

Mesure du rayonnement α La spectrométrie α

Licence Métrologie Chimique et Nucléaire

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

J. AUPIAIS CEA, DAM, DIF 91297 Arpajon

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Les noyaux - la vallée de la stabilité

Nom	Symbole	Analogie	Valeurs			
Nombre quantique principal	N = 2(n-1) + l	niveau d'énergie	0, 1, 2, 3,			
Nombre quantique azimutal	l	moment angulaire orbital	0, 2,, <i>n</i> (pair) 1, 3,, <i>n</i> (impair)			
Nombre quantique magnétique	m_l	projection de l sur axe	-l, 0, l			
Nombre quantique magnétique de spin	m_s	projection moment angulaire intrinsèque (spin)	$-\frac{1}{2}$ ou $+\frac{1}{2}$			
Parité+-+-+-l01234567spdfghij	Notation des spectroscopistes reprises pour les noyaux : s = sharp (« simple ») p = principal d = diffuse f = fine (ou « fundamental ») a. h = par ordre alphabétique ensuite					

Pour les noyaux, le nombres quantiques judicieux sont n (nombre quantique radial), l et la *parité* au lieu de l, m_l et m_s pour les électrons.

Oscillateur harmonique isotrope à 3 dimensions

La détermination du potentiel et des quanta d'énergie pour un puits de potentiel contenant des nucléons permet de connaître l'énergie de chaque niveau :

$$E = \hbar\omega_0 \left(N + \frac{3}{2} \right) = \hbar\omega_0 \left(2(n-1) + l + \frac{3}{2} \right)$$

Remarque : N = 2(n - 1) + l admet plusieurs solutions pour n et l donnés (dégénérescence). Le degré de dégénérescence est dans tous les cas (l pair ou impair) égal à $g = \frac{(N+1)(N+2)}{2}$. En tenant compte du spin (g = 2; $s = \pm \frac{1}{2}$), il y a donc $g_T = (N + 1)(N + 2)$ degrés de dégénérescence.

Etat N	N, n, l	couche	g_T	N _T
4+	4,3,0 4,2,2 4,1,4	3s 2d 1g	30	70
3-	3,2,1 3,1,3	2p 1f	20	40
2+	2,2,0 2,1,2	2s 1d	12	20
1-	1,1,1	1р	6	8
0+	0,1,0	1s	2	2

Expérimentalement, il a été observé que pour un certain nombre de protons et un certain nombre de neutrons, les noyaux résultants étaient particulièrement stables.

Etat <i>N</i>	N, n, l	couche	g_T	N _T
4+	4,3,0 4,2,2 4,1,4	3s 2d 1g	30	70
3-	3,2,1 3,1,3	2p 1f	20	40
2+	2,2,0 2,1,2	2s 1d	12	20
1-	1,1,1	1p	6	8
0+	0,1,0	1s	2	2

Commissariat à l'énergie atomique et aux énergies alternatives

L'interaction spin-orbite

Modèle en couche avec interaction spin-orbite – nécessaire pour reproduire les nombres magiques observés (2, 8, 20, 28, 50, 82,126, 184, ...) [G. Mayer 1948]

C'est un modèle à particules indépendantes, qui vérifie le principe de Pauli : chaque nucléon « se déplace sur une orbite » indépendamment des autres nucléons.

Indépendamment : Chaque nucléon baigne dans un potentiel moyen de forme simple qui simule l'attraction moyenne qu'il ressent de la part de tous les autres.

Il y a (2j + 1) projections de \vec{j} possibles.

Le niveau de *j* le plus élevé se trouve abaissé et ce d'autant plus que *l* est grand.

Les nucléons d'une même espèce occupant une sous-couche donnée, se couplent par paire de moment cinétique total nul, c'est-à-dire que les deux nombres quantiques m_i ($-j \le m_i \le m_i$ (+ i) prennent une valeur opposée.

En conséquence :

- Si une orbitale contient un nombre pair de nucléons, tous ces nucléons sont appariés et leur moment angulaire résultant est nul.
- Un noyau pair-pair dans son état fondamental ne contient que des nucléons appariés : son moment angulaire et sa parité sont donc $I = 0^+$.
- Un noyau pair-impair possède un nucléon célibataire. Les autres sont appariés (moment) angulaire total nul). C'est le nucléon célibataire qui gouverne le moment angulaire total I et la parité de la fonction d'onde du noyau, soit I = j et $P = (-1)^l$.

nucléons

Moment angulaire total $\vec{I} = \sum_{tous \ les} \vec{j} = \sum_{i=1}^{r} (\vec{l} + \vec{s})$ = valeur maximale projetée

cea

Puits de potentiel des nucléons

(values appropriate for middle mass nucleus: A~120)

L'émission α

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Découverte de l'émission a

En 1909, après avoir étudié la trajectoire des particules alpha dans un champ électrique, Ernest Rutherford indiqua que le rayonnement α avait une masse comparable à celle de l'atome d'hélium et qu'elle emportait une charge électrique égale à 2 charges élémentaires. La diffusion des rayonnements α par une feuille mince d'or permit à Rutherford en 1911 de mettre en évidence l'existence d'un noyau dans l'atome. Il en conclut que le rayonnement α était en réalité une particule cinétique de nature identique à celle d'un noyau d'hélium.

Radium 226 88 protons 138 neutrons Radium 216 86 protons 136 neutrons

E. Rutherford and T. Royds, Phil. Mag. 17, 281-6 (1909)

Commissariat à l'énergie atomique et aux énergies alternatives

Compte tenu du défaut de masse des noyaux, la désintégration alpha libère de l'énergie qui se distribue sous forme d'énergie cinétique. Les physiciens ont cru pendant longtemps que les particules α émises par un radioélément donné avaient toutes les mêmes énergies.

En 1930, en étudiant la quantité de mouvement des particules émises par le ²¹²Bi, Rosenblum montra qu'un même radioélément pouvait émettre plusieurs rayonnements α d'énergies différentes. Cette structure fine de l'émission alpha fut attribuée à la formation d'états excités du noyau résiduel formé par la désintégration.

$$T_{\alpha_i} = \frac{m_y}{m_y + m_\alpha} (Q_\alpha - E_i)$$

 T_{α_i} : l'énergie cinétique de la particule alpha pour la transition i

 m_y : la masse du noyau produit après l'émission de la particule alpha

 Q_{α} : le bilan en énergie de la désintégration

 E_i : l'énergie d'excitation du noyau produit après l'émission de la particule alpha

 m_{α} : la masse de la particule alpha

Commissariat à l'énergie atomique et aux énergies alternatives

Pour que la désintégration spontanée d'un noyau soit possible, il faut que sa masse initiale soit plus élevée que la somme des masses des noyaux produits. Dans le cas de l'uranium 238, on peut montrer (cf. tableau) que l'émission d'une particule alpha est le seul assemblage de nucléons qui conduit à un bilan d'énergie positif. Il en est de même pour la plupart des noyaux émetteurs alpha.

Particule émise	Noyau produit	Bilan d'énergie (MeV)
proton (¹ H)	Protactinium 237	-7,601
deuton (² H)	Protactinium 236	-11,159
triton (³ H)	Protactinium 235	-9,958
noyau d' ³ He	Thorium 235	-11,858
alpha (⁴ He)	Thorium 234	4,294
noyau d [°] He	Thorium 233	-2,795
noyau d ^{' 4} Li	Actinium 234	-23,101
noyau d' ⁵ Li	Actinium 233	-5,859
noyau de ⁶ Li	Actinium 232	-5,906

Energie libérée pour différentes désintégrations de l'uranium 238

\frown L'émission α et l'effet tunnel

cea

Prédiction de la période radioactive

La période radioactive est reliée à la fréquence de collision de la particule α sur la barrière de potentiel (env. 30 MeV pour les actinides).

$$\lambda = \frac{\pi^2 \sqrt{2\hbar}}{m^{3/2} R^3 (B - E_t)^2} e^{\left[-\frac{R}{\hbar}\sqrt{2mB}\left(\pi\sqrt{\frac{B}{E_t}} - 4\right)\right]}$$

R = rayon du noyau formé B = barrière de potentiel E_t = énergie de la particule m = masse de la particule α

C'est aussi :

 $\lambda = p \times f \times t$

Pour une particule α préformée (p = 1), un facteur de transmission ($t = 10^{-38}$ pour ²³²Th par ex.), il faut calculer f.

Commissariat à l'énergie atomique et aux énergies alternatives

Ceal Fréquence de collision

Fréquence à laquelle se cogne l' α sur la barrière : $f \approx \frac{v_{\alpha}}{d}$

$$\frac{1}{2}M_{\alpha}v_{\alpha}^{2} = \frac{1}{2}M_{\alpha}c^{2}\left(\frac{v_{\alpha}}{c}\right)^{2} = 30 (V_{0}) + 4 (Q)$$
$$\left(\frac{v_{\alpha}}{c}\right)^{2} = \frac{34}{\frac{1}{2} \times 4 \times 931} = 0,018 \quad \clubsuit \qquad v_{\alpha} = 0,14c$$

 $T_{232} =$ $T_{232} = 1, 4.10^{10} a$

Quel devrait être t_{232} ?

 $t_{232} =$

3) Diamètre interne du noyau : *d*

$$d(^{238}U) = 2R = 2 \times 1, 2 \times A^{1/3} = 2 \times 1, 2 \times 238^{1/3} = fm$$
$$d(^{232}Th) =$$

$$f_{238} \approx s^{-1}$$
 $\lambda_{238} = s^{-1}$
 $T_{238} = a T_{238} = 4,65,10^9 a$

cea

Longueur de la barrière de potentiel – exemple émission α de ²³⁸U

Energie de liaison de ⁴He = 28,3 MeV Puits de potentiel = 30 MeV Barrière coulombienne = ? Barrière à R = ?

$$V_{C} = \frac{2(Z-2)}{R} \frac{e^{2}}{4\pi\varepsilon_{0}}$$
$$\frac{e^{2}}{4\pi\varepsilon_{0}} = 1,440 \text{ MeV} \times fm$$

$$R = 1,2(A^{1/3} + 4^{1/3}) fm$$

 $V_C =$ R =

Commissariat à l'énergie atomique et aux énergies alternatives

Energie emportée par la particule α

En général, la décroissance alpha mène au niveau fondamental du noyau fils de telle sorte que la particule emporte le maximum d'énergie possible avec un moment angulaire le plus petit possible.

$$2^{38}U \rightarrow {}^{234}Th + {}^{4}He + Q_{\alpha}$$
$$Q_{\alpha} = \Delta_{U} - (\Delta_{Th} + \Delta_{\alpha})$$

Avec pour excès de masse atomique Δ_X :

 $\Delta_{U} = 47,3070 \, MeV$

$$\Delta_{Th}$$
 = 40,612 *MeV*

$$Q_{\propto} =$$

MeV

 $\Delta_{\propto} = 2,4249 MeV$

Energie cinétique T_{\propto} :

$$T_{\infty} = \frac{\mathcal{M}_Y}{\mathcal{M}_X} Q_{\infty} =$$

19

Conventions Masse des noyaux : M_X , M_Y , M_{\propto} $M(A, Z) = Nm_N + Zm_P - \delta m$ δm est le défaut de masse Masses atomiques : \mathcal{M}_X , \mathcal{M}_Y , \mathcal{M}_{α} $\mathcal{M}(A, Z) = M(A, Z) + Zm_e + B^T_e(Z)/c^2$ Excès de masse atomiques : Δ_X , Δ_Y , Δ_{\propto} $Q_{\propto} = (M_X - M_Y - M_{\propto}) \cdot c^2$ $Q_{\propto} = \mathcal{M}_X c^2 - \mathcal{M}_Y c^2 - \mathcal{M}_{\propto} c^2$ $Q_{\propto} = \Delta_X - \Delta_Y - \Delta_{\propto}$

MeV

Systématique de la désintégration α

On constate :

- > que les noyaux pairs-pairs présentent un $T_{1/2}$ vis à vis de la désintégration α inférieur à celui des noyaux impairs-pairs, pairs-impairs ou impairs-impairs pour des E_{α} équivalentes.
- Ceci s'explique très bien dans l'hypothèse de la préformation de la particule α dans le noyau car la probabilité de formation de la particule dans un noyau pair-pair est supérieure à celle dans les autres noyaux (pairs-impairs, etc.).
- On introduit alors un facteur d'empêchement (hindrance factor) qui mesure l'importance du ralentissement de la désintégration α d'un noyau à Z ou N impairs par rapport à la désintégration d'un noyau pair-pair de même Z qui émettrait des particules α d'énergie équivalente.
- Que les périodes radioactives les plus longues sont toujours associées aux plus faibles *E*_α.

- 1 < F < 4 : la transition est favorisée. La particule α est assemblée d'une paire de nucléons de plus faible énergie, laissant le nucléon impair dans son orbitale initiale. En effet, pour former une particule α, 2 protons et 2 neutrons doivent avoir leur spin couplé égale à 0 ainsi que le moment angulaire orbital relatif au centre de masse de la particule également à 0. Ces nucléons proviennent vraisemblablement des plus hautes orbitales occupées. Une des paires est extraite d'un niveau inférieur laissant le noyau fils dans un état excité.</p>
- 4 < F < 10 : indique un mélange ou un recouvrement entre les états initiaux et finaux.</p>
- 10 < F < 100 : indique que la projection des spins entre états initiaux et finaux est parallèle mais le recouvrement de la fonction d'onde n'est pas favorable.
- 100 < F < 1000 : indique une transition avec changement de parité et projection des états initiaux et finaux parallèles.</p>
- F > 1000 : indique un changement de parité et un retournement du spin (antiparallèle). Ceci requiert une réorganisation substantielle du nucléon dans le parent quand la particule est émise.

On constate :

- ➢ que pour un élément donné (exception Po et Rn), les énergies E_α des différents isotopes pairs sont approximativement inversement proportionnelles au logarithme de la période radioactive : $logT_{1/2} \approx \frac{1}{E_{\alpha}}$.
- > que pour des noyaux à Z donné (isotope), E_{α} est d'autant plus grand que le noyau est déficient en neutron, ou encore E_{α} augmente quand la masse du noyau diminue.
- Exception à cette règle :
 - ➢ lorsque le noyau produit est magique (donc très stable) E_α ne suit plus cette règle (ex: ²¹²Po (E_α = 8, 784 MeV) → ²⁰⁸₈₂Pb (noyau 2× magiques N = 126 et Z = 82), alors que ²⁰⁹Po (E_α = 4, 883 MeV) → ²⁰⁵₈₂Pb).
 - Si les neutrons ou protons doivent être pris sur des couches magiques, E_α diminue rapidement (²¹¹Po (E_α = 7, 275 MeV) → ²⁰⁷₈₂Pb (N = 125, −1 par rapport à la magicité) et ²¹⁰Po (E_α = 5, 304 MeV) → ²⁰⁶₈₂Pb (N = 124, −2 par rapport à la magicité).

Barrière centrifuge

Le noyau ${}_{2}^{4}He$ étant pair-pair, son spin est nul et I = 0. La transition $0 \rightarrow 0$ pour laquelle la particule n'emporte pas de moment angulaire orbital est donc en général favorisée (raie la plus intense).

Lorsque la particule α emporte un moment angulaire orbital, la hauteur de la barrière de potentiel est augmentée d'une quantité correspondant à l'énergie de rotation de la particule α . Cette énergie de rotation s'oppose à la sortie de la particule α du noyau, l'obligeant à avoir une trajectoire tangentielle à la surface du noyau.

La hauteur de la barrière centrifuge est :

$$E_{cent.} = \frac{l(l+1)\hbar^2}{2mR^2}$$

l = moment angulaire orbital emporté m = masse réduite R = rayon du noyau résiduel

cea

La transition conduisant au niveau fondamental de l'atome fils est la plus intense.

cea Propriétés remarquables des noyaux impairs-pairs

La transition conduisant au niveau fondamental de l'atome fils ne devrait pas être 7370 y intense. 5/2-²⁴³₉₅Am <1.0<1 ×1 5275.3 267 _0.004% 1500 (5/2+) 241.38 0.0054%16406 (11/2-) 5233.3 22 🌀 **173.02** 1.1% 9/2- $(11/2^{+})$ 122.6 117.84 11.0% 4.78 <40 ps 7/2-5181 74.664 87.4% 1.11 S 3 1.40 ns 5/2-9/2+ 31.131 0.12% 1500 7/2+ 0 5349.4 5321 2.3565 d <u>5/2+</u> 0_0.16% 1700 ²³⁹₉₃Np 5088 10 5 10 4 $^{243}_{95}Am \rightarrow ^{239}_{93}Np + ^{4}_{2}He$ Commissariat à l'énergie atomique et aux énergies alternatives

Spectrométrie a

cea

Les noyaux impairs-impairs

1		7	imna	air													18 VIIIA
1 1.0079	1	-	mb.														2 4.0026
Η																	He
HYDROGĖNE	2 11A											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	HÉLIUM
3 6.941	4 9.0122											5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180
Li	Be											В	С	N	0	F	Ne
LITHIUM	BÉRYLLIUM											BORE	CARBONE	AZOTE	OXYGÈNE	FLUOR	NÉON
11 22.990	12 24.305											13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948
Na	Mg							- VIIIB -				Al	Si	Р	S	Cl	Ar
SODIUM	MAGNÉSIUM	3 B	4 IVB	5 VB	6 VIB	7 VIIB	8	9	10	11 IB	12 IIB	ALUMINIUM	SILICIUM	PHOSPHORE	SOUFRE	CHLORE	ARGON
19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.38	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.798
TZ																	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
R		Sc	Ti	V	Cr	Mn MANGANÈSE	Fer	CO		Cu		Gallium	Germanium	As	Se SÉLÉNIUM	BROME	KRYPTON
К РОТАSSIUM 37 85.468	Ca CALCIUM 38 87.62	Sc scandium 39 88.906	Ti TITANE 40 91.224	V VANADIUM 41 92.906	Сr снкоме 42 95.96	Mn MANGANĖSE 43 (98)	Fer 44 101.07	CO COBALT 45 102.91	Ni NICKEL 46 106.42	Cu CUIVRE 47 107.87	Zn zinc 48 112.41	GALLIUM 49 114.82	GERMANIUM 50 118.71	As ARSENIC 51 121.76	Se sélénium 52 127.60	BROME 53 126.90	KRYPTON 54 131.29
R POTASSIUM 37 85.468 Rb	Ca CALCIUM 38 87.62 Sr	Sc scandium 39 88.906 Y	Ti ^{TITANE} 40 91.224 Zr	V vanadium 41 92.906 Nb	Сг снкоме 42 95.96 Мо	Mn MANGANÈSE 43 (98) TC	Fe FER 44 101.07 Ru	Co cobalt 45 102.91 Rh	Ni NICKEL 46 106.42 Pd	Cu CUIVRE 47 107.87 Ag	Zn ^{ZINC} 48 112.41 Cd	Ga GALLIUM 49 114.82 In	Germanium 50 118.71 Sn	As ARSENIC 51 121.76 Sb	Se sélénium 52 127.60 Te	Вг вкоме 53 126.90 I	Кг ккуртол 54 131.29 Хе
K POTASSIUM 37 85.468 Rb RUBIDIUM	Ca calcium 38 87,62 Sr strontium	Sc scandium 39 88.906 Y YTTRIUM	Ti TITANE 40 91.224 Zr ZIRCONIUM	V VANADIUM 41 92.906 Nb NIOBIUM	Cr CHROME 42 95.96 MO MOLYBDÈNE	Mn MANGANÈSE 43 (98) TC TECHNÉTIUM	Fe FER 44 101.07 RU RUTHÉNIUM	Co cobalt 45 102.91 Rh RHODIUM	Ni NICKEL 46 106.42 Pd PALLADIUM	Cu cuivre 47 107.87 Ag argent	Zn zinc 48 112.41 Cd cadmium	Ga GALLIUM 49 114.82 In INDIUM	Germanium 50 118.71 Sn etain	As ARSENIC 51 121.76 Sb ANTIMOINE	Se sélénium 52 127.60 Te TELLURE	Br BROME 53 126.90 I IODE	Кг ккуртол 54 131.29 Хе хёлол
К РОТАSSIUM 37 85.468 Rb RUBIDIUM 55 132.91	Ca calcium 38 87.62 Sr strontium 56 137.33	Sc scandium 39 88.906 Y YTTRIUM 71 174.97	Ti TITANE 40 91.224 Zr ZIRCONIUM 72 178.49	V VANADIUM 41 92.906 Nb NIOBIUM 73 180.95	Сг снкоме 42 95.96 Мо моlувdёле 74 183.84	Mn MANGANÉSE 43 (98) TC TECHNÉTIUM 75 186.21	Fer 44 101.07 Ru RUTHÉNIUM 76 190.23	CO COBALT 45 102.91 Rh RHODIUM 77 192.22	Ni NICKEL 46 106.42 Pd PALLADIUM 78 195.08	Cuivre 47 107.87 Ag Argent 79 196.97	Zn zinc 48 112.41 Cd cadmium 80 200.59	Ga GALLIUM 49 114.82 In INDIUM 81 204.38	Germanium 50 118.71 Sn ETAIN 82 207.2	As ARSENIC 51 121.76 Sb ANTIMOINE 83 208.98	Se <u>sélénium</u> 52 127.60 Te <u>Tellure</u> 84 (209)	BROME 53 126.90 I IODE 85 (210)	Кг ккуртол 54 131.29 Хе хёлол 86 (222)
K POTASSIUM 37 85.468 Rb RUBIDIUM 55 132.91 CS	Ca CALCIUM 38 87.62 STRONTIUM 56 137.33 Ba	Sc 39 88.906 Y YTTRIUM 71 174.97 Lu	Ti TITANE 40 91.224 Zr ZIRCONIUM 72 178.49 Hf	V VANADIUM 41 92.906 Nb NIOBIUM 73 180.95 Ta	CHROME 42 95.96 MOO MOLYBDÈNE 74 183.84 W	Mn MANGANÈSE 43 (98) TC TC TC TC 186.21 Re	Fer 44 101.07 RU RUTHÉNIUM 76 190.23 OS	CO COBALT 45 102.91 Rh RHODIUM 77 192.22 Ir	Nickel 46 106.42 Pd PALLADIUM 78 195.08 Pt	Cu cuivre 47 107.87 Ag argent 79 196.97 Au	Zn zinc 48 112.41 Cd cadmium 80 200.59 Hg	Ga GALLIUM 49 114.82 In INDIUM 81 204.38 TI	Germanium 50 118.71 Sn etain 82 207.2 Pb	As ARSENIC 51 121.76 Sb ANTIMOINE 83 208.98 Bi	Se sélénium 52 127.60 Te tellure 84 (209) Po	BROME 53 126.90 I 10DE 85 (210) At	Кг ккуртон 54 131.29 Хе хёнон 86 (222) Rn
K POTASSIUM 37 85.468 Rb RUBIDIUM 55 132.91 CS CÉSIUM	Ca calcium 38 87.62 Sr STRONTIUM 56 137.33 Ba BARYUM	Sc scandium 39 88.906 Y YTTRIUM 71 174.97 Lu LUTÉTIUM	Ti TITANE 40 91.224 Zr ZIRCONIUM 72 178.49 Hf HAFNIUM	V VANADIUM 41 92.906 Nb NIOBIUM 73 180.95 Ta TANTALE	Сг снкоме 42 95.96 Мо моцуврёме 74 183.84 W тимостёме	Manganèse 43 (98) TC TECHNÉTIUM 75 186.21 Re RHÉNIUM	Fe FER 44 101.07 Ru RUTHÉNIUM 76 190.23 OS OSMIUM	Co COBALT 45 102.91 Rh RHODIUM 77 192.22 Ir IRIDIUM	Nickel 46 106.42 Pd PALLADIUM 78 195.08 Pt PLATINE	Cu CUIVRE 47 107.87 Ag ARGENT 79 196.97 AU OR	Zn zinc 48 112.41 Cd cadmium 80 200.59 Hg MERCURE	Ga GALLIUM 49 114.82 In INDIUM 81 204.38 TI THALLIUM	GERMANIUM 50 118.71 Sn ETAIN 82 207.2 Pb PLOMB	As arsenic 51 121.76 Sb antimoine 83 208.98 Bi Bismuth	Se <u>sélénium</u> 52 127.60 Te <u>Te</u> <u>tellure</u> 84 (209) Po <u>Polonium</u>	BROME 53 126.90 I IODE 85 (210) At ASTATE	Kr KRYPTON 54 131.29 Xe xénon 86 (222) Rn Radon
K POTASSIUM 37 85.468 Rb RUBIDIUM 55 132.91 CS CÉSIUM 87 (223)	Ca calcium 38 87.62 Sr STRONTIUM 56 137.33 Ba BARYUM 88 (226)	Sc scandium 39 88.906 Y YTTRIUM 71 174.97 Lu LUTÉTIUM 103 (262)	Ti TITANE 40 91.224 Zr ZIRCONIUM 72 178.49 HIF HAFNIUM 104 (267)	V VANADIUM 41 92.906 Nb NIOBIUM 73 180.95 Ta TANTALE 105 (268)	Сг снкоме 42 95.96 Мо моцуврёме 74 183.84 W тимостёме 106 (271)	Mn MANGANÈSE 43 (98) TC TECHNÈTIUM 75 186.21 Re RHÉNIUM 107 (272)	Fe FER 44 101.07 Ru RUTHÉNIUM 76 190.23 OS OSMIUM 108 (277)	Co COBALT 45 102.91 Rh RHODIUM 77 192.22 Ir IRIDIUM 109 (276)	Nickel 46 106.42 Pd PALLADIUM 78 195.08 Pt PLATINE 110 (281)	Cuivre 47 107.87 Ag Argent 79 196.97 Au or 111 (280)	Zn zinc 48 112.41 Cd cadmium 80 200.59 Hg MERCURE 112 (285)	Gallium 49 114.82 In INDIUM 81 204.38 TI THALLIUM 113 ()	GERMANIUM 50 118.71 Sn ETAIN 82 207.2 Pb PLOMB 114 (287)	As <u>ARSENIC</u> 51 121.76 Sb ANTIMOINE 83 208.98 Bi BISMUTH 115 ()	Se <u>selenium</u> 52 127.60 Te <u>Te</u> 84 (209) PO POLONIUM 116 (291)	Br BROME 53 126.90 I IODE 85 (210) At ASTATE IIT7 ()	Kr KRYPTON 54 131.29 Xe xénon 86 (222) Rn RADON 118 ()
К РОТАЗЗІИМ 37 85.468 RUBIDIUM 55 132.91 CS сёзіим 87 (223) Fr	Ca CALCIUM 38 87.62 STRONTIUM 56 137.33 BA BARYUM 88 (226) Ra	Sc scandium 39 88.906 Y YTTRIUM 71 174.97 Lu LUTÉTIUM 103 (262) LIF	Ti TITANE 40 91.224 Zr ZIRCONIUM 72 178.49 Hf HAFNIUM 104 (267) IRff	V VANADIUM 41 92.906 Nb NIOBIUM 73 180.95 Ta TANTALE 105 (268) Db	Сг <u>Снкоме</u> 42 95.96 Мо моцувдёне 74 183.84 W тиловстёне 106 (271) Sg	MIN MANGANÉSE 43 (98) TC TECHNÉTIUM 75 186.21 Re RHÉNIUM 107 (272) BL	FER 44 101.07 Ru RUTHÉNIUM 76 190.23 OS OS OS OS IUM 108 (277) IIIS	CO COBALT 45 102.91 Rh RHODIUM 77 192.22 Ir IRIDIUM 109 (276) MIt	Nickel 46 106.42 Pd PALLADIUM 78 195.08 Pt PLATINE 110 (281)	Cuivre 47 107.87 Ag Argent 79 196.97 Au or 111 (280) Rg	Zn ZINC 48 112.41 Cd CADMIUM 80 200.59 Hg MERCURE 112 (285) Cm	Gallium 49 114.82 In INDIUM 81 204.38 Tl THALLIUM 113 () Nh	GERMANIUM 50 118.71 Sn ETAIN 82 207.2 Pb PLOMB 114 (287) IF1	As arsenic 51 121.76 Sb ANTIMOINE 83 208.98 Bi BISMUTH 115 () MC	Se <u>sélénium</u> 52 127.60 Te <u>tellure</u> 84 (209) PO POLONIUM 116 (291) LV	Brome 53 126.90 I 10DE 85 (210) At ASTATE I17 () TS	Kr KRYPTON 54 131.29 Xe xÉNON 86 (222) Rn RADON 118 () Og

LANTHAN	DES												
57 138.91	58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26	69 168.93	70 173.05
La	Ce	Pr	Nd	IPm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
LANTHANE	CÉRIUM	PRASÉODYME	NÉODYME	PROMÉTHIUM	SAMARIUM	EUROPIUM	GADOLINIUM	TERBIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM
ACTINIDES	5												
89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
ACTINIUM	THORIUM	PROTACTINIUM	URANIUM	NEPTUNIUM	PLUTONIUM	AMÉRICIUM	CURIUM	BERKÉLIUM	CALIFORNIUM	EINSTEINIUM	FERMIUM	MENDELÉVIUM	NOBELIUM

Commissariat à l'énergie atomique et aux énergies alternatives

cea	Les noyaux impairs-impairs		Diapo #77	
A pair	²³⁷ Cm ²³⁸ C	³⁴⁰ Cm ³⁴⁰ Cm ³⁴⁰ Cm ³⁴⁰ Cm ³⁴⁰ Cm ³⁴⁰ Am ³⁴⁰ Am ³⁴⁰ Am ³⁴⁰ Am ³⁴⁰ Am ³⁴⁰ Am ³⁴⁰ Pu ³⁴⁰	n ²⁰⁰ CM ²⁰⁰	24 4
	211 M 222 M 223 M	10 336 ND 330 ND 340 ND	su ND sis ND sis ND	244
	$\frac{219}{11} \frac{219}{12} \frac{219}{11} \frac{219}{12} \frac{219}{11} \frac{219}{12} \frac{219}{12} \frac{219}{12} \frac{219}{12} \frac{219}{12} \frac{229}{12} \frac{229}{12} \frac{223}{12} \frac{223}{12} \frac{224}{12} \frac{224}{12} \frac{226}{12} \frac{229}{12} \frac{226}{12} \frac{229}{12} \frac{229}{12$	a 236 Pa 236 Pa 237 Pa	230 B3 200 B3 300 B3 0 300 D 301 D 305	0
	2007Th 2107Th 2117Th 2127Th 2137Th 2137Th 2137Th 2147Th 216TH 216TH 2107TH 2107TH 2187TH 2187TH 2207TH 2207TH 2227TH 2237TH 2237TH 2247TH 2267TH 2207TH 2207	отh 234Th 235Th 236-	Th 200 Th 200 Th 2	-63
205AC	0% AC 20% AC 20% AC 21% AC 22% AC 23% AC 23% AC 21% AC	232 AC 233 AC 234 AC	235 AC 236 AC 237	A
²⁰³ Ra ²⁰⁴ Ra ²⁰⁵ Ra	20%Ra 20%Ra 20%Ra 20%Ra 20%Ra 211%Ra 2117Ra 2117Ra 2117Ra 2117Ra 2114Ra 2115Ra 2116Ra 2117Ra 2116Ra 2118Ra 2118Ra 2118Ra 2118Ra 2218Ra 2217Ra 2228Ra 228Ra	Ra 231 Ra 232 Ra 233	'Ra 234 Ra 235 Ra	
Fr ²⁰³ Fr ²⁰⁴ Fr	28 Fr 200 Fr 200 Fr 200 Fr 200 Fr 200 Fr 210 Fr 210 Fr 211 Fr 212 Fr 213 Fr 213 Fr 214 Fr 215 Fr 216 Fr 216 Fr 217 Fr 218 Fr 219 Fr 220 Fr 221 Fr 222 Fr 223 Fr 224 Fr 224 Fr 225	⁵⁵⁹ <i>Et</i> ⁵³⁰ <i>Et</i> ⁵³¹ <i>Et</i>	232 Fr 233 Fr	
²⁰² Rn ²⁰³ Rn ²⁰⁴ Rn	205Rn 207Rn 207Rn 207Rn 207Rn 207Rn 207Rn 210Rn 211Rn 212Rn 213Rn 214Rn 215Rn 216Rn 217Rn 218Rn 219Rn 219Rn 220Rn 221Rn 222Rn 223Rn 224Rn 225Rn 226Rn 227Rn 228Rn	An 228 Rn 229 Rn 23	¹⁰ Rn ²³¹ Rn	4
²⁰² At ²⁰³ At ²	At 205 At 206 At 207 At 207 At 208 At 209 At 210 At 210 At 211 At 212 At 213 At 214 At 215 At 216 At 216 At 217 At 218 At 219 At 220 At 221 At 222 At 223 At 224 At 225	*A *SS <i>JA</i> ^{SSS} <i>JA</i> ^{SSS}	11 229 At	
PO 202PO 203PO	204Po 205Po 205Po 206Po 207Po 207Po 208Po 209Po 210Po 211Po 212Po 213Po 214Po 215Po 216Po 216Po 217Po 218Po 219Po 220Po 220Po 221Po 222Po 223Po 224Po	0 ²²⁵ <i>P0</i> ²²⁶ <i>P0</i> ²	09 ¹²	
²⁰¹ Bi ²⁰² Bi ²⁰	<i>Bi</i> ²⁰⁴ <i>Bi</i> ²⁰⁵ <i>Bi</i> ²⁰⁶ <i>Bi</i> ²⁰⁷ <i>Bi</i> ²⁰⁸ <i>Bi</i> ²⁰⁸ <i>Bi</i> ²⁰⁹ <i>Bi</i> ²¹⁰ <i>Bi</i> ²¹¹ <i>Bi</i> ²¹² <i>Bi</i> ²¹³ <i>Bi</i> ²¹³ <i>Bi</i> ²¹⁴ <i>Bi</i> ²¹⁵ <i>Bi</i> ²¹⁶ <i>Bi</i> ²¹⁷ <i>Bi</i> ²¹⁸ <i>Bi</i> ²¹⁹ <i>Bi</i> ²²⁰ <i>Bi</i> ²²¹ <i>Bi</i> ²²² <i>Bi</i>	²³ Bi ²²⁴ Bi		
²⁰¹ Pb ²⁰² Pb	²⁰³ Pb ²⁰⁴ Pb ²⁰⁵ Pb ²⁰⁶ Pb ²⁰⁷ Pb ²⁰⁸ Pb ²⁰⁹ Pb ²⁰⁹ Pb ²¹⁰ Pb ²¹¹ Pb ²¹¹ Pb ²¹² Pb ²¹³ Pb ²¹³ Pb ²¹⁴ Pb ²¹⁵ Pb ²¹⁵ Pb ²¹⁶ Pb ²¹⁷ Pb ²¹⁸ Pb ²¹⁹ Pb ²¹⁹ Pb ²²⁰ Pb	Primary De	ecay Mode	
¹⁰ TI ²⁰¹ TI ²⁰¹	$\frac{203}{1} \frac{204}{1} \frac{205}{1} \frac{205}{1} \frac{206}{1} \frac{207}{1} \frac{207}{1} \frac{208}{1} \frac{209}{1} \frac{209}{1} \frac{210}{1} \frac{210}{1} \frac{211}{1} \frac{211}{1} \frac{212}{1} \frac{213}{1} \frac{214}{1} \frac{215}{1} \frac{215}{1} \frac{216}{1} \frac{217}{1} \frac{218}{1} \frac{218}{1}$	Stable 2β- 2n	β- n	
²⁰⁰ Hg ²⁰¹ Hg	²⁰² Hg ²⁰³ Hg ²⁰⁴ Hg ²⁰⁵ Hg ²⁰⁶ Hg ²⁰⁶ Hg ²⁰⁷ Hg ²⁰⁸ Hg ²⁰⁹ Hg ²¹⁰ Hg ²¹¹ Hg ²¹¹ Hg ²¹² Hg ²¹³ Hg ²¹⁴ Hg ²¹⁵ Hg ²¹⁶ Hg	β+ p α	2β+ 2p Fission	
200 , 201	$202_{A,1}$ $203_{A,1}$ $204_{A,1}$ $205_{A,1}$ $206_{A,1}$ $207_{A,1}$ $208_{A,1}$ $209_{A,1}$ $210_{A,1}$	e- capture		
Commissariat à l	energie atomique et aux énergies alternatives	Spectrométrie α	30	

Interaction particule α - matière

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Collisions aléatoires mais caractérisées par une distance maximale : le libre parcours moyen.

Commissariat à l'énergie atomique et aux énergies alternatives

Le pouvoir d'arrêt

A chaque interaction avec un électron (ou noyau) de la matière traversée, la particule alpha subit un "choc" et perd une partie de son énergie cinétique en ionisant (ou excitant) l'atome ; ceci jusqu'à la perte totale de son énergie initiale. Le pouvoir d'arrêt d'un matériau représente la perte d'énergie moyenne par unité de longueur d'une particule traversant le milieu :

$$S = -\frac{dE}{dx} \; (MeV \; cm^{-1})$$

Bethe (1930) et Bloch (1933) :

$$S = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \frac{4\pi z^2 e^4}{m_e v^2} n \mathbb{Z} \left[ln\left(\frac{2m_e v^2}{\overline{I}}\right) - ln(1-\beta^2) - \beta^2 \right]$$

- ε_0 est la permittivité du vide (ε_0 = 8,85.10⁻¹² F/m)
- *Z* est le nombre de charge de la particule incidente et Z celui du matériau cible,
- *E* est la charge électrique élémentaire ($e = 1, 6.10^{-19}$ C)
- m_e est la masse au repos de l'électron (m_e = 511 MeV/c²)
- v est la vitesse de la particule incidente : $\beta = \frac{v}{c}$,
- *n* est le nombre d'atomes par unité de volume (densité atomique en at.cm⁻³) de la cible,
- est le potentiel d'ionisation du matériau cible exprimé en eV.

Les formules empiriques de Sternheimer donnent une bonne approximation de \overline{I} en eV :

si Z < 13
$$\overline{I} = (12 + \frac{7}{Z})Z$$

si Z > 13 $\overline{I} = (9,76 + 58,8 \cdot Z - 1,19)Z$

Commissariat à l'énergie atomique et aux énergies alternatives

Exemple de perte d'énergie – définition du parcours

Le parcours **R** d'un rayonnement alpha représente sa profondeur de pénétration dans un matériau donné

$$\mathbf{R} = \int_{Emax}^{0} -\frac{dE}{S} \left(g.\,cm^2\right)$$

Quelques relations « pratiques » :

Dans l'air (± 10 %)

$$R = 0.32 \cdot E^{3/2} (\text{cm})$$

Dans un matériau quelconque connaissant son parcours dans l'air

$$\boldsymbol{R_2} = \boldsymbol{R_1} \frac{\rho_1}{\rho_2} \sqrt{\frac{A_2}{A_1}}$$

 R_1 est le parcours de la particule alpha dans le milieu de masse volumique ρ_1 et de masse atomique A_1 & R_2 est le parcours de la particule alpha dans le milieu de masse volumique ρ_2 et de masse atomique A_2 .

Le transfert d'énergie linéique (T.E.L.)

La qualité des dépôts réalisés pour la spectrométrie α dépend énormément de la pureté de la solution contenant l'émetteur α .

Le transfert d'énergie linéique (T.E.L.) des particules α est très élevé et conduit à des parcours dans la matière extrêmement réduits.

Parcours, dissipation d'énergie et distance entre ionisations primaires dans un tissu de masse volumique 1 g/cm³

Particule	Energie	Parcours (µm)	^{dE} ∕ _{dx} (keV/µm)	Distance entre
	(keV)			ionisations primaires (Å)
Electron	1	0,053		42,8
	100	141	0,417	2150
	450	1500	0,21	4600
α	1000	5,3	264	1,9
	10000	108	56	14

Commissariat à l'énergie atomique et aux énergies alternatives

Traitement mathématique des spectres α

cea

Traitement sans ajustement (ancien)

Compte-tenu de la forme asymétrique des pics alpha, il convient de sélectionner un nombre plus important de canaux à gauche du sommet du pic que sur la droite. En général, l'asymétrie du pic est définie dans un rapport **1/3 à droite**, **2/3 à gauche** mais peut atteindre dans certains cas les proportions 1/4 – 3/4.

Sinon on étend les canaux à gauche jusqu'à satisfaire l'inégalité.

On prend généralement le traceur comme pic de référence.

Commissariat à l'énergie atomique et aux énergies alternatives

C22 Traitement par ajustement de fonction

Méthode de Gauss-Newton

Supposons que seulement 2 variables (x,y) soient nécessaires pour ajuster une fonction mathématique f à des points expérimentaux. On peut approximer cette fonction par un développement limité à l'ordre 2 :

$$f(x,y) = f(x_0, y_0) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{1}{2} \left[\frac{\partial^2 f}{\partial x^2} \Delta x^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \Delta x \Delta y + \frac{\partial^2 f}{\partial y^2} \Delta y^2 \right].$$
(1)

On minimise la fonction par rapport à un vecteur incrément ΔB dont les composantes sont Δx et Δy . Soit :

$$0 = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial^2 f}{\partial x^2} \Delta x + \frac{\partial^2 f}{\partial y^2} \Delta y + \frac{\partial^2 f}{\partial x \partial y} (\Delta x + \Delta y).$$
(2)
$$\frac{\partial^2 f}{\partial x^2} \Delta x + \frac{\partial^2 f}{\partial x \partial y} (\Delta x + \Delta y) + \frac{\partial^2 f}{\partial y^2} \Delta y = -\left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}\right)$$
(2)
Ici on dérive Eq.(1) par rapport à Δx et Δy
(3)

On peut formaliser cette expression en notation matricielle ; ce qui revient à écrire :

$$\begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial y \partial x} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix} \times \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} -\frac{\partial f}{\partial x} \\ -\frac{\partial f}{\partial y} \end{pmatrix}$$
(4)

En notation compacte, on écrit :

$$\nabla^2 f(x, y) \cdot \Delta B = -\nabla f(x, y)$$

Traitement par ajustement de fonction ...

On cherche les solutions de ΔB en résolvant l'équation suivante :

$$\Delta B = -\left[\nabla^2 f(x, y)\right]^{-1} \cdot \nabla f(x, y).$$
(6)
En pratique, appliqué à la spectrométrie α , on généralise l'équation précédente en considérant une fonction gaussienne augmentée de une à deux traînes exponentielles pour chaque pic marqué. On écrit alors l'équation de f à k composants :

$$\Delta x^{(k)} = -\left[\nabla^2 f(x^{(k)})\right]^{-1} \cdot \nabla f(x^{(k)}) \xrightarrow{\text{Multire de composants :}}_{\text{echel leg 109}} \Delta b_j^{(k)} = p^{(k)} \xrightarrow{\frac{1}{i=1}} \frac{\partial Y_i^{(k-1)}}{\partial b_j} \frac{e_i^{(k-1)}}{y_i}}{\sum_{i=1}^{M} \left(\frac{\partial Y_i^{(k-1)}}{\partial b_j}\right)^2 \frac{1}{y_i}}$$
Gauss

-

Traitement semi-automatique (pic modèle)

Partie de la traîne considérée
Intervalle de paramétrage

$$\frac{dN}{dE} = e^{(aE+b)}$$
$$\frac{dN}{dE} = \frac{a}{(b+cE)^d} + e$$
$$\frac{dN}{dE} = ae^{\frac{(E-m)^2}{2\sigma^2}}$$

Semi-automatique car l'opérateur réajuste les paramètres entre chaque itération.

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

La chambre à grille

Le détecteur est composé d'une chambre d'ionisation à impulsion. Le principe de détection est basé sur la mesure de l'ionisation d'un milieu gazeux, la grille se comportant comme un écran électrostatique.

Collection des charges

L'ajout d'une grille dite grille de Frisch entre l'anode et la cathode (<u>à un</u> <u>potentiel judicieusement choisi</u>) permet en mode impulsion d'obtenir une amplitude du signal proportionnelle au nombre d'ions primaires **indépendamment de l'endroit de leur production au sein du volume gazeux**.

vitesse $v = \mu \frac{E}{p \times d}$ $\mu : mobilité (m^2.atm/Vs)$ E : champ électrique (V/m) p : pression du gaz (atm.) d : distance à l'électrode (m) $\mu_{ion}^* = 1 - 2 \ 10^{-4} \rightarrow v \approx 10 \ m/s$ $\mu_e = 1000 \times \mu_{ion}$

Temps de collection des ions (d=10 cm, p=1 atm) = 1 ms Temps de collection des $e^- = 1 \mu s$

* Par exemple, $\mu(CH_4^+ \text{ dans } Ar) = 1,87 \text{ cm}^2/Vs$, soit 1,87.10⁻⁴ m²/Vs.

Commissariat à l'énergie atomique et aux énergies alternatives

Q/C $\frac{Q}{C} \frac{d-x}{d}_0$ Amplitude du signal exp(-t/RC) t<u>ion</u> électron 500 Temps (µs) 1000 10 0

Exemple : α de 5,3 MeV

Charge totale générée ?

$$Q = \frac{E}{w} \times Q_e^{-}$$

Q =

=

 \equiv

Hauteur de l'impulsion ?

$$V = \frac{Q}{C}$$
$$V = mV$$
A.N. : pour A = 1000 Bq,

Chambre à grille : $C = 10 \ pF$

Commissariat à l'énergie atomique et aux énergies alternatives

La chambre à grille – résolution typique

R = 35 – 50 keV

Avantages

La chambre à grille a un angle solide de 2π

Les dépôts peuvent être de différente forme, leur centrage peut être peu précis, le rendement de comptage n'en sera pas affecté.

La limite de détection d'une chambre à grille est meilleure que celle d'un semiconducteur.

Le nettoyage de la chambre est aisé.

Inconvénients

Résolution intrinsèque est moins bonne que celle des détecteurs à semi-conducteur (35-50 keV),

Consommable coûteux (gaz très pur Ar/CH₄),

Contamination facile et sa décontamination éventuelle peut coûter cher (renickelage par exemple).

Les semi-conducteurs – la jonction pn

Les matériaux semi-conducteurs utilisés pour la spectrométrie alpha contiennent un niveau contrôlé d'impuretés qui déterminent leur conductivité. Selon le type d'impureté, amenant soit un excès d'électrons soit un excès de trous, les niveaux d'énergie occupés seront dans le gap, soit juste en dessous de la bande de conduction (**type N**), soit juste en dessus de la bande de valence (**type P**). Il est possible de faire un matériau qui contienne les deux types d'impuretés (**jonction PN**).

 $E_q = 1,115 \ eV$ dans Si à 300 K)

Détecteurs à jonction pn

Cette jonction est le contact entre une région de type N et une région de type P. En pratique, cette jonction n'est pas formée par une simple liaison mécanique entre deux semi-conducteurs de types N et P, car les défauts de contact seraient grands devant les espaces inter atomiques. \rightarrow Utilisation d'un cristal unique sur lequel on change les impuretés sur l'une des faces par un procédé de diffusion ou d'implantation, ce qui a pour effet de créer au voisinage immédiat de la surface une jonction abrupte appelée « barrière de surface ».

$$N = \frac{E}{w}$$

N : nombre de paires électron-trou,

E : énergie absorbée,

 ω : énergie moyenne nécessaire pour créer une paire électron-trou.

Exemple : dans Si, w = 3,61 eV. Si E_{α} = 5,5 MeV (²⁴¹Am) alors

$$V = \frac{5,5 \times 10^6}{3,61}$$

Rappel : dans un gaz, w(Ar) = 26,4 eV $\rightarrow \approx x10$ dans un semi-conducteur

Commissariat à l'énergie atomique et aux énergies alternatives

Spectrométrie α 50

Cea

Fonctionnement d'une jonction pn

© J. C. G. Lesurf Univ. St. Andrews

$$\mu_{e^-} = 1350 \ cm^2/Vs$$

 $\mu_{trou} = 480 \ cm^2/Vs$

Rappel : $\mu(CH_4^+ \text{ dans Ar}) = 1,87 \text{ cm}^2/\text{Vs}$; $\mu_{e^-} = 1870 \text{ cm}^2/\text{Vs}$.

Commissariat à l'énergie atomique et aux énergies alternatives

En mode détecteur une jonction *pn* est polarisée en inverse de telle manière à ce que presque tout le volume du détecteur soit couvert par la zone déplétée.

Valeurs typiques : Polarisation **inverse** 50-100 V Typiquement la zone de déplétion est au minimum de 140 μm

Schéma et montage électronique

cea

Les semi-conducteurs – propriétés électriques

Quatre paramètres déterminent la qualité d'un semiconducteur :

- le cristal de Silicium doit être très pur afin d'obtenir une résistivité minimale,
- la profondeur de la zone désertée (zone utile) dans laquelle le champ électrique devra être constant,
- la capacité de la jonction qui détermine le bruit électronique,
- le courant inverse.

Profondeur de la zone désertée

$$w = \sqrt{\frac{2\varepsilon V_0}{qN}} = \sqrt{2\varepsilon V_0 \mu \rho}$$

V_0	=	tension inverse,
q	=	charge de l'électron,
Ν	=	nombre d'atomes dopeurs contenus
		dans le cristal de base,
ρ	=	résistivité du silicium,
μ	=	mobilité des porteurs majoritaires.

Capacité et courant inverse

$$C = \frac{1}{2} \sqrt{\frac{2\varepsilon q N}{V_0}} \qquad I = K \sqrt{\frac{\rho}{\tau}}$$

K = constante, $\rho = résistivité du cristal de base,$ $\tau = \frac{1}{N\sigma V} = durée de vie des porteurs, avec N densité des centres derecombinaison, <math>\sigma$ section efficace de capture, V vitesse thermique (100 km/s à 300 K dans Si) - $\tau = 0.75$ ps dans Si sans polarisation de la jonction.

Les semi-conducteurs – dispositifs commerciaux

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Facteurs d'élargissement

22

la particule alpha ne perd pas toute son énergie sous forme d'ionisations dans la zone utile du détecteur.

- Le pic n'est pas centré sur l'énergie théorique de la particule, mais sensiblement décalé vers les basses énergies.
- La largeur du pic est considérablement plus grande que la largeur naturelle de la raie.

Causes dues :

- à la nature du détecteur,
- à la qualité de la source (préparation de la source),
- à la géométrie de détection.

cea

Facteurs d'élargissement – pertes d'énergie

- Compte tenu du fort pouvoir d'arrêt des matériaux pour les particules alpha la préparation de la source est une étape des plus importantes en spectrométrie alpha.
- Collisions élastiques (diffusion Rutherford) sur les noyaux, bien que rares, ne sont pas négligeables, surtout en fin de parcours.
- Dans la cas des détecteurs semi conducteurs, la particule doit traverser la diffusion métallique servant d'électrode et une inévitable zone morte avant d'arriver dans la zone de déplétion.

Conséquences

- Perte d'énergie sans création de charges,
- Ces phénomènes décalent le sommet du pic par rapport à l'énergie théorique.

$$\Delta R = 2,35\sqrt{\Delta S^2 + \Delta I^2 + \Delta C^2 + \Delta P^2 + \Delta F^2 + \Delta E^2}$$

- ΔS <u>straggling</u> sur la perte d'énergie dans la traversée de la source.
- Δ I fluctuations statistiques sur le nombre de porteurs.
- ΔC straggling sur l'énergie perdue par collisions élastiques sur les noyaux (diffusion Rutherford).
- ΔP fluctuations sur la probabilité de piégeage ou de recombinaison des porteurs au cours du collectage.
- Δ F straggling sur la perte d'énergie dans la traversée de l'électrode collectrice et de la zone morte à l'entrée du détecteur (cas des semi conducteurs).
- Δ E élargissement dû au « bruit » électronique.

Cea Autres effets sur la résolution – la distance source - détecteur

Perspective – vers une meilleure résolution : les bolomètres

Ce sont des détecteurs dits cryogéniques - ils mesurent une chaleur.

- Fonctionnement à 1 K et souvent à 100 mK.
- Résolution en énergie largement meilleure que celle des détecteurs conventionnels
- Pas de couche morte

Suivant leur mode de fonctionnement et l'application on les appelle **bolomètres** (physique – détecteur de rayonnements ou de particules) ou **calorimètres** (chimie – mesures d'échange de chaleur).

Fig. 10.5 : Schéma et photographie du bolomètre Cu / NTD Ge. 1 : absorbeur en Cu. 2, 3 : pièces en Ge. 4 : thermomètre NTD Ge. 5 : lien thermique. 7 : support en Cu.

Cea

Performances des bolomètres

Leblanc E. et al, High-energy resolution alpha spectrometry using cryogenic detector, Appl. Radiat. Isot. 64(10-11) (2006) 1281-1286.

Commissariat à l'énergie atomique et aux énergies alternatives

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Il faut connaître ·

- le rayon du collimateur *a*
- distance source-collimateur 7
- le rayon de la source **b**
- l'excentration de la source e

Formule de Curtis

Dans le cas simple d'une source ponctuelle située sur l'axe du collimateur, on obtient :

$$G = \frac{1}{2} \left[1 - \frac{z}{\sqrt{z^2 + a^2}} \right]$$

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Annexes

Projection du moment angulaire

Le moment angulaire des nucléons l correspondant à leur rotation autour du centre du noyau est quantifié. Comme tout vecteur, le moment angulaire orbital peut être projeté sur un axe quelconque. Ces valeurs m_l de ces projections sont comprises entre -l et +l, y compris 0. Il y a (2l + 1) valeurs de ces projections (et donc (2l + 1) angles).

Le module du moment angulaire vaut $\hbar[l(l+1)]^{1/2}$

Moment angulaire de rotation intrinsèque

En plus du moment angulaire orbital, les nucléons possèdent un moment angulaire de rotation appelé <u>spin</u>. Il y a (2s + 1) projections du vecteur spin $\rightarrow 2 \times \frac{1}{2} + 1 = 2$ valeurs $\pm \frac{1}{2}\hbar$, donc 2 orientations possibles (m_s).

Le module du spin vaut $\hbar \left[\frac{1}{2}\left(\frac{1}{2}+1\right)\right]^{1/2}$

Exercice – remplissage des couches

$$E = \hbar\omega_0 \left(N + \frac{3}{2} \right) = \hbar\omega_0 \left(2(n-1) + l + \frac{3}{2} \right)$$

Etat <i>N</i>	N, n, l	couche	g_T	N _T
4+	4,3,0 4,2,2 4,1,4	3s 2d 1g	30	70
3-	3,2,1 3,1,3	2p 1f	20	40
2+	2,2,0 2,1,2	2s 1d	12	20
1-	1,1,1	1р	6	8
0+	0,1,0	15	2	2

Note : 1) on remarque que l a la même parité que N ; 2) et que l ne peut prendre que des valeurs paires si l est pair et impaires si l est impair.

N = 2(n-1) + l

Pour N = 4, combien de couches ?

Quelle(s) valeur(s) de *l* ?

l =

Quelle(s) valeur de n pour un l donné ?

n =	N =	=4
	N =	= 4
	N =	= 4

Cea

Exercice 2 – remplissage des couches pour N = 6⁺

- 1) Retrouver le nombre de couches pour l'état N = 6⁺
- 2) Retrouver la nomenclature s, p, d, ...
- 3) Retrouver le nombre de nucléons pour chaque couche
- 4) En prenant en compte le couplage spin-orbite, retrouver le nombre de sous-couches
- 5) Retrouver la nomenclature des sous-couches
- 6) Retrouver le nombre de nucléons pour chaque sous-couche

Informations utiles

Parité	+	-	+	-	+	-	+	-
l	0	1	2	3	4	5	6	7
	S	р	d	f	g	h	i	j

N = 2(n-1) + l

Nombre de nucléon par couche = 4l + 2Valeurs de $j : j = l \pm \frac{1}{2}$ Nombre de projections de $\vec{j} = (2j + 1)$

Corrections exercice 2

1) Retrouver le nombre de couches pour l'état N = 6 ⁺ N = 2(n - 1) + l		 Retrouver la nomenclature p, d, 	 3) Retrouver le nombre de nucléons pour chaque couche Nbe de nucléon par couche = 4l + 2 		
n = N =	= 6	<i>l</i> =		n =	=
n = N =	= 6	<i>l</i> =		n =	=
n = N =	= 6	l =		n =	=
n = N =	= 6	l =		n =	=
n = N =	= 6	l =			
Commissariat à l'énergie atomique et aux énergies alternatives					Spectrométrie α 69

Commissariat à l'énergie atomique et aux énergies alternatives

Corrections exercice 2 ...

4) En prenant en compte le couplage spinorbite, retrouver le nombre de sous-couches

$$j = l \pm \frac{1}{2}$$

Il y a 4 couches 1i, 2g, 3d et 4s. Pour l = 0, les moments l et ssont confondues \rightarrow pas de dégénérescence, donc :

 $1i \rightarrow$ sous-couches

 $2g \rightarrow$ sous-couches

- $3d \rightarrow sous-couches$
- $4s \rightarrow sous-couche$
- Σ = sous-couches

5) Retrouver la nomenclature des sous-couches

1i (<i>l</i> =)	3d (<i>l</i> =)
<i>j</i> =	=	<i>j</i> =	=
<i>j</i> =	= —	<i>j</i> =	= —
2g (<i>l</i> =)	4s (<i>l</i> =)
<i>j</i> =	= —	j = —	
<i>j</i> =	= —		

Corrections exercice 2...

6) Retrouver le nombre de nucléons pour chaque sous-couche

Nombre de projections de $\vec{j} = (2j + 1)$ 1i (l =) 3d (l =) $n_{1i-} = (2 \times -+1) = n_{3d-} = (2 \times -+1) =$ $n_{1i-} = (2 \times -+1) = n_{3d-} = (2 \times -+1) =$

4s (*l* =)
$$n_{4s-} = (2 \times - + 1) =$$

2g (l =)

$$n_{2g-} = (2 \times - + 1) =$$

 $n_{2g-} = (2 \times - + 1) =$

Exercice

Représenter graphiquement le remplissage des premières sous-couches pour les 3 noyaux suivants ${}^{16}_{8}O$, ${}^{17}_{8}O$ et ${}^{17}_{9}F$. Donner leur parité et le moment orbital total du noyau.

cea

Exercice – calcul d'énergie emportée pour la désintégration de $^{212}_{84}Po$

Evaluer les énergies α_0 pour les 2 états du Po, ainsi que α_{3198} pour l'état excité du Po (45,1 s).

$$\Delta_{Po} = -10,381 MeV$$
$$\Delta_{Pb} = -21,759 MeV$$

 $\Delta_{\alpha} = 2,4249 MeV$

MeV $Q_{\propto} =$ $T_{\propto_0} =$ MeV

 $T_{\propto_0} =$ MeV

Q∝₃₁₉₈ T_{∝3198}

MeV

Cea

Règle de Geiger - Nuttal

Commissariat à l'énergie atomique et aux énergies alternatives

Spectrométrie α

Fermeture des couches aux voisinages des nombres magiques N = 126 et Z = 82

Cea

Exercice 2 – calcul d'énergie emportée pour la désintégration de $^{230}_{90}Th$

Elément	Excès de masse
	(MeV)
²³⁰ ₉₀ Th	30,863976
Particule $\alpha : {}_{2}^{4}He$	2,42491565
Elément fils ²²⁶ ₈₈ Ra	23,669099

- 1) Retrouver le Q_{α}
- 2) Calculer l'énergie cinétique pour la transition α_0
- 3) Calculer l'énergie cinétique pour la transition α_{67}

$$Q_{\alpha} =$$

 $Q_{\alpha} =$

 $Q_{\alpha_{67}} =$

 $T_{\alpha_{67}} =$

Commissariat à l'énergie atomique et aux énergies alternatives

Commissariat à l'énergie atomique et aux énergies alternatives

Spectrométrie a

Chaînes naturelles

Spectrométrie α

Cea

Le straggling

