
Micro-Projet d’Informatique Industrielle S7

Nadia Äıt Ahmed, David Delfieu

September 30, 2025

1 / 47

Commande en boucle ouverte d’une MCC

Banc Moteur-Génératrice

M G

AD7934

ATMega
L293B

Courant et Vitesse

Conversion Analogique 12 bits

MLI

Puissance

Interface Homme Machine

Introduction 2 / 47

1 Conversationnel sous Arduino
Bibliothèque serial
Moniteur Serie
Algorithme du conversationnel
Traceur serie

2 Génération de la MLI
Hacheur et MCC
Programmation du Timer de l’ATMEGA2560

3 Etude et écriture du driver de l’ADC AD7934
Le brochage
Entrées du CAN
L’interface parallèle
Programmation de l’AD7934

Introduction 3 / 47

Conversationnel sous Arduino

ATMega

Consigne en tension

Vitesse et courant

Entrez une tension [-35,+35] :

Conversationnel sous Arduino 4 / 47

Protocole série

Protocole RS232 série : Transmission d’octet

Physique : 3 fils, émission, transmission, masse.

Arduino : pont USB-RS232

RS232 : bibliothèque Serial

Pins en TTL (5V ou 3.3V):

Transmission TxD (PD3)
Reception RxD (PD2)

ATMEGA2560 : 3 ports séries additionnels:

Conversationnel sous Arduino Bibliothèque serial 5 / 47

Le Moniteur Serie
Plusieurs liaisons série

Outil ”Moniteur série”.

Conversationnel sous Arduino Bibliothèque serial 6 / 47

Le Moniteur Serie

Une fenêtre avec deux panneaux

Cette fenêtre affichée sur le PC modélise les entrées sorties de l’Arduino :
Clavier/écran

▶ Une ligne de saisie
▶ Une écran d’affichage

Conversationnel sous Arduino Moniteur Serie 7 / 47

Configuration du moniteur série

Baud rate : 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400,
57600, ou 115200.

Second argument :

bit de parité,
bit de stop.

Réglage 8N1 : 9600 bauds, 8 bits, pas de bit de parité,bit de stop.

Instruction : Syntaxe Serial.begin(speed)
Syntaxe Serial.begin(9600, SERIAL 8N1);

Conversationnel sous Arduino Moniteur Serie 8 / 47

Lecture et écriture sur le bus série

Le bus série se comporte comme un tube/pipeline bi-directionnel FIFO.

Le bus série permet une communication de type asynchrone : L’émetteur et
le récepteur émettent ou retirent de l’information de façon non synchrone.

▶ Celui qui écrit, envoie des données dans le bus des données qui se remplit
▶ Celui qui lit, consomme des données dans le bus qui se vide alors

La lecture sur le bus se fait en mode caractère et produit donc des codes
ASCII.

Le process d’écriture : Arduino ⇒ Ecran du PC

Le process de lecture : Clavier du PC ⇒ Arduino

Conversationnel sous Arduino Moniteur Serie 9 / 47

Ecriture : Arduino ⇒ Ecran du PC : Serial.print()

Affiche à l’écran du PC, les données envoyées par l’Arduino qui transitent par
le bus USB au format ASCII.

Les nombres sont affichés caractères par caractères en ASCII.

Serial.print(78); // affiche "78"

Serial.print(1.23456); // affiche "1.23"

Serial.print(byte(78)); // affiche "N" (dont le code ASCII est 78)

Serial.print(’N’); // affiche "N"

Serial.println("Hello world."); // affiche Hello world avec saut de ligne

Serial.print("\n Voici la valeur de A = ");

Serial.print(A);

Conversationnel sous Arduino Moniteur Serie 10 / 47

Lecture : clavier du PC ⇒ Arduino : Serial.read()

Attention Serial.read() renvoie des codes ASCII en base 10 !

S=Serial.read();

A=Serial.read();

B=Serial.read();

Si l’utilisateur tapes +15 alors S= 43, A=49, B=53

Le code ASCCI de + est $2B{16} soit 43 en base 10

Le code ASCII de 1 est $31{16} soit 49 en base 10

Le code ASCII de 5 est $35{16} soit 53 en base 10

Conversationnel sous Arduino Moniteur Serie 11 / 47

readCar()

La fonction ReadCar() prélève un caractère sur le bus :

int readCar() {

while (Serial.available() == 0); //Attente TQ il n’y a rien sur bus

return(Serial.read());

}

Utilisation de readCar() :

int carLU = 0;

void setup() {Serial.begin(9600);}

void loop() {

carLU = readCar(); // Prélève un caractère sur le bus

Serial.print("J’ai reçu : ");

Serial.println(carLU, DEC);

}

Conversationnel sous Arduino Moniteur Serie 12 / 47

Interface conversationnelle

Interface conversationnelle entre le micro-contrôleur et le moniteur sériel :

A l’aide de la fonction readCar, écrire et tester individuellement :
▶ lireSigne(),
▶ lireChiffre(),
▶ lireVirguleouPoint().

A l’aide de ces fonctions, dessiner un algorithme qui permet la saisie.

Conversationnel sous Arduino Algorithme du conversationnel 13 / 47

Traceur serie

Conversationnel sous Arduino Traceur serie 14 / 47

Traceur serie

Dans le code, les valeurs des courbes sont séparées par une virgule.

La dernière valeur d’une courbe est suivie par le retour à la ligne.

Exemple avec 2 courbes Courant et Vitesse :

void setup() {

Serial.begin(9600);

}

void loop() {

Serial.print(Courant);

Serial.print(’,’);

Serial.print(Vitesse);

Serial.print("\n");

}

Conversationnel sous Arduino Traceur serie 15 / 47

Traceur serie

Conversationnel sous Arduino Traceur serie 16 / 47

Hacheur L293 H-Bridge

T1 T2

T3 T4

Mcc

E

Figure: HacheurGénération de la MLI Hacheur et MCC 17 / 47

+E aux bornes de la MCC

T1 T2

T3 T4

Mcc

+E
E

Figure: Hacheur

T1 et T4 passant on a V = +E aux bornes de la MCC

Génération de la MLI Hacheur et MCC 18 / 47

-E aux bornes de la MCC

T1 T2

T3 T4

Mcc

-E
EE

Figure: Hacheur

T2 et T3 passant on a V = −E aux bornes de la MCC

Génération de la MLI Hacheur et MCC 19 / 47

Consigne de tension hachée : Ton non centré

t

+E

-E

Vmoy

Ton

Th

Ton non centré.

Vmoy =
1

Th
(

∫ Ton

0

Edt +

∫ Th

Ton

−Edt)

Génération de la MLI Hacheur et MCC 20 / 47

Ton centré sur Th

t

+E

-E

Vmoy

Ton

Th

Ton centré.

Vmoy =
1

Th
(

∫ Th−Ton
2

0

−Edt +

∫ Th+Ton
2

Th−Ton
2

Edt +

∫ Th

Th+Ton
2

−Edt)

Génération de la MLI Hacheur et MCC 21 / 47

Numérisation du Calcul

Vmoy est exprimé en volt,

Ton,Th, sont exprimés en secondes (microsecondes).

dans un micro-contrôleur les registres sont sans unités

Numérisation : Passer de variables typées à des registres

Notation : Numérisation une variable V ⇒ V N

Ton

Th
=

TN
on

TN
h

= OCR1A

OCR1B

Génération de la MLI Hacheur et MCC 22 / 47

Calcul d’expressions littérales

Vmoy étant fourni par me conversationnel :

Calculer les deux intégrales précédentes.

En déduire l’expression littérale de Vmoy

En déduire l’expression littérale de Ton

Calculer l’expression littérale du rapport Ton

Th

Génération de la MLI Hacheur et MCC 23 / 47

Etude de la documentation du Timer (1/3)

A partir de la documentation ATmega2560 datasheet :

Quels registres du timer 1 correspondent respectivement à TN
h et à TN

on

Trouver dans ATmega2560 datasheet la table des modes du timer 1

A quel mode du timer 1 correspond à une MLI centrée ?

Choisissez Th pour ne pas être dans vos fréquences audibles (fh >= 13kz)

Trouver la formule qui permet d’établir TN
h . Donner la référence.

Fig. 17.1, p 134, retrouver les 4 registres pour MLI sur la patte OC1B.

Génération de la MLI Programmation du Timer de l’ATMEGA2560 24 / 47

Etude de la documentation du Timer (2/3)

Rechercher les rôles des 4 registres qui contrôlent le timer 1.

Table des 16 modes des timers : déterminer quels sont les modes possibles et
qu’est-ce qui les différencie ?

Quelles valeurs doit-on mettre dans WGM13 WGM12 WGM11 WGM10 ?

Trouver la figure qui montre dans un chronogramme les rôles des registres
OCR1A et OCR1B en mode phase et fréquence correcte (MLI Centrée).

Trouver la table qui définit comment déterminer les bits COM1B1 et COM1B0

et donner la référence.

Traduire et reformuler la 3ieme ligne de ce tableau.

Génération de la MLI Programmation du Timer de l’ATMEGA2560 25 / 47

Etude de la documentation du Timer (3/3)

Donner les lignes d’initialisations des registres TCCR1A et TCCR1B

Exemple d’initialisation du Mode 11 :

TCCR1A = (1<<bit3) + (1<< bit5);

TCCR1B = (1<< bit1)+(1<<bit0);

Compléter alors la fonction initTimer(), de façon à avoir une fréquence de
hachage de 15khz et un rapport cyclique initial de 0.5

Tester cette fonction. Tester d’autres fréquences et indiquer quelles est la
fréquence la plus haute que vous pouvez discerner.

Génération de la MLI Programmation du Timer de l’ATMEGA2560 26 / 47

Convertisseur AD7934

Nous allons étudier et écrire un driver pour l’AD7934 :

AD7934

DB8 DB11

DB8 DB10

DGND BUSY

Vdrive Clkin

DB7 CONVST

DB6 WR

DB5 RD

DB4 CS

DB3 Agnd

DB2 Vref

DB1 Vin0

DB0 Vin1

VB Vin2

Vdd Vin3

Etude et écriture du driver de l’ADC AD7934 27 / 47

Convertisseur AD7934

CAN 12 bits rapide 1.5 MSPS (Million Samples Per Second)

4 entrées analogiques Vin0,Vin1,Vin2,Vin3 en mode simple ou en mode
différentiel

Possibilité de connecter l’AD7934 à un bus d’adresse (CS ,RD,WR,W /B) et
un bus de données (DB0, ...,DB11) pour une lecture rapide de la conversion.

Possibilité d’utiliser une référence interne précise de 2.5 v ou une référence
externe (VREF).

Echantillonnage déclenché par le signal CONVST

Etude et écriture du driver de l’ADC AD7934 28 / 47

Convertisseur AD7934

CAN 12Multiplexage
des entrées

SEQUENCEUR

Interface Parallèle / Registre de contrôle

2.5 v
VREF

T/H

AGNDVDD

VREFIN ou
VREFOUT

VIN0

VIN1

VIN2

VIN3

DB0 DB11 ��
� 	��� ��	� W/ B� DGND

�����

������
�
���

��
�

VDRIVE

Etude et écriture du driver de l’ADC AD7934 29 / 47

Etude du cablage

Etude et écriture du driver de l’ADC AD7934 Le brochage 30 / 47

Bus d’adresses - Bus de données

Tout composant relié à un processeur peut être relié de la façon suivante :

D2
D3
D4
D5
D6
D7
D8
D9

RAW
GND
RST
VCC
A3
A2
A1
A0

D13
D12
D11
D10

G
ND

VCC

RXI

TXO

Arduino

Bus de données

Bus de D'adresse

ADC 7934

����

����

����

DB0

DB1

DB11

����

����

A4
A5
A6

Etude et écriture du driver de l’ADC AD7934 Le brochage 31 / 47

Bus de données

Bus de données (Data Bus) : DB0, ...,DB11

Bus bidirectionnel.

Initialisation : Bus en écriture sur : ATMega ⇒ AD7934:
Informations pour programmer les modes

Conversion : Bus en lecture sur : AD7934 ⇒ ATMega:
Resultat de conversion

Il doit être connecté à des ports de l’ATMega

Etude et écriture du driver de l’ADC AD7934 Le brochage 32 / 47

Bus de données

Bus de données relié
au port A (8) et C (3)

Etude et écriture du driver de l’ADC AD7934 Le brochage 33 / 47

Bus d’adresse et de contrôle

Bus d’adresse et de contrôle :

CS : Chip Select

WR : Write

RD : Read

W /B : Write Byte

BUSY : Conversion en cours

CONVST : Conv Start

CLKIN : Horloge

Etude et écriture du driver de l’ADC AD7934 Le brochage 34 / 47

Bus d’adresses (et de contrôle)

Bus d'adresse relié
au port L

Etude et écriture du driver de l’ADC AD7934 Le brochage 35 / 47

Analyse des liaisons entre l’AD7934 et l’ATMega

A partir de la documentation CarteTP ATMega :

Identifier chaque liaison connectant une pin de l’ATMega à une pin de
l’AD7934.

Pour chacune des pins identifiées de l’AD7934, à partir de la documentation
AD7934Bruz déterminer :

▶ Le sens de circulation de l’information
▶ Leurs rôles : Une simple phrase accompagnée de la réference (numéro de

page).
▶ Exemple pour CONVST : Un front descendant de ce signal démarre une

conversion (p 23, AD7934Bruz) .

Etude et écriture du driver de l’ADC AD7934 Entrées du CAN 36 / 47

Entrées analogiques de l’AD7934

A partir de la documentation CarteTP ATMega :

Identifier les entrées analogiques du convertisseur.

A partir de la documentation AD7934Bruz expliquer comment ces entrées
anlogiques peuvent être utilisées suivant 4 modes différents.

En examinant ce montage, quel est le mode utilisé ?

Etude et écriture du driver de l’ADC AD7934 Entrées du CAN 37 / 47

Entrées differentielles

A partir de la documentation CarteTP ATMega et de AD7934Bruz :

Les bnc J1 et J2 acceptent des tensions sur l’intervalle [−10,+10v]

Le composant U8 (Traco) convertit les tensions dans la plage [−12v ,+12v]
qui est nécessaire pour les AOP

Puis SUB1 et SUB2 vont produire deux tensions antagonistes positives
centrées autour de VREF= 2.5v

Expliquer pourquoi SUB1 et SUB2 produisent de telles sorties.

Chercher l’opération arithmétique (indiquez la référence dans la
documentation) que va faire l’AD7934 sur chaque paire de signaux
(VIN0,VIN1) et (VIN2,VIN3) .

Quel est l’intérêt de cette opération arithmétique.

Donner un exemple de tension sur VA, calculer la paire VIN0, VIN1, et donner
le résultat de l’opération de l’AD7934 avant la conversion.

Expliquer ce qui se passe.

Etude et écriture du driver de l’ADC AD7934 Entrées du CAN 38 / 47

Registre de contrôle

Le registre de contrôle est un mot de 12 bits.

Il permet de programmer différents modes de fonctionnement.

On l’initialise au début de programme.

Etude et écriture du driver de l’ADC AD7934 L’interface parallèle 39 / 47

Mot de contrôle

PM1 PM0 CODING REF ZERO ADD1 ADD0 MODE1 MODE0 SEQ1 SEQ0 RANGE

Donner le rôle de ces bits par fonctionalités

En déduire la valeur du mot pour la conversion du courant

En déduire la valeur du mot pour la conversion de la vitesse

Etude et écriture du driver de l’ADC AD7934 L’interface parallèle 40 / 47

Ecriture du driver AD7934

Le driver va se faire en codant deux fonctions :

Fonction void programAD7934(int voie): Permet de définir le mode de
fonctionnement de AD7934 et de définir le canal sur lequel la convertsion
sera faite

Fonction int lireAD7934(void): Permet de lire le résultat de conversion de l’
AD7934 sur le canal prédéfini par l’autre fonction

Etude et écriture du driver de l’ADC AD7934 Programmation de l’AD7934 41 / 47

Fonction void programAD7934(int voie): Ecriture du mot
de contrôle l’ATMega sur l’AD7934

La programmation de l’AD7934 se réalisera alors par 3 phases :

Adressage : Le positionnement d’une valeur sur le bus d’adresse (PORTL)
qui permet d’activer et d’écrire sur le composant sur le bus d’adresse (avec
insertion éventuelle de délais)

Ecriture sur le bus de données (PORTA et PORTC)

Fin de cycle : Le positionnement d’une nouvelle valeur sur le bus d’adresse qui
désactive le composant et le mode écriture du composant sur le bus d’adresse

Etude et écriture du driver de l’ADC AD7934 Programmation de l’AD7934 42 / 47

Chronogramme correspondant à la fonction
void programAD7934(int voie)

Voici le chronogramme d’écriture de l’AD7934 :{ { {Adressage Ecriture sur le bus Fin cycle

Etude et écriture du driver de l’ADC AD7934 Programmation de l’AD7934 43 / 47

Description du chronogramme précédent

Dans la figure précédente :

C’est la conjonction de WR et CS qui précède l’écriture d’un mot de 12 bits
sur le bus de données. Attention vous devez positionner une valeur sur tous
les bits d’adressage WR, RD, W /B, CONVST , CS .

Détaillons la figure précédente :
▶ CS et WR active l’AD7934
▶ La data est écrite dans l’AD7934 après que le signal WR soir retombé au

niveau bas.
▶ L’écriture nécessite un temps de maintien t7 avant la remontée de WR.
▶ CS et WR sont théoriquement liés par t4 et t5
▶ Cherchez dans AD7934Bruz, la table des temporisations qui donne les valeurs

de t4 et t5
▶ Completer maintenant la fonction void programAD7934(int voie) qui, selon la

voie (COURANT ou VITESSE), initie les modes de fonctionnement de
l’AD7934

Etude et écriture du driver de l’ADC AD7934 Programmation de l’AD7934 44 / 47

Fonction int lireAD7934(void)() : Lancement de
conversion sur l’AD7934 et lecture du résultat

1) Lancement de la conversion par l'ATMEGA

2) L'AD7934 répond busy !

3) Conversion par l'AD7934

4) L'AD7934 indique qu'il a fini

5) l'ATMEGA relâche /Convst

6) l'ATMEGA active /CS et /RD

7) L'AD7934 positionne son
résultat sur le bus de données

9) l'ATMEGA désactive
/CS et /RD

8) l'ATMEGA lit le bus de données

Etude et écriture du driver de l’ADC AD7934 Programmation de l’AD7934 45 / 47

Description du chronogramme précédent

Voici les phases principales du chronogramme précédent :

1 ATMega envoie le signal CONVST qui lance la conversion

2 AD7934 active BUSY pour indiquer qu’une conversion est en cours

3 CONVST et BUSY restent à l’état haut pendant tout le cycle.

* Le temps de conversion dure 14 cycles d’horloge (tconvert)
* Entre 2 conversions CONVST est à l’état haut pendant t1

4 Fin de la conversion AD7934 relâche BUSY pour informer l’ATMega

5 ATMega relâche CONVSTet commence la lecture du résultat de la conversion

6 ATMega active CS et RD : Adressage de l’AD7934

* CS et RD qui sont théoriquement liés par t10 et t11
* Retrouver dans AD7934Bruz ces valeurs

7 Données placées par AD7934 sur bus de données après retombée de CS et RD

8 ATMega lit le résultat de la conversion sur le bus de données

9 ATMega désactive CS et RD

Etude et écriture du driver de l’ADC AD7934 Programmation de l’AD7934 46 / 47

Test de int lireAD7934(void) et
void programAD7934(int voie)

Tester maintenant les fonctions void programAD7934(int voie) et
int lireAD7934(void) en lisant alternativement le courant et la vitesse que
vous afficherez sur le traceur série.

Appliquer une charge sur le moteur : Expliquer l’évolution des courbes.

Etude et écriture du driver de l’ADC AD7934 Programmation de l’AD7934 47 / 47

	Introduction
	Conversationnel sous Arduino
	Bibliothèque serial
	Moniteur Serie
	Algorithme du conversationnel
	Traceur serie

	Génération de la MLI
	Hacheur et MCC
	Programmation du Timer de l'ATMEGA2560

	Etude et écriture du driver de l'ADC AD7934
	Le brochage
	Entrées du CAN
	L'interface parallèle
	Programmation de l'AD7934

