Cea

La scintillation liquide α

Licence Métrologie Chimique et Nucléaire

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

J. AUPIAIS CEA, DAM, DIF 91297 Arpajon

Theodor Förster 1910 - 1974

ASPECTS THEORIQUES

ZEITSCHRIFT FÜR NATURFORSCHUNG Experimentelle und theoretische Untersuchung

des zwischenmolekularen Übergangs von Elektronenanregungsenergie

Von Theodor Förster

Aus dem Max-Planck-Institut für physikalische Chemie, Göttingen (Z. Naturforschg. 4a, 321-327 [1949]; eingegangen am 13. Januar 1949)

Im Anschluß an frühere orientierende Messungen wird die wahre Löschwirkung von Rhodamin B auf die Fluoreszenz von Trypaflavin in Methanol untersucht, indem diese von der durch Absorption bedingten Fluoreszenzschwächung experimentell getrennt wird. Es wird eine Theorie der Löschung durch zwischenmolekularen Energieübergang entwickelt und mit den Versuchsergebnissen verglichen.

wenig beachteten Typus von Fluoreszenzlöschung eines fluoreszierenden Stoffes A ein anderer küldurchmessern geschehen. Stoff B zugesetzt wird, der bei längeren Wellen als der erste absorbiert. Die dabei auftretende Verringerung der Fluoreszenzintensität von A geschieht dabei außer durch Absorption des erregenden Lichtes und des Fluoreszenzlichtes durch den zugesetzten Stoff B auch durch wahre Löschung, die auf unmittelbarer Wechselwirkung der Moleküle von A und B beruht. Falls der Stoff B selbst fluoreszenzfähig ist, tritt dabei dessen sensibilisierte Fluoreszenz auf. Mit Trypaflavin als Stoff A und Rhodamin B als Stoff B ergab sich für die wahre Löschung in Methanol eine Halbwertskonzentration von etwa 1.10-3 Mol/l. Selbstverständlich ist dies eine Fluoreszenzlöschung nur insofern, als die Beobachtung auf den Spektralbereich der Trypaflavinfluoreszenz beschränkt bleibt. Die zeigt, daß diese nicht statisch durch Assoziation Konzentrationen beider Stoffe in den verschiedezu einer fluoreszenzunfähigen Molekülverbindang, sondern dynamisch durch einen molekularen Prozeß folgender Art zu deuten ist:

BAND 1a

 $A + B + h\nu \rightarrow A^* + B \rightarrow A + B^* \rightarrow A + B + h\nu'$

Dabei ist eine gegenseitige Annäherung der Moleküle durch Diffusion, wie sie in anderen Fällen nur geringen Abhängigkeit von Temperatur und lösungen benutzt:

¹ Th. Förster, Z. Elektrochem. 53, 93 [1949]; vgl. auch Angew. Chem. 59, 181 [1947]; 60, 163 [1948].

In einer früheren Veröffentlichung' wurde über Lösungsmittelzähigkeit nicht anzunehmen. Der Idie experimentelle Untersuchung eines bisher Übergang der Anregungsenergie muß vielmehr über die zwischenliegenden Lösungsmittelmoleberichtet. Dieser liegt dann vor, wenn der Lösung küle hinweg auf eine Entfernung von vielen Mole-

HEFT 5

Wenn auch in den bereits vorliegenden Versuchen die Existenz der wahren Löschung sichergestellt werden konnte, so war deren quantitative Trennung von der durch Absorption vorgetäuschten Löschung doch unvollkommen. Da so die genaue Feststellung der Größe der Löschung, insbesondere bei geringen Konzentrationen, schwierig war, erschien die Weiterführung der Versuche mit einer verbesserten Methode erwünscht. Es wurde dazu eine solche benutzt, die bereits von J. Perrin und Choucroun² bei einer orientierenden Untersuchung dieser Art von Fluoreszenzlöschung angewandt wurde. Sie beruht auf einem Vergleich der Fluoreszenzintensitäten verschieden konzentrierter Mischlösungen beider Stoffe "in gleich absorbierenden Schichten. Bei Gültigkeit indirekt festgestellte Verringerung der Abkling- des Beerschen Absorptionsgesetzes werden dazu dauer der Trypaflavinfluoreszenz bei der Löschung die Schichtdicken umgekehrt proportional den nen Lösungen gewählt. Es ist dann bei parallelem Erregungslicht der Einfluß der Absorption auf ein paralleles Bündel des Fluoreszenzlichtes der gleiche. Die relative Veränderung der gemessenen Fluoreszenzintensität I ist in diesem Falle gleich derjenigen der inneren Fluoreszenzausbeute 7, und ergibt somit die wahre Löschung.

Für die Messungen wurden wieder die Farbvon Fluoreszenzlöschung stattfindet, wegen der stoffe Trypaflavin und Rhodamin B in Methanol-

² J. Perrin u. Mile. Choucroun, C. R. hebd. Séances Acad. Sci. 184, 1097 [1927]; 189, 1213 [1929].

Förster, v. T. Z. Naturforschg. 1949, 4 a, 321-327

Production des états excités

cea

Exemple de transfert d'énergie dans un cocktail scintillant

EXEMPLE COCKTAIL EXTRACTANT-SCINTILLANT COMMERCIAL ALPHAEXTM

- **Contient une molécule extractante spécifique à un émetteur** α *Note : Pour ALPHAEXTM, c'est l'acide di-2éthylhexylphosphorique*
- Contient 3 molécules spécifiques fluorescentes
 - Solvant :
 - ① Toluène (7,5 M)
 - Amplificateur de discrimination α/β :
 ② Naphtalène (1,5 M)
 - colorant UV :
 - ③ PBBO (10⁻² M) **2(4***biphenylyl*) 6-*phenylbenzoxazole*

(1)

Les voies de désexcitation :

- ① Fluorescence $S_1 \xrightarrow{h\nu} S_0$
- ② Conversion (passage inter-système) $S_1 \rightarrow T_1$
- ③ Désexcitation interne $S_1 \rightarrow S_0$
- ④ Désexcitation réciproque $S_1 + S_0 \rightarrow S_0 + S_0$
- (5) « Quenching » $S_1 + Q \rightarrow S_0 + Q^*$

Rendement quantique de fluorescence

$$\Phi^F = \frac{1}{1 + 2 + 3}$$

Passage inter-système $S_1 \rightarrow T_1$

Excitation et mécanismes de désexcitation : les état triplet T₁

Rendement quantique de phosphorescence

cea

Application : phosphorescence du toluène

Fluorescence

Mécanisme	k (s ⁻¹)
$S_1 \xrightarrow{h\nu} S_0$	4,1.10 ⁶
$S_1 \rightarrow T_1$	1,6.10 ⁷
$S_1 \rightarrow S_0$	9,8.10 ⁶

Phosphorescence

Mécanisme	k (s ⁻¹)
$T_1 \xrightarrow{h\nu} S_0$	4,7.10 ⁻²
$T_1 \rightarrow S_0$	8,2.10 ⁻²

 $\Phi^P =$

Transfert d'énergie par résonance de type Förster

$$S_1 + S_0 \rightarrow S_0 + S_1$$

La cinétique de transfert k_{SF} (et donc l'efficacité du transfert ϵ_{SF}) dépend de la distance r entre les 2 molécules en interaction (donneur **D** et accepteur **A**).

$$\epsilon_{SF} = \frac{1}{\tau_D} \left(\frac{R_0}{r}\right)^6 \qquad \qquad \epsilon_{SF} = \frac{1}{1 + \left(\frac{R_0}{r}\right)^6}$$

La distance d'interaction peut être quantifiée en calculant le rayon critique R_0 correspondant à une efficacité ϵ_{SF} de 0,5.

$$R_0^6 = \frac{9000 ln 10 \kappa^2 \boldsymbol{\phi}_{\boldsymbol{D}}}{128 \pi^6 n^4 \mathcal{N}} \int_0^\infty \boldsymbol{f}_{\boldsymbol{D}}(\boldsymbol{\nu}) \boldsymbol{\varepsilon}_{\boldsymbol{A}}(\boldsymbol{\nu}) \frac{d\nu}{\nu^4}$$

Dynamique de transfert aux échelles de temps ps – ns

On doit tenir compte de la diffusion simultanée au transfert par dipôle-dipôle. La solution exacte <u>dépendante du temps</u> qui prend en compte simultanément la diffusion et le transfert à longue distance ne paraissant pas possible, des techniques d'approximation ont été utilisées.

L'équation de Gösele (1975) donne la probabilité de vie d'un état excité dépendante du temps

Mécanisme	Toluène k _i (s ^{–1})	Naphtalène k _i (s ⁻¹)	PBBO k _i (s ⁻¹)
$S_1 \xrightarrow{h\nu} S_0$	4,1.10 ⁶ 2,0.10 ⁶		8,3.10 ⁸
$S_1 \rightarrow T_1$	$T \to T_1$ 1,6.10 ⁷ 7,8.10 ⁶		-
$S_1 \rightarrow S_0$	$> S_0$ 9,8.10 ⁶ 6,3.10 ⁵		-
$S_1 + O_2 \rightarrow S_0 + O_2^*$	2,8.10¹⁰ M⁻¹s⁻¹ (dans cyclohexane)	2,7.10¹⁰ M⁻¹s⁻¹ (dans cyclohexane)	?
$T_1 \xrightarrow{h\nu} S_0$	4,7.10 ⁻²	1,4.10 ⁻²	-
$T_1 \rightarrow S_0$	8,2.10 ⁻²	0,42	-
$T_1 + O_2 \rightarrow S_0 + O_2^*$	1,3.10¹⁰ M⁻¹s⁻¹ (dans benzène)	1,5.10⁹ M⁻¹s⁻¹ (dans benzène), 2,4.10 ⁹ dans toluène	?

 $S_1 + S_0 \rightarrow S_0 + S_1$ 6,9.10¹⁰ 1,5.10⁸

Les états triplets ne sont pas des dipôles (pas d'interaction coulombienne). Le transfert est essentiellement dû à la diffusion.

Généralement une réaction de pseudo premier ordre quantifie assez bien le temps de transfert.

$$\frac{1}{t} = k_{diffusion} [Accepteur]$$

N.B. : La constante de diffusion dans les solvants organiques est d'environ $10^{10} M^{-1} s^{-1}$

Dans le cas du cocktail AlphaexTM :

(1) [Toluène] = 7,5 M
$$t_{1\rightarrow2} = ps \text{ soit } k_{1\rightarrow2} = s^{-1}$$
(2) [Naphtalène] = 1,5 M $t_{2\rightarrow3} = ns \text{ soit } k_{2\rightarrow3} = s^{-1}$ (3) [PBBO] = 0,01 M s^{-1}

Dynamique de transfert dans Alphaex[™]

Niveaux d'énergie des états excités des composés de Alphaex[™]

Commissariat à l'énergie atomique et aux énergies alternatives

Scintillation Liquide Alpha

Principe de discrimination fluorescence prompte / fluorescence retardée

Fig. 21. Pulse-Shape Discrimination. This is possible because the detectable portion of alpha-produced light pulses (upper left) last about 30 nanoseconds longer than beta- or gamma-produced pulses. Since the integrated pulses (upper right) are about a microsecond long, the beginning of timing is delayed for about 800 nanoseconds. A voltage ramp (lower left) is then started and rises linearly with time until the pulse crosses zero. The spectrum of these voltage pulses (lower right) represents alpha (right) and beta-gamma pulses (left).

The Effect on Pulse-Shape (Time) Resolution due to Naphthalene Concentration in the Scintillator: a No naphthalene in the scintillator, b. 200g/L

Cea Spectre de forme d'amplitude

PSD = *Pulse Shape Discrimination*

cea

Discrimination et énergie de la particule alpha

¹⁴⁷Sm E_α = 2233 keV **214PO** E_α = 7687 keV

cea

Cas de l'américium 241

Commissariat à l'énergie atomique et aux énergies alternatives

Scintillation Liquide Alpha

Cas de l'américium 243

Scintillation Liquide Alpha

La conversion interne

Cea

Conversion interne totale : $\alpha_T = \alpha_K + \alpha_L + \alpha_M + \dots = \frac{I_{ic}}{I_{\gamma}}$

 $\sum_{i=1}^{} \alpha_{L_i}$

Conversions internes dans chaque couche :

$$\alpha_{K} = \frac{I_{ic,K}}{I_{\gamma}}$$

$$\alpha_{L_{i}} = \frac{I_{ic,L_{i}}}{I_{\gamma}} (i = 1,2,3) \qquad \qquad \alpha_{L} = \sum_{i=1}^{3} \alpha_{L_{i}}$$

$$\alpha_{M_{i}} = \frac{I_{ic,M_{i}}}{I_{\gamma}} (i = 1,2,3,4,5) \qquad \qquad \alpha_{M} = \sum_{i=1}^{5} \alpha_{M_{i}}$$

$$I_{ic} = \frac{\alpha_T}{1 + \alpha_T}$$
$$I_{\gamma} = \frac{1}{1 + \alpha_T}$$

Commissariat à l'énergie atomique et aux énergies alternatives

Scintillation Liquide Alpha

Position des raies alpha converties pour ²⁴³Am

Un électron (particule β^{-}) produit **8** à 10 fois plus de is qu'une, ion des raies alpha e. Jacée de : $E_{ic} = E_{\alpha} + kE_{électron}$ Exemple pour la raie alpha principale convertie sur les sono prouche L et M : = keV = 0 = keV = 0 15photons qu'une particule α à même énergie. La

$$E_{ic} = 5275 + 8 \times =$$
 keV
 $E_{ic} = 5275 + 8 \times =$ keV

$$I_{ic,L} = I_{ic} \times \frac{\alpha_L}{\alpha_T} =$$
$$I_{ic,M...} = I_{ic} \times \left(1 - \frac{\alpha_L}{\alpha_T}\right) =$$

Aupiais, I., Deconvolution of alpha liquid scintillation spectra for quantitative analysis of actinide elements in water samples. Radiochim. Acta 2004, 92 (3), 125-132.

cea

Conversion Interne : Intensités absolues et relatives de quelques actinides communs

Isotope	$E_{\alpha}(keV)$	$I^{abs.}_{lpha}$ (%)	$I^{rel.}_{lpha}$ (%)	Isotope	$E_{\alpha}(keV)$	$I^{abs.}_{lpha}$ (%)	$I^{rel.}_{lpha}$ (%)
²³⁸ U Couche L Couche M	4196 4388 4512	76,16 15,17 5,67	100 19,16 7,16	²³⁹ Pu Couche L Couche M	5157 5349 5480	88,54 8,32 3,14	100 9,40 3,55
²³⁴ U Couche L Couche M	4775 4988 5112	71,70 20,60 7,70	100 28,73 10,74	²⁴⁰ Pu Couche L Couche M	5168 5313 5448	72,94 19,86 7,20	100 27,23 9,87
²³² U Couche L Couche M	5320 5566 5690	68,65 22,82 8,53	100 33,24 12,43	²³⁶ Pu Couche L Couche M	5768 5933 6064	68,37 23,41 8,22	100 34,24 12,02
²³² Th Couche L Couche M	4010 4307 4386	78,56 15,63 5,81	100 19,90 7,40	²⁴³ Am Couche L Couche M	5233 5275 5275 5698	12,10 68,65 14,44 4,81	_ 100 17,88 5,96
²³⁰ Th Couche L Couche M	4688 5011 5128	76,97 16,81 6,22	100 21,40 7,92				
²²⁸ Th Couche L Couche M	5423 5865 5982	74,00 18,98 7,02	100 25,65 9,49				

Aupiais, J., Deconvolution of alpha liquid scintillation spectra for quantitative analysis of actinide elements in water samples. Radiochim. Acta 2004, 92 (3), 125-132.

Cea

Comparaison spectrométrie alpha et scintillation liquide alpha : noyau pair-pair

Commissariat à l'énergie atomique et aux énergies alternatives

Scintillation Liquide Alpha

²³⁰Th

4889

5093

IVVAA

4685

Comparaison spectrométrie alpha et scintillation liquide alpha : noyau pair-impair

Combinaison linéaire de 2 signaux de temps de vie différent (celui des α et celui des β)

Quelques exemples

cea

Retombées mondiales

Qualité militaire

Quelques exemples ...

Remarque : les conversions sur la couche M ont été omises pour les 3 isotopes du thorium

Cea

Applications en physique nucléaire

Fissions induites par neutrons rapides

Histogramme de discrimination : irradiation par des neutrons de 18 MeV d'une solution de ²⁵²Cf (2 kBq), solvant DIN

Fission spontanée ²⁴²Pu

Isotope	Ce travail	Évaluation [6]	État de l'art
²⁴⁰ Pu	1,132(8)×10 ¹¹	1,140(10)×10 ¹¹	1,165(13)×10 ¹¹
²⁴² Pu	6,77(7)×10 ¹⁰	6,77(6)×10 ¹⁰	1,132(8)×10 ¹⁰
²⁵² Cf	85 <mark>,</mark> 245(270)	86(1)	85,54(22)

Bélier G. et al, High-precision spontaneous fission branching-ratio measurements for ^{240,242}*Pu and* ²⁵²*Cf isotopes, Phys. Rev. C.* 98 (2018) 034612

40

APPAREILS

Plan de coupe d'un spectromètre PERALS TM

Cea

Schéma de fonctionnement simplifié d'un spectromètre PERALS[™]

Scintillation Liquide Alpha

Schéma de fonctionnement simplifié d'un spectromètre Quantulus

Discrimination α/β

Le PSA intègre la traîne du pulse de scintillation et compare la valeur obtenue à l'intégrale totale du signal.

Par PRHaney — Travail personnel, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9472662

EXTRACTION LIQUIDE-LIQUIDE

M. Baaden, M. Burgard et G. Wipff : ""TBP at the water-oil interface: the effect of TBP concentration and water acidity investigated by molecular dynamics simulations"", J.Phys.Chem.B. 105, 2001, 11131-11141

47

- 1. RADONS $_{\alpha}$: toluène
- 2. STRONEX $_{\alpha}$: éther couronne dicyclohexano-18-couronne-6
- 3. RADAEX $_{\alpha}$: éther couronne dicyclohexano-21-couronne-7 + acide heptanoïque
- 4. POLEX $_{\alpha}$: oxyde de trioctylphosphine
- 5. THOREX_{α} : 1-nonyldécylamine en milieu sulfate
- 6. URAEX_{α} : tri-*n*-octylamine en milieu sulfate
- 7. ALPHAEX $_{\alpha}$: acide di-2-éthyl-héxylphosphorique

Ce cocktail n'est pas à proprement parlé un cocktail extractant car basé sur la différence de solubilité du radon entre une phase aqueuse et une phase organique

Scintillation Liquide Alpha

STRONEX $_{\alpha}$

Coefficient de distribution dans HNO₃ 0,2 M (+ acide didodécylnaphtalène sulfonique)

Elément	D
Sr	6000
Ca	80
К	46
Rb	16
Ва	6000

Fig. 1. Typical α -energy spectrum of radium 226 obtained from a natural water (IAEA 425): (1) secondary α -ray at 4685 keV; (2) main α -ray at 4871 keV; (3) secondary α -ray + IC K-shell peak at 5343 keV; (4) secondary α -ray + IC L-shells peak at 6033 keV; (5) secondary α -ray + IC M+...-shells peak at 6144 keV.

Aupiais, J., Radium measurement in water samples by a-liquid scintillation counting with a/b discrimination. Anal. Chim. Acta **2005,** 532, 199-207.

Cas des extractants neutres – POLEX $_{\alpha}$

$$CH_3-(CH_2)_7$$

 $CH_3-(CH_2)_7$
 $CH_3-(CH_2)_7$
 $P=O$
 $CH_3-(CH_2)_7$

Mécanismes d'extraction :

 $M^{n+} + nA^- + m\overline{B} \rightleftharpoons \overline{MA_nB_m}$

$$nH^+ + nA^- + \overline{B} \rightleftharpoons \overline{(HA)_nB}$$

Courbes d'extraction des actinides par TOPO en milieu HCl

Commissariat à l'énergie atomique et aux énergies alternatives

Scintillation Liquide Alpha

55

Cea

Courbes d'extraction des actinides par TNOA en milieu HNO₃

The extraction of the hexavalent actinide nitrates by 10 v/o TOA in xylene. 219

The extraction of pentavalent and trivalent actinide nitrates by 10 v/o TOA in xylene. 219

cea

Rendements d'extraction de quelques actinides par URAEX dans divers milieux

Elément	Extraction faible acidité forte acidité		
U	✓	×	
Th	×	×	
Pu	<	✓	

Elément	Extraction		
	faible acidité	forte acidité	
U	×	✓	
Th	×	×	
Pu	×	×	

Elément	Extraction faible acidité forte acidité		
U	×	×	
Th	×	×	
Pu	×	 ✓ 	

57

Cas des extractants acide - ALPHAEX_{α}

С₂H₅ С₄H₉-CH-CH₂O С₄H₉-CH-CH₂O С₄H₉-CH-CH₂O OH С₂H₅

Molécule sélective des actinides aux degrés d'oxydation +3, +4 et +6

Cea Rendement d'extraction de quelques actinides dans HNO₃

Préparation des échantillons

Procédure de préparation des échantillons pour spectromètre PERALS ™

- 1. Ajustement du milieu
- 2. Agitation (vigoureuse) des phases
- 3. Centrifugation (pour séparer les 2 phases)
- 4. Prélèvement <u>précis</u> d'une aliquote de phase scintillante (\overline{V} = 1,0 mL)
- 5. Désoxygénation de la phase scintillante par Ar saturé en toluène (t = 5 min)
- Scellement du tube (un simple bouchon suffit si temps de comptage pas trop long cad t_{comptage} < 3 j)
- 7. Comptage dans le spectromètre

Effet de la désoxygénation sur le quenching

Résolution – paramètres influant et optimisation

Cea

Performances de 2 cocktails commerciaux Alphaex[™] et Ultima Gold[™]

Spectromètre PERALS[™]

- Extractant
 - HDEHP 0,2 M
- Mélange scintillant
 - o Toluène 7,5 M
 - Naphtalène 1,5 M
 - PBBO 0,01 M

Spectromètre TRICARB[™] ...

- Tensio-actifs
 - Non-ioniques et anioniques 27-42 %
- Mélange scintillant
 - Disopropylnaphtalène 3 4,5 M (5 isomères

principaux 1,3- ; 1-4-; 1,7- ; **2,6-** et 2,7-)

- PPO 0,025 M
- Bis-MSB 0,0015 M

Surfactants

Na⁺ 'O'

Molecular structure

Surfactant type

Non-ionio

Non-ionic

Anionic

Anionic

Surfactant

Ethoxylated Alkyloheno

Alcohol Ethoxylate

Mono-/Di-Phosphate este

Sodium

di-octvlsulphosuccinate

Cea

Résolutions expérimentales – Isotopes de l'uranium

$ALPHAEX_{\alpha}$ dans $PERALS^{TM}$

238 V = 20 mLV = 1 mL238 234 232 Nombre de coups Nombre de coups 232 252 keV 511 keV 556 keV 312 keV 374 keV 641 keV Mhun Energie Energie ÇH₃ CH + + +╋ CH

Commissariat à l'énergie atomique et aux énergies alternatives

Scintillation Liquide Alpha

ULTIMA GoldTM dans TRICARBTM

cea

Amélioration de la résolution sur TRICARB[™] − trajet optique

$$R_s = 2\frac{t_2 - t_1}{\omega_1 + \omega_2}$$

Cea Comparaison appareils et cocktails scintillants

Cea

Limites de détection à 3 et 10 jours – prise d'essai 0,25 L

lsotope	Limite de (e détection M)	Limite de (pg	détection ;/L)	
Temps de comptage (j)	3	10	3	10	
²³² Th	1.10^{-9}	3.10 ⁻¹⁰	3.10 ⁵	6.10 ⁴	
²³⁸ U	2.10 ⁻¹⁰	9.10 ⁻¹¹	6.10 ⁴	2.10 ⁴	
²³⁸ Pu	5.10 ⁻¹⁸	2.10 ⁻¹⁸	1.10 ⁻³	4.10 ⁻⁴	
²³⁹ Pu	1.10 ⁻¹⁵	5.10 ⁻¹⁶	3.10 ⁻¹	1.10 ⁻¹	
²⁴⁰ Pu	3.10 ⁻¹⁶	1.10 ⁻¹⁶	8.10 ⁻²	3.10 ⁻²	
²⁴¹ Am	2.10 ⁻¹⁷	9.10 ⁻¹⁸	5.10-3	2.10 ⁻³	$\sim 200000 a$
²⁴³ Am	4.10 ⁻¹⁶	1.10 ⁻¹⁶	9.10-2	4.10-2	- ~ 200000 u
²⁴⁴ Cm	9.10 ⁻¹⁹	4.10-19 🗲	2.10 ⁻⁴	9.10 ⁻⁵	

APPLICATIONS ENVIRONNEMENTALES

Dacheux, N.; Aupiais, J., Determination of uranium, thorium, plutonium, americium and curium ultratraces by photon electron rejecting a liquid scintillation. Anal. Chem. **1997,** 69 (13), 2275-2282.

Cea

Mesure du polonium ²¹⁰Po dans l'eau minérale Badoit[®]

Mesure du radium

Aupiais, J., Radium measurement in water samples by a-liquid scintillation counting with a/b discrimination. Anal. Chim. Acta 2005, 532, 199-207)7
---	----

Rendement (%) 226 Ra (mBq.L⁻¹) 238 U (µg.L⁻¹) Echantillon ICP/MS / SLRT 74 ± 4 0.956 ± 0.016 0.82 ± 0.09 28 ± 13 76 ± 4 < 39 $2,03 \pm 0,09$ $1,92 \pm 0.05$ 81 ± 4 < 28 $0,275 \pm 0,012$ 0.8 ± 0.2 73 ± 3 254 ± 81 0.834 ± 0.035 $(9,73\pm3,82).10^{-3}$ 83 ± 4 93 ± 18 78 ± 4 < 24 0.377 ± 0.017 0.9 ± 0.1 79 ± 4 50 ± 12 $2,30 \pm 0,10$ $3,7 \pm 0,5$ $(1,48\pm0,27).10^{-2}$ Ax les thermes 70 ± 4 < 6 67 ± 3 < 24 $1,82 \pm 0.08$ 77 ± 4 2100 ± 250 76.6 ± 3.3 79 ± 2 75 ± 4 < 24 0.984 ± 0.017 78 ± 4 75 ± 20 $0,353 \pm 0,015$ $0,41 \pm 0,05$ 65 ± 3 < 39 $1,54 \pm 0,07$ $1,4 \pm 0,9$ La Bourboule-Choussy 78 ± 4 3000 ± 200 * Aliquote 1 mL, sinon 6 mL

NF ISO 13165-1

Mesure alpha totaux

Cea

Mesure de plutonium dans une eau

Limite de détection **0,5 Bq.m⁻³**

Mesure uranium dans une eau de mine (Pologne)

Commissariat à l'énergie atomique et aux énergies alternatives

78

Validation de la méthode

79

Mesures radium et uranium dans eau de puits (Finlande)

²³⁸U, U_{total}

²²⁶Ra

Mesure de neptunium

Aupiais, J.; Dacheux, N.; Thomas, A. C.; Matton, S., Study of neptunium measurement by alpha liquid scintillation with rejection of b-g emitters. Anal. Chim. Acta **1999**, 398, 205-218 Commissariat à l'énergie atomique et aux énergies alternatives

POLEX HNO -NH NO

Cea

Pour finir ... Schéma global & calcul de rendement sans traceur

Soit : A_T l'activité totale A_1 l'activité trouvée 1^{ère} extr. A_2 l'activité trouvée 2^{nde} extr. R le rendement d'extraction

$$A_1 = R \times A_T$$

$$A_2 = R \times (A_T - A_1)$$

Commissariat à l'énergie atomique et aux énergies alternatives

82

cea

Les photodiodes à avalanche

Réponse uniforme

Rendement quantique supérieur

Ceal Comparaison avec les photomultiplicateurs

Reboli, A.; Aupiais, J.; Mialocq, J. C., Application of large area avalanche photodiodes for alpha liquid scintillation counting. Nucl. Instr. and Meth. A 2005, 550, 593-602.

Comparaison avec les photomultiplicateurs – Pu et Am

Fig. 6. Comparison of the pulse height spectra of ²⁴¹Am and ²⁴³Am measured with the PERALS[®] spectrometer (dashed line) and with our experimental set-up and an APD at -40 °C (straight line). ²⁴¹Am and ²⁴³Am activities are 6 Bq each and counting time is 43 h.

Fig. 7. Pulse height spectra of ²³⁹Pu and ²³⁶Pu at -40 °C. The straight lines represent the main α -ray spectra. Dashed lines represent the pile-up of the main α -ray + IC-shells peaks. The resolution is approximatively equal to 240 keV for the two isotopes. ²³⁶Pu and ²³⁹Pu activities are 4 and 8 Bq respectively, counting time is 17 h. The plot in the upper right shows the²³⁹Pu and ²³⁶Pu spectrum measured with the PERALS[®] spectrometer.

Reboli, A.; Aupiais, J.; Mialocq, J. C., Application of large area avalanche photodiodes for alpha liquid scintillation counting. Nucl. Instr. and Meth. A 2005, 550, 593-602.

Merci pour votre attention

Vous en savez autant que moi, mais...

Annexes

Cea

Rendement de fluorescence

$$\Phi^F = \frac{k^F}{\sum_i k^i}$$

 k^F

Rappel :
$$\sum_{i} k^{i} = \frac{1}{\tau}$$

Constante cinétique de fluorescence

$$= \Phi^F \sum_i k^i$$

Temps de vie de fluorescence naturel $\frac{1}{\tau^F} = \Phi^F \frac{1}{\tau}$

Temps de vie de fluorescence $au = \Phi^F au^F$

Cinétiques de transfert et	temps de vie	U
1) Transfert radiatif $S_1 \xrightarrow{k^0} S_0 + h\nu$	$k^0 = \frac{1}{\tau^0}$	
2) Passage inter-système $S_1 \xrightarrow{k^{isc}} T_1$	$k^{isc} = \frac{1}{\tau^{isc}}$	
3) Transfert non radiatif $S_1 \xrightarrow{k^{nr}} S_0$	$k^{nr} = \frac{1}{\tau^{nr}}$	
4) Quenching $S_1 + Q \xrightarrow{k^Q} S_0 + Q^*$	$k^Q = \frac{1}{\tau^Q}$	

Cinétique globale

$$-\frac{d}{dt}[S_1] = (k^0 + k^{isc} + k^{nr})[S_1] + k^Q[Q][S_1]$$
$$[S_1] = [S_1]_0 e^{-k^F t} \qquad k^F = \frac{1}{\tau^F} = \sum_i k^i + k^Q[Q]$$

Intégrales de recouvrement, rayons critiques de quelques couples de composés

Table 1. Overlap calculations $\int f_{\rm D}(\nu) \times \varepsilon_{\rm A}(\nu) \frac{d\nu}{\nu^4} \times 10^{-27}$ for a couple donor–acceptor (in mole ⁻¹ m ⁶).	Donor	Acceptor	Overlap	Donor	Acceptor	Overlap
	Toluene	Toluene Naphthalene PBBO PPO	0.0021 ^a 2.123 ^a 27.738 23.820	DIN PBBO	PBBO PPO Bis-MSB PBBO	96.245 21.201 146.518 3.539
	Naphthalene	Naphthalene PBBO PPO Bis-MSB	0.0056 ^{<i>a</i>} 92.504 26.527 129.411	PPO Bis-MSB	PPO Bis-MSB Bis-MSB	1.544 128.325 12.03

a: in cyclohexane else in toluene.

equired by Eq. (1).	donor \rightarrow acceptor	$\Phi_{\rm D}$ (donor)	Refractive index <i>n</i> of the solvent	R_0 (in Å)
	Toluene \rightarrow naphthalene	0.14 [12]	1.4961 [15]	15.4
	Naphthalene \rightarrow PBBO	0.19 [13]	1.4961	28.0
	Toluene \rightarrow PBBO	0.14 [12]	1.4961	22.5
	$DIN \rightarrow PPO$	0.62 this work	1.6 ^{<i>a</i>}	30.2
	$PPO \rightarrow bis-MSB$	0.79 [14]	1.6 ^{<i>a</i>}	39.8
	$DIN \rightarrow Bis-MSB$	0.62 this work	1.6^{a}	38.8

a: assumption taking into account that derivative naphthalene molecules have refractive index close to about 1.6 like 1-methylnaphthalene (n = 1.6170) or β isopropylnaphthalene (n = 1.58482) [15].

Aupiais, J.; Aubert, C.; Dacheux, N., Some rules to improve the energy resolution in alpha liquid scintillation with beta rejection. Radiochim. Acta 2003, 91, 63-69

Table 2. rameters

Commissariat à l'énergie atomique et aux énergies alternatives

Scintillation Liquide Alpha

Données nucléaires pour quelques actinides

Isotope	α_T	$\alpha(L)$	$\alpha(M)$	$\alpha(N+\ldots)$	$\alpha(L)/\alpha_T$	$\alpha(M)/\alpha_T$	$\alpha(M)/\alpha_L$
²³⁰ Th	61.9	45.2	12.24	4.39	0.730	0.198	0.271
²³² Th	120	87.5	23.64	8.49	0.729	0.197	0.270
232U	156.1	113.6	31.1	11.44	0.728	0.199	0.274
²³⁴ U	232.9	169.6	46.3	17.07	0.728	0.199	0.273
²³⁶ Pu	461*	341*	94.1*	31.0*	0.740	0.204	0.276
238Pu	731	530*	146*	48.1*	0.732	0.202	0.275
	724*						
239Pu	317		-	-			-
	$318 \pm 6*$	$231 \pm 4*$			0.726	-	
²⁴⁰ Pu	597		-	-			-
	$610 \pm 9*$	$448 \pm 7*$			0.734	-	
²⁴¹ Am	1.16	0.84	0.226	0.094	0.724	0.195	0.269
²⁴³ Am	0.280	0.210	0.0518	0.0183	0.750	0.185	0.247
²⁴⁴ Cm	918						
	$928 \pm 9*$	$673 \pm 7*$	186*	61.5*	0.725	0.200	0.276

*: Ref. [15] else Ref. [16-27].

Table 2. Contributions of the *L*, *M*, etc. shells in the total *IC* (a_T) [6–17, 19].

Table 3. Data	used for	calculating	the E_{ic}	value	[15 - 27]	•
---------------	----------	-------------	--------------	-------	-----------	---

Isotope	E_{α} (keV)	I_{α} (%)	E_{γ} (keV)	τ (ns)	α_T	I _{ic}	I_{γ}	E_{electron} (keV) (L shell)	E _{electron} (keV) (M shell)
²²⁸ Th	5340.36	27.2	84.37	0.746	21.6	0.9558	0.0442	65.55	80.19
²³⁰ Th	4620.5	23.4	67.67	0.63	61.9	0.9841	0.0159	48.85	63.49
²³² Th	3947.2	21.7	63.81	0.55	81.9	0.9879	0.0121	45.00	54.82
²³² U	5263.36	31.55	57.78	0.406	156	0.9936	0.0064	37.82	53.32
²³³ U	4783	13.23	42.44	0.172	4500	0.9998	0.0002	22.48	37.98
²³⁴ U	4722.4	28.42	53.20	0.354	232.9	0.9957	0.0043	33.24	48.74
²³⁸ U	4151	20.9	49.55	0.37	326.4	0.9969	0.0031	29.59	45.09
²³⁶ Pu	5721	31.7	47.6	0.254	461	0.9978	0.0021	26.46	42.84
²³⁸ Pu	5456.3	28.84	43.50	0.252	731	0.9986	0.0014	22.36	38.72
²³⁹ Pu	5144.3	15.1	13.0	0.50	$\approx 3 \cdot 10^4$	1	0	(
	5105.5	11.5	51.62	0.191	317	0.9967	0.0031	30.48	46.86
²⁴⁰ Pu	5123.68	27.1	45.24	0.234	597	0.9983	0.0017	24.10	40.48
²⁴² Pu	4856.3	22.4	44.91	0.225	619	0.9984	0.0016	23.77	40.17
²⁴¹ Am	5485.56	84.5	59.54	67	1.16	0.537	0.463	37.78	54.63
	5442.80	13.0	102.98	0.08	0.121	0.108	0.892	81.22	98.07
²⁴³ Am	5275	87.9	74.67	1.40	0.280	0.219	0.781	52.91	69.76
	5233	10.6	117.66	< 0.04	-		the second se	() <u></u>)	112.75
²⁴⁴ Cm	5762.70	23.6	42.82	0.164	918	0.9989	0.0011	20.44	37.74

Aupiais, J.; Aubert, C.; Dacheux, N., Some rules to improve the energy resolution in alpha liquid scintillation with beta rejection. Radiochim. Acta 2003, 91, 63-69.

Effet de la nature de la base

100 -90 -80 -70 -60 P (%) 50 40 30 -20 -10 -0 -10-2 10-1 10^{0} V_{org.}/V_{aq.}

D =

Effet du rapport des volumes de phase

Courbes d'extraction de quelques actinides dans Thorex_{α} en milieu sulfurique

