Micro-Projet d'Informatique Industrielle S7

Nadia Aït Ahmed, David Delfieu

October 16, 2023

nan

< 3 >

1 / 49

・ロト ・日 ・ ・ 回 ・

Conversationnel sous Arduino

- Bibliothèque serial
- Moniteur Serie
- Algorithme du conversationnel
- Traceur serie

2 Génération de la MLI

- Hacheur et MCC
- Programmation du Timer de l'ATMEGA2560
- Les Timers

3 Le Convertisseur AD7934

- Le brochage
- Entrées du CAN
- L'interface parallèle
- Programmation de l'AD7934

Conversationnel sous Arduino

・ロト・「中・・日・・日・・日・

Protocole série

- Protocole RS232 série : Transmission d'octet
- Physique : 3 fils, émission, transmission, masse.
- Arduino : pont RS232-USB
- RS232 ⇒ bibliothèque Serial
- Pins en TTL (5V ou 3.3V): Transmission TxD (PD3) Reception RxD (PD2)
- ATMEGA₂₅₆₀ : 3 ports séries additionnels:

Le Moniteur Serie

• Plusieurs liaisons série

Conversationnel sous Arduino

• Outil "Moniteur série".

Bibliothèque serial

▲ロ▶▲圖▶▲圖▶▲圖▶ ▲国 シ へ ()

Le Moniteur Serie

- Une fenêtre avec deux panneaux
- Cette fenêtre affichée sur le PC modélise les entrées sorties de l'Arduino : Clavier/écran
 - Une ligne de saisie
 - Une écran d'affichage

/d	Jev/cu.usbmodem1411 (Arduino/Genuino Mega or Mega 2560)	
		Envoyer
Vous avez saisie une consigne correcte de : +2,00 A Votre consigne est envoyee au moteur		
Si vous souhaitez, rentrez une nouvelle consigne :		
Vous avez saisie une consigne correcte de : +3,00 A Votre consigne est envoyee au moteur		
Si vous souhaitez, rentrez une nouvelle consigne :		
Vous avez saisie une consigne correcte de : +4,00 A Votre consigne est envoyee au moteur		
Si vous souhaitez, rentrez une nouvelle consigne :		
Vous avez saisie une consigne correcte de : +1,00 A Votre consigne est envoyee au moteur		
Si vous souhaitez, rentrez une nouvelle consigne :		
Vous avez saisie une consigne correcte de : -2,00 A Votre consigne est envoyee au moteur		
Si vous souhaitez, rentrez une nouvelle consigne :		
✓ Défilement automatique	Nouvelle ligne \$ 9600) baud 🗘 Effacer la sortie
99 90⊡int lireBUS() { 91⊟ /* Le bus de données est relié aux ports A et C. 92 PAR-PA7 como DEB - DE7 poids foible 93 PCD-PC3 como DEB - DE11 POIDS FORT */		
	 < □ > < ⊡ > < Ξ 	★ E → E → Q @
Conversationnel sous Arduino	Moniteur Serie	7 / 49

Configuration du moniteur série

- Baud rate : 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, ou 115200.
- Second argument :

bit de parité, bit de stop.

- Réglage 8N1 : 9600 bauds, 8 bits, pas de bit de parité, bit de stop.
- Instruction : Syntaxe Serial.begin(speed) Syntaxe Serial.begin(9600, SERIAL_8N1);

500

< 3 × 1

Serial.print

- Affiche à l'écran du PC, les données envoyées par l'Arduino qui transitent par le bus USB au format ASCII.
- Les nombres sont affichés caractères par caractères en ASCII.

```
S=Serial.read();
A=Serial.read();
B=Serial.read();
Si l'utilsateur tapes +15 alors
S vaut \$2B : code ascii de +
A vaut \$31 : code ascii de 1 (48 en base 10)
A vaut \$35 : code ascii de 5 (53 en base 10)
```

• Les Flottants sont affichés de la même façon, avec deux décimales par défaut.

Moniteur Serie

• affichage de valeur et de chaines :

```
Serial.print("\n Voici la valeur de A = ");
Serial.print(A);
```

Lecture sur le bus série

Conversationnel sous Arduino

- Le bus série permet un communication de type asynchrone :
 - ► Celui qui écrit envoie des données dans le bus des données qui se remplit
 - Celui qui lit consomme des données dans le bus qui se vide alors
- La lecture sur le bus se fait en mode caractère et produit donc des codes ASCII.

500

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

▲ロ▶▲圖▶▲圖▶▲圖▶ ▲国 シ へ ()

readCar()

```
ReadCar() récupère un caractère dès qu'il apparait sur le bus :
int readCar() {
while (Serial.available() == 0); //Attente TQ il n'y a rien sur bus
return(Serial.read());
}
Utilisation de readCar() :
int carLU = 0; // caractère lu sur le bus série
void setup() {Serial.begin(9600);}
void loop() {
carLU = readCar(); // On lit un caractère sur le bus
Serial.print("J'ai reçu : ");
Serial.println(carLU, DEC);
}
```

Moniteur Serie

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

11 / 49

Conversationnel

Conversationnel sous Arduino

Conversationnel

Interface conversationnelle entre le micro-contrôleuret le moniteur sériel :

- Après un message d'invite
- On saisit une seule consigne en tension de commande de la *MCC* avec deux chiffres de précision après la virgule.
- Après la saisie on bouclera infiniment sur l'affichage courant ou vitesse.
- Coder, à partir des fonctions qui vous sont données dans le squelette, l'organigramme du slide suivant :

	 < □ > < □ < □ 	▶ ∢ ≣ ▶	5 N Q C
Conversationnel sous Arduino	Algorithme du conversationnel	13 /	49

Organigramme simple, non robuste

Traceur serie

Traceur serie

- Dans le code les valeurs des courbes sont séparées par une virgule.
- La dernière valeur d'une courbe est suivie par le retour à la ligne.
- Exemple avec 2 courbes Courant et Vitesse :

```
void setup() {
   Serial.begin(9600);
}
void loop() {
   Serial.print(Courant);
   Serial.print(',');
   Serial.print(Vitesse);
   Serial.print("\n");
}
```

・ロ・ ・ 日・ ・ ヨ・

500

< 3 > <

Traceur serie

Principes de commande du hacheur (L293 H-Bridge)

Génération de la MLI

< 🗗 ►

< E

æ

5900

 $\bullet \equiv \bullet$

Principes de commande du hacheur

• T_1 et T_4 passant on a V = +E aux bornes de la MCC

	 ■ ► < 	× ≡ ×	1	996
Génération de la MLI	Hacheur et MCC	19	/ 49	

Principes de commande du hacheur

• T_2 et T_3 passant on a V = -E aux bornes de la MCC

Génération de la MLI	Hacheur et MCC	20 / 49

・ロット 白マット キョット

3

nan

Consigne de tension hachée : Ton non centré

Ton non centré.

 T_{on} centré sur T_h

Ton centré.

< 17 →

Sac

 $\exists \rightarrow$

Numérisation du Calcul

- V_{moy} est exprimé en volt,
- *T*_{on}, *T*_h, sont exprimés en secondes (microsecondes).
- micro-contrôleur \Rightarrow Registres sans unités
- Passer de variables typées à des registres : Numérisation.
- Notation : Numérisation de $V \Rightarrow V^N$

$$\frac{I_{on}}{T_h} = \frac{T_{on}^N}{T_h^N} = \frac{OCR_{1A}}{OCR_{1B}}$$

Hacheur et MCC

C'est le conversationnel qui fournit V_{moy} :

- Si on considère que l'utilisateur a tapé +21,37
- On récupère la valeur entière (Virgule fixe) 2137 = 100 * Saisie
- Conversationnel produit donc $100 * V_{mov}$.
- E est connu : E = 35 v.
- T_h est déterminé par les caractéristiques électriques du moteur : $T_h = 200 \mu s$
- D'après l'équation précédente :

$$V_{moy} = \frac{1}{T_h} \left(\int_0^{T_{on}} E dt + \int_{T_{on}}^{T_h} - E dt \right)$$

• Donc pour produire V_{moy} avec un timer je vais devoir déterminer T_{on} :

< E >

4 E M

うへつ

Calcul de V_{moyen}

$$V_{moy} = \frac{1}{T_h} (\int_0^{T_{on}} Edt + \int_{T_{on}}^{T_h} - Edt)$$

- Calculer cette intégrale et exprimer V_{moy} en fonction de E, T_{on}, T_h
- Calculer l'expression littérale du rapport $\frac{T_{on}}{T_h}$

	< □ > < ⊡ > < Ξ	▶ ≺ ≣ ▶ – ३	n २००
Génération de la MLI	Hacheur et <i>MCC</i>	25 /	49

Mise en oeuvre de la MLI

- Timer produit T_h^N (OCR_{1A}) et T_{on}^N (OCR_{1B})
- Timer devra générer une MLI centrée
- Trouver dans ATmega2560_datasheet la table des modes du timer 1
- Quel terme est utilisé dans cette documentation pour désigner une MLI centrée ?

500

< 3 > <

Les Timers

Dans la documentation ATmega2560_datasheet :

- Trouver dans la documentation la formule qui permet d'établir T^N_h. Donner la référence.
- A partir de la figure 17.1 de la page 134, retrouver les 4 registres qui sont importants pour la génération d'une MLI sur la sortie B, c.a.d *OC1B*.
- Rechercher dans la doc les rôles des 4 registres et donner les références.
- Dans la table des 16 modes des timers, déterminer quels sont les modes possibles et qu'est-ce qui les différencie ?
- quelles valeurs doit-on mettre dans WGM₁₃ WGM₁₂ WGM₁₁ WGM₁₀ ?

	< □ > < @ > < ≥	
Génération de la MLI	Les Timers	27 / 49

Rôles de OCR_{1B} et OCR_{1A}

- Trouver la figure qui montre dans un chonogramme les rôles des registres OCR_{1A} et OCR_{1B} en mode phase et fréquence correcte.
- Trouver la table qui définit comment déterminer les bits *COM*_{1B1} et *COM*_{1B0} et donner la référence.
- Traduire et reformuler la 3^{ieme} ligne de ce tableau.

< 3 × 1

▲ □ ▶ ▲ □ ▶

Initialisations des registres TCCR_{1A} et TCCR_{1B}

• Donner les lignes d'initialisations des registres $TCCR_{1A}$ et $TCCR_{1B}$

```
Exemple d'initialisation du Mode 11 :
TCCR1A = (1<< WGM11) + (1<< WGM10);
TCCR1B = (1<< WGM13)+(1<<CS10);</pre>
```

- Compléter alors la fonction *initTimer()*, de façon à avoir une fréquence de hachage de 20*khz* et un rapport cyclique initial de 0.5
- Tester cette fonction

	< □ > < @ > < 글	↓ ↓] ↓ ↓]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Génération de la MLI	Les Timers	29 / 49	

Convertisseur AD7934

Convertisseur AD7934

- CAN 12 bits rapide 1.5 MSPS (Million Samples Per Second)
- 4 entrées analogiques séquençables en mode simple ou en mode différentiel
- Possibilité de connecter l'*AD*7934 à un bus d'adresse $(\overline{CS}, \overline{RD}, \overline{WR}, W/\overline{B})$ et un bus de données $(DB_0, ..., DB_{11})$ pour une lecture rapide de la conversion.
- Possibilité d'utiliser une référence interne précise de 2.5 v ou une référence externe (VREF).
- Echantillonnage déclenché par le signal CONVST

Convertisseur AI	07934

Le Convertisseur AD7934

▲ロ▶▲圖▶▲圖▶▲圖▶ ▲国 シ へ ()

Présentation

Bus d'adresses - Bus de données

Tout composant relié à un processeur peut être relié de la façon suivante :

< @ >

→ ∃ →

5900

 $\bullet \equiv \bullet$

Bus de données

Bus de données (Data Bus) : DB₀, ..., DB₁₁

- Bus bidirectionnel.
- Initialisation : Bus en écriture sur : ATMega ⇒ AD7934: Informations pour programmer les modes
- Conversion : Bus en lecture sur : $AD7934 \Rightarrow ATMega$: Resultat de conversion
- Il doit être connecté à des ports de l'ATMega

	 □ > < ⊡ > < ⊡ 	▶ ∢ ≣ ▶	E	9 Q P
Le Convertisseur AD7934	Le brochage	3	5 / 49	

Bus de données

< 47 →

3

æ

Sac

< ∃ >

Bus d'adresse et de contrôle

Bus d'adresse et de contrôle :

- \overline{CS} , \overline{WR} , \overline{RD} et W/\overline{B} servent à adresser le composant
- BUSY, CONVST et CLKIN servent à contrôler le composant

	 ↓ □ ▶ < ∰ ▶ < Ξ 	▶ ≺ ≣ ▶ ा	- DQA
Le Convertisseur AD7934	Le brochage	37 /	49

Bus d'adresses (et de contrôle)

< 17 →

Э

∃ →

200

Analyse des liasons entre l'AD7934 et l'ATMega

A partir de la documentation CarteTP_ATMega :

- Identifier chaque liaison connectant une pin de l'ATMega à une pin de l'AD7934.
- Pour chacune des pins identifiées de l'AD7934, à partir de la documentation AD7934Bruz déterminer :
 - Le sens de circulation de l'information
 - Leurs rôles : Une simple phrase accompagnée de la réference (numéro de page).
 - Exemple pour CONVST: Un front descendant de ce signal démarre une conversion (p 23, AD7934Bruz).

	 ↓ ↓ ↓ < ↓ ↓ ↓ < 	× ≡ ×	1	9 Q (P
Le Convertisseur AD7934	Entrées du CAN	39	/ 49	

Entrées analogiques de l'AD7934

A partir de la documentation CarteTP_ATMega :

- Identifier les entrées analogiques du convertisseur.
- A partir de la documentation AD7934Bruz expliquer comment ces entrées anlogiques peuvent être utilisées suivant 4 modes différents.
- En examinant ce montage, quel est le mode utilisé ?

SQ C

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Entrées differentielles

A partir de la documentation CarteTP_ATMega et de AD7934Bruz :

- Les bnc J_1 et J_2 acceptent des tensions sur l'intervalle $[-10, +10\nu]$
- Sachant que $V_A = J_1/2$ et $V_B = J_3/2$.
- Expliquer pourquoi SUB₁ et SUB₂ produisent de telles sorties.
- Chercher l'opération arithmétique (indiquez la référence dans la documentation) que va faire l'AD7934 sur chaque paire de signaux (VIN₀, VIN₁) et (VIN₂, VIN₃).
- Quel est l'intérêt de cette opération arithmétique.
- Donner un exemple de tension sur J₁, calculer la paire VIN₀, VIN₁, et donner le résultat de l'opération de l'AD7934 avant la conversion. Expliquer ce qui se passe.

	<ロ><一	A ≣ > E	৩৫৫
Le Convertisseur AD7934	Entrées du CAN	41 / 49	

Registre de contrôle

- Le registre de contrôle est un mot de 12 bits.
- Il permet de programmer différents modes de fonctionnement.
- On l'initialise au début de programme.

500

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Mot de contrôle

PM₁ PM₀ CODING REF ZERO ADD₁ ADD₀ MODE₁ MODE₀ SEQ₁ SEQ₀ RANGE

- Donner le rôle de ces bits par fonctionalités
- En déduire la valeur du mot pour la conversion du courant
- En déduire la valeur du mot pour la conversion de la vitesse

Ecriture du mot de controle l'ATMega sur l'AD7934

La programmation de l'AD7934 se réalisera alors par 3 phases :

• Adressage : Le positionnement d'une valeur sur le bus d'adresse (Port L) qui permet d'activer et d'écrire sur le composant sur le bus d'adresse (avec insertion éventuelle de délais)

L'interface parallèle

- Ecriture sur le bus de données (Port A et C)
- Fin de cycle : Le positionnement d'une nouvelle valeur sur le bus d'adresse qui désactive le composant et le mode écriture du composant sur le bus d'adresse

Le Convertisseur AD7934

500

▲● ▶ ▲ ■ ▶ ▲ ■ ▶ ● ■

▲□▶▲圖▶▲圖▶▲圖▶ ▲□▼ ろ∢⊙

Chronogramme d'écriture sur l'AD7934

Voici le chronogramme d'écriture de l'AD7934 :

Chronogramme d'écriture sur l'AD7934

Dans la figure précédente :

- C'est la conjonction de \overline{WR} et \overline{CS} qui précède l'écriture d'un mot de 12 bits sur le bus de données.
- Détaillons la figure précédente :
 - \overline{CS} et \overline{WR} active l'AD7934
 - ► La data est écrite dans l'*AD*7934 après que le signal *WR* soir retombé au niveau bas.
 - L'écriture nécessite un temps de maintien t_7 avant la remontée de \overline{WR} .
 - \overline{CS} et \overline{WR} sont théoriquement liés par t_4 et t_5
 - Cherchez dans AD7934Bruz, la table des temporisations qui donne les valeurs de t₄ et t₅
 - Completer maintenant la fonction programAD7934(int voie) qui, selon la voie (COURANT ou VITESSE), initie les modes de fonctionnement de l'AD7934

500

< 3 × 1

▲ 同 ▶ ▲ 三 ▶

Conversion sur l'AD7934 et lecture du résultat

Figure 34. AD7933/AD7934 Parallel Interface—Conversion and Read Cycle in Word Mode ($W/\overline{B} = 1$)

	< □ >	< ₽ < ₹ >	<	1	$\mathcal{O}\mathcal{Q}$
Le Convertisseur AD7934	Programmation de l'AD7934		4	7 / 49	

Cycle de conversion et lecture du résultat sur l'AD7934

Voici les phases principales du chronogramme précédent :

- 1 ATMega envoie le signal CONVST qui lance la conversion
- 2 AD7934 active BUSY pour indiquer qu'une conversion est en cours
- 3 CONVST et BUSY restent à l'état bas pendant tout le cycle.
 - * Le temps de conversion dure 14 cycles d'horloge $(t_{convert})$
 - * Entre 2 conversions CONVST est à l'état haut pendant t₁
- 4 Fin de la conversion AD7934 relâche BUSY pour informer l'ATMega
- 5 ATMega relâche CONVST et commence la lecture du résultat de la conversion
- 6 ATMega active \overline{CS} et \overline{RD} : Adressage de l'AD7934
 - * \overline{CS} et \overline{RD} qui sont théoriquement liés par t_{10} et t_{11}
 - * Retrouver dans AD7934Bruz ces valeurs
- 7 Données placées par AD7934 sur bus de données après retombée de CS et RD
- 8 ATMega lit le résultat de la conversion sur le bus de données
- 9 ATMega désactive CS et RD

Sac

< 3 > <

▲ 伊 ▶ ▲ 日 ▶

A l'aide des deux slides précédents :

- Completer la fonction *lireAD*7934()
- Tester maintennant les fonctions *programAD*7934(*int voie*) et *lireAD*7934() en lisant alternativement le courant et la vitesse que vous afficherez sur le moniteur série.
- Afficher maintenant le courant et la vitesse par le traceur série.

	< □ ▶	<u> </u>		=	4) Q (¥
Le Convertisseur AD7934	Programmation de l'AD7934		4	9 / 49	