1 clkI/O/1024

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ASSR

Le registre ASSR
- - - - AS2 TCN2UB OCR2UB TCR2UB

Bit AS2: Asynchronous Timer/Counter2 Quand AS2= 0, le timer 2 est cadencé par clkI/O Quand AS2= 1, le timer 2
est cadencé par le quartz connecté à TOSC1

47

Bit TCN2UB: Timer/Counter2 Update Busy Quand le timer 2 fonctionne en mode asynchrone, et que TCNT2 est
mis à jour alors TCN2UB ← 1. Un niveau bas sur ce bit indique que TCNT2 est prêt à être mis à jour avec une nouvelle
valeur.

Bit 1 : OCR2UB: Output Compare Register2 Update Busy Quand le timer 2 fonctionne en mode asynchrone, et
que OCR2 est mis à jour alors OCR2UB ← 1. Un niveau bas sur ce bit indique que OCR2 est prêt à être mis à jour avec
une nouvelle valeur.

Bit 0 : TCR2UB : Timer/Counter Control Register2 Update Busy Quand le timer 2 fonctionne en mode asynchrone,
et que TCCR2 est mis à jour alors TCCR2UB ← 1. Un niveau bads sur ce bit indique que TCCR2 est prêt à être mis à
jour avec une nouvelle valeur.

Definition 3.3.1 Accès aux registres "busy" Si une écriture est réalisée sur un des trois registres : TCNT2 , OCR2 ou TCCR2

alors que les flags correspondants sont busy alors on peut corrompre les calculs ou provoquer une interruption non désirée.

Précautions sur le passage en mode asynchrone Lors des changements synchrones-asynchrones les valeurs des registres
TCNT2 , OCR2 ou TCCR2 peuvent être erronées. La procédure de change vers le mode asynchrone est la suivante :

• Désactiver les interruptions relatives à le timer 2 par raz de OCIE2 et OCIE2

• Sélectionner la source avec AS2

• Ecrire les nouvelles valeurs dans TCNT2 , OCR2 ou TCCR2

• Passer en mode Asynchrone : Attendre que les bits TCN2UB , OCR2UB ou TCR2UB passe de "busy" à "libre" (valeur
0).

• raz les flags d’interruption relatifs à le timer 2

• Ré-autoriser les ITs

• L’oscillateur est optimisé pour utiliser un quartz de 32, 768 khz.

• Attention la fréquence du quartz principal doit être au moins 4 fois supérieure à celle du quartz que l’on utliserait en
mode asynchrone connecté à TOSC1.

• Lors d’une écriture dans TCNT2 , OCR2 ou TCCR2, la nouvelle valeur passe par TEMP et n’est accessible que après
deux fronts positifs sur TOSC1. Il faudra à l’utilisateur scruter les bits "busy" déjà évoqués avant d’écrire de nouvelles
valeurs.

3.3.5 Les interruptions du timer 2

3.3.6 TIMSK

• Bit 7 : OCIE2: Timer/Counter2 Output Compare Match Interrupt Enable
Quand OCIE2← 1 et que I = 1(∈ SREG) alors l’interruption de comparaison du timer 2 est active. Si une égalité
entre TCNT2 et OCR2 se produit alors OCF2← 1(∈TIFR)

• Bit 6 : OCIE2: Timer/Counter2 Overflow Interrupt Enable
Quand TOIE2← 1 et que I = 1(∈ SREG) l’interruption de débordement est active et TOV2 ← 1(∈ TIRF)

3.3.7 TIFR
• Bit 7 : OCF2: Output Compare Flag 2
OCF2← 1 quand une égalité de comparaison se produit entre TCNT2 et OCR2 .

– OCF2← 1 par le hard dans le sous-programme d’interruption.

– Sinon, OCF2← 0 en écrivant un un.

– C’est quand on a I = 1(∈ SREG) et TOCIE2=1 et OCF2= 1 que le sous-programme d’interruption est exécuté.

48

• Bit 6 :TOV2: Timer/Counter2 Overflow Flag

– TOV2← 1 quand un overflow se produit.

– TOV2← 0 par le hard dans le sous-programme d’IT.

– Sinon, TOV2← 0 en écrivant un un.

• C’est quand on a I = 1(∈ SREG) et TOIE2 = 1 et TOV2=1 que le sous-programme d’IT est exécuté.

• En mode PWM TOV2 reçoit un quand il y a un changement de direction à 0x00

Exemple d’utilisation du timer 2 avec la mise en place d’une interruption de débordement :

#define LedToggle PortB ^=1
volatile byte Compteur;

ISR (TIMER2_OVF_vect)
{ byte i;

TCNT2 = 0;
if (Compteur ++ == 50) {

Compteur =0;
LedToggle; // mesurer la periode

}
}

void configTimer2 (){
TCCR2A = 0; // Mode normal
TCCR2B = (1<<CS22) + (1<<CS21) ; // clkio /256 est incremente toutes les 16uS
TIMSK2 = 1<<TOIE2; // TOIE2

}
int main() {

DDRB=0xFF;
configTimer2 ();
sei(); // autorise les interruptions
while (1);

}

49

Chapter 4

La programmation en langage C

4.1 Structure de programme
Un programme C sur microcontrôleur est composé de trois parties. Les entêtes, les fonctions nécessaires et le programme
principal (main) qui contiendra la boucle infinie.

// ----------------ENTETE
#define M1 0x1F
#define maxDelai 262

// ----------------FONCTIONS
void sleep(int dizaines){

int i=0;
for(i=0;i<10* dizaines;i++) _delay_ms (10);

}
// ----------------MAIN
int main(void)
{

DDRD = 0b1111011;
do {

PORTD ^=0 x0F;
sleep (10);

} while (1);
}

4.1.1 Entête
Sous l’IDE Arduino, il n’y a pas besoin d’inclure de bibliothèques, et par contre, on peut y définir des constantes non modifiables
ou des fichiers à inclure.

#define Max_del 262
#include "mesfonctions.c" // Inclusions de fichier c
#include "interface.h" // Inclusion de bibliotheque utilisateur
#define CommuteLed PORTB ^=0 x01 // Macro qui commute PB0

50

4.1.2 Main
Un main commence par des initialisations et se termine généralement par une boucle infinie :

void fonction1 () {...}
int fonction2 (){int a; ... ; return a}
int main(void)
{

DDRC = 0x00; // PORTC en entree
DDRB = 0x01; // PB0 en sortie
DDRD = 0b1111011; // PORTD en sortie , PD2 en entree
int j;
do {

sleep (10);
fonction1 ();
j=fonction2 ();

} while (1);
return (1);

}

4.1.3 Fonctions
Elles apparaissent de préférence (sinon on mettra les prototypes) avant le main :

int carre(int d){return d*d;}

void sleep(int dzs){
int i=0;
int delai=carre (10);
for(i=0;i<10* dzs;i++) _delay_ms(delai);

}

void entier(int nbtours , int sens){
int i,j;
int Tentier [4]={1 ,2 ,4 ,8};

for(j=0;j<nbtours *12;j++) {
for(i=3;i>=0;i--){

sleep (2);
PORTB=Tentier[i];

}
}

}

4.1.4 Déclaration de variable globales : attribut volatile
Pour les variables globales, on aura parfois besoin d’utiliser l’attribut volatile qui est une directive qui indique au compilateur
de déclarer une variable dans la RAM et non dans la zone de registres. On utilisera cet attribut quand une variable dans deux
cas :

• Quand la variable peut être, à la fois, modifiée dans un programme d’interruption et à la fois lue dans le programme
principal. On évite alors des problèmes de mise en cache et de synchronisation entre l’interruption et la boucle principale
qui font que la variable a peut être une valeur qui ne sera pas mise à jour.

• Détection d’un changement d’état : Si vous utilisez une interruption pour détecter un changement d’état sur une broche
(par exemple, un bouton-poussoir), vous pouvez déclarer la variable de détection comme "volatile" pour vous assurer
qu’elle sera mise à jour instantanément, elle ne sera pas mise en cache.

• Attention, cet attribut dégrade par contre le temps d’accès à la variable.

51

4.1.5 Fonction de manipulation de bits
• Mise à un par masque avec opérateur “ou” |:

• Mise à zéro par masque avec opérateur “et” &:

• Inversion avec opérateur “xor” ∧:

// Mise a zero des 4 bits de poids faible
PORTB=PORTB & 0xF0; // ou bien
PORTB &= 0xF0;

// Mise a un des 4 bits de poids faible d’un port
PORTB = PORTB | 0x0F // ou bien
PORTB |= 0xF0;

// Le Pipe : On utilise un pipe quant on veux modifier un registre
// Si l’on veux simplement initialiser un registre on utilise l’affectation ’=’
// Mise a un du bit 4 de PORTD et seulement lui !
PORTD |= 1<<PORTD4;

//Mise a zero du bit PORTD4 et seulement lui !
PORTD &= ~(1<<PORTD4);

// Commutation du bit PORTD4 et seulement lui !
PORTD ^= (1<<PORTD4);

4.2 Les interruptions

4.2.1 Mise en oeuvre
Une interruption se met en oeuvre par :

• L’autorisation de la source d’IT : Par exemple pour le timer TOIEi pour le timer i, ou le ACIE pour l’ADC.

• l’autorisation de toutes les ITs : sei();

• la déclaration de la routine d’interruption : Directive ISR.

La directive ISR associe une source d’interruption à une routine :

ISR(TIMER0_OVF_vect){ // routine d’interruption
PORTD = PORTD ^0x10; // Commutation du but num 4
TCNT0 =0;

}
int main(void)
{

DDRD = 0b1111011; // Port D en sortie , PORTD2 en entree
TCNT0= 0; // valeur initiale du compteur
TCCR0 = 5; // facteur de predivision de clk/IO
sei(); // Toutes les ITs sont possibles
TIMSK |= (1<<TOIE0); // Validation de l’It de debordement
do {} while (1);
return (1);

}

52

4.2.2 Description des sources d’Interruptions de l’ATMEGA8

4.2.3 Convertisseur Analogique Numérique
Nom de l’interruption Description
ADC_vect ADC Conversion Complete
ANALOG_COMP_0_vect Analog Comparator 0
ANALOG_COMP_1_vect Analog Comparator 1
ANALOG_COMP_2_vect Analog Comparator 2
ANALOG_COMP_vect Analog Comparator
ANA_COMP_vect Analog Comparator

4.2.4 Mémoire EEPROM
Nom de l’interruption Description
EE_RDY_vect EEPROM Ready
EE_READY_vect EEPROM Ready
EXT_INT0_vect External Interrupt Request 0

4.2.5 Interruptions externes
Nom de l’interruption Description
EXT_INT0_vect External Interrupt Request 0
INT0_vect External Interrupt 0
INT1_vect External Interrupt Request 1
IO_PINS_vect External Interrupt Request 0

4.2.6 Interruptions Diverses
Nom de l’interruption Description
LCD_vect LCD Start of Frame
LOWLEVEL_IO_PINS_vect Low-level Input on Port B
OVRIT_vect CAN timer Overrun
PCINT0_vect Pin Change Interrupt Request 0
PCINT1_vect Pin Change Interrupt Request 1
PSC0_CAPT_vect PSC0 Capture Event
PSC0_EC_vect PSC0 End Cycle
PSC1_CAPT_vect PSC1 Capture Event
PSC1_EC_vect PSC1 End Cycle
PSC2_CAPT_vect PSC2 Capture Event
PSC2_EC_vect PSC2 End Cycle
SPI_STC_vect Serial Transfer Complete
SPM_RDY_vect Store Program Memory Ready
SPM_READY_vect Store Program Memory Read

4.2.7 Timer 0
Nom de l’interruption Description
TIM0_COMPA_vect Timer/Counter Compare Match A
TIM0_COMPB_vect Timer/Counter Compare Match B
TIM0_OVF_vect Timer/Counter0 Overflow
TIMER0_CAPT_vect ADC Conversion Complete
TIMER0_COMPA_vect TimerCounter0 Compare Match A
TIMER0_COMPB_vect timer Counter 0 Compare Match B
TIMER0_COMP_A_vect Timer/Counter0 Compare Match A
TIMER0_COMP_vect Timer/Counter0 Compare Match
TIMER0_OVF0_vect Timer/Counter0 Overflow
TIMER0_OVF_vect Timer/Counter0 Overflow

53

4.2.8 Timer 1
Nom de l’interruption Description
TIM1_CAPT_vect Timer/Counter1 Capture Event
TIM1_COMPA_vect Timer/Counter1 Compare Match A
TIM1_COMPB_vect Timer/Counter1 Compare Match B
TIM1_OVF_vect Timer/Counter1 Overflow
TIMER1_CAPT1_vect Timer/Counter1 Capture Event
TIMER1_CAPT_vect Timer/Counter Capture Event
TIMER1_CMPA_vect Timer/Counter1 Compare Match 1A
TIMER1_CMPB_vect Timer/Counter1 Compare Match 1B
TIMER1_COMP1_vect Timer/Counter1 Compare Match
TIMER1_COMPA_vect Timer/Counter1 Compare Match A
TIMER1_COMPB_vect Timer/Counter1 Compare MatchB
TIMER1_COMPC_vect Timer/Counter1 Compare Match C
TIMER1_COMPD_vect Timer/Counter1 Compare Match D
TIMER1_COMP_vect Timer/Counter1 Compare Match
TIMER1_OVF1_vect Timer/Counter1 Overflow
TIMER1_OVF_vect Timer/Counter1 Overflow

4.2.9 Timer 2
Nom de l’interruption Description
TIMER2_COMPA_vect Timer/Counter2 Compare Match A
TIMER2_COMPB_vect Timer/Counter2 Compare Match A
TIMER2_COMP_vect Timer/Counter2 Compare Match
TIMER2_OVF_vect Timer/Counter2 Overflow

4.2.10 TWI
Nom de l’interruption Description
TWI_vect 2-wire Serial Interface
TXDONE_vect Transmission Done, Bit timer Flag 2 Interrupt
TXEMPTY_vect Transmit Buffer Empty, Bit Itmer Flag 0 Interrupt

4.2.11 UART
Nom de l’interruption Description
UART0_RX_vect UART0, Rx Complete
UART0_TX_vect UART0, Tx Complete
UART0_UDRE_vect UART0 Data Register Empty
UART1_RX_vect UART1, Rx Complete
UART1_TX_vect UART1, Tx Complete
UART1_UDRE_vect UART1 Data Register Empty
UART_RX_vect UART, Rx Complete
UART_TX_vect UART, Tx Complete
UART_UDRE_vect UART Data Register Empty

54

4.2.12 USART
Nom de l’interruption Description
USART0_RXC_vect USART0, Rx Complete
USART0_RX_vect USART0, Rx Complete
USART0_TXC_vect USART0, Tx Complete
USART0_TX_vect USART0, Tx Complete
USART0_UDRE_vect USART0 Data Register Empty
USART1_RXC_vect USART1, Rx Complete
USART1_RX_vect USART1, Rx Complete
USART1_TXC_vect USART1, Tx Complete
USART1_TX_vect USART1, Tx Complete
USART1_UDRE_vect USART1, Data Register Empty
USART2_RX_vect USART2, Rx Complete
USART2_TX_vect USART2, Tx Complete
USART2_UDRE_vect USART2 Data register Empty
USART3_RX_vect USART3, Rx Complete
USART3_TX_vect USART3, Tx Complete
USART3_UDRE_vect USART3 Data register Empty
USART_RXC_vect USART, Rx Complete
USART_RX_vect USART, Rx Complete
USART_TXC_vect USART, Tx Complete
USART_TX_vect USART, Tx Complete
USART_UDRE_vect USART Data Register Empty

4.2.13 USI
Nom de l’interruption Description
USI_OVERFLOW_vect USI Overflow
USI_OVF_vect USI Overflow
USI_START_vect USI Start Condition
USI_STRT_vect USI Start
USI_STR_vect USI START

4.2.14 Watchdog
Nom de l’interruption Description
WATCHDOG_vect Watchdog Time-out
WDT_OVERFLOW_vect Watchdog timer Overflow
WDT_vect Watchdog Timeout Interrupt

55

