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Abstract
Immunoglobulin E is the latest discovered of immunoglobulin family and has been 
long associated with anaphylaxis and worm expulsion. Immunoglobulin E, along with 
mast cells, basophils, and eosinophils, is also a hallmark of type 2 immunity which 
is dysregulated in numerous diseases such as asthma, rhinitis, atopic dermatitis, and 
eosinophilic esophagitis in addition to anaphylaxis as aforementioned. However, re-
cent advances have shed light on IgE regulation and memory explaining the low level 
of free IgE, the scarcity of IgE plasma cells that are mainly short live and the absence 
of IgE memory B cells in homeostatic conditions. Furthermore, IgE was implicated 
in inflammatory conditions beyond allergic disorders where IgE-mediated facilitated 
antigen presentation can enhance cellular and humoral response against autoanti-
gens in systemic lupus or chronic urticaria leading to more severe disease and even 
against neoantigen facilitating tumor cell lysis. At last, IgE was unexpectedly associ-
ated with allograft rejection or atheromatous cardiovascular diseases where precise 
mechanisms remain to be deciphered. The purpose of this review is to summarize 
these recent advances in IgE regulation, biology, and physiopathology beyond allergic 
diseases opening whole new fields of IgE biology to explore.
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1  |  INTRODUC TION

Immunoglobulins of isotype E (IgE) were initially reported as a 
“reagin” in the early 1920s by Coca and Cooke who worked on a 
classification of “the phenomena of hypersensitiviness”.1 Little 
work occurred on “reagin” from the 1920s until the 1960s, until 
newer techniques to better detect proteins were developed. In 
1966, Kimishige and Teruko Ishizaka described an anti-serum that 
was able to block type 1 hypersensitivity and called this molecule 
γE-globulin.2 This globulin did not bind complement nor induced 
a precipitin reaction like other immunoglobulins. Simultaneously, 
Bennich and Johansson discovered a paraprotein in a patient af-
fected by myeloma that did not belong to any of the known immu-
noglobulins. He called it “Immunoglobulin Not Determined” (IgND) 
and found that it had similar properties to reagin.3 Both IgND and 
γE-globulin initiated the Prausnitz–Kustner test (i.e., passive cuta-
neous anaphylaxis) and the authors discovered that “reagin,” IgND 
and γE-globulin were finally the same immunoglobulin.4  In 1968, 
γE-globulin and IgND were officially named Immunoglobulin E by 
the World Health Organization International Reference Center for 
Immunoglobulins.5

Phylogenetically talking, IgG and IgE are thought to have 
emerged from a reptilian common ancestor called immunoglobu-
lin Y (IgY).6 On one hand, IgE and IgG share similarities. Both are 
monomeric immunoglobulins composed of two identical heavy 
and light chains ending with same variable domain. They adopt a 
3D structure depending on their FC receptors binding profiles and 
thus on their biological function. They exert their effector functions 
through interactions with Fc receptors.7 On the other hand, IgG and 
IgE evolved differently on several points in mammals. Indeed, they 
are, respectively, the most and the least abundant immunoglobulin 
classes in human serum. IgE heavy chain is longer than IgG with 4 
constant domains and contains seven N-linked glycosylation sites 
(three on Cε1, one on Cε2, and three on Cε3) while a single N-linked 
glycosylation site is present in IgG.7,8 This high glycosylation rate 
may contribute to increase its solubility whereas deglycosylated IgE 
had a tendency to aggregate.8

To date, IgE is mostly known as an anaphylactic immunoglobulin 
and studied in allergic diseases such allergic rhinitis & asthma and 
food allergy where specific IgE-allergen complex plays a major part 
in the physiopathology both in acute and chronic phases of allergic 
inflammation.9 The main mechanism relies on allergen cross-linking 
with specific IgE bound on effector cells (mast cells, eosinophils, 
basophils) via its high-affinity receptor, FcεRI, inducing secretion of 
inflammatory cytokines and mediators such as histamine, heparin, 
tryptase, and prostaglandins.4

Beyond allergic inflammation and related diseases, specific IgE 
secretion is a soluble mediator and also a hallmark of “type 2 im-
munity” along with eosinophil, mast cell, and basophil infiltration 
in inflamed tissue and peripheral blood. So-called “type 2 immu-
nity” or “type 2 response” is triggered by a large panel of micro-
bial (virus, bacteria, parasite) and non-microbial (venom, allergens, 
synthetic or natural adjuvants) stimuli ranging from nanometer to 

several meters long suggesting a multiples variants of type 2 re-
sponses either protective or pathologic where the precise roles 
of IgE remain poorly understood.10 However, several advances in 
recent years have begun to shed light on IgE regulation and mem-
ory, on its role in homeostatic and inflammatory conditions beyond 
allergic disorders such as helminth infection, neoplasia, autoimmu-
nity/autoallergy, vascular disease, and solid organ transplantation. 
The purpose of this review is to summarize these advances in IgE 
physiopathology.

2  |  IMMUNOGLOBULIN E REGUL ATION

Concentrations of free serum IgE are ~50–200 ng per ml of blood 
in healthy humans without any atopic background compared 
with  around 1–10  mg  per  ml of blood for other immunoglobulin 
isotypes.11 In addition, the serum half-life of IgE is the shortest 
of all immunoglobulin isotypes in human to ~2  days compared to 
20 days for IgG.11 Of note, IgE half-life is markedly prolonged around 
9–12 weeks when bound to its high-affinity receptors on mast cells 
and basophils (FcεRI).12 At last, IgE production can occur at a loco-
regional level.13,14 These observations suggest that IgE production is 
tightly regulated at low levels under homeostatic condition to avoid 
potential life-threatening condition such as anaphylaxis or deleteri-
ous type 2 hyperresponsiveness.

Intrinsic regulation of IgE.

2.1  |  IgE class switch recombination

Class switch recombination (CSR) occurs in naive B cells (CD19+, 
CD24+, CD38+, IgM+, and IgD+) in secondary lymphoid organs 
(SLO) such as lymph nodes, spleen or mucosal-associated lymphoid 
tissues (MALT) under BCR activation, CD40  ligation, and cognate 
CD4+ T cell help at the T-B zone before organizing into germinal 
centers.15 CSR is an intrachromosomal rearrangement of the im-
munoglobulin heavy-chain locus resulting in isotype switching from 
IgM-IgD to either IgG1-4 or IgA or IgE that differ in effector func-
tions without altering the specificity for the antigen.16 CSR relies 
on activation of several key enzymes such as activation-induced 
cytidine deaminase (AID), uracil-DNA glycosylase (UNG), and 
APurinic-apyrimidinic Endonuclease 1 (APE1) that bind to specifi-
cally intronic regions called donor and acceptor switch regions (Sd 
and Sa, respectively).17-19 DNA recombination between Sd and Sa as 
well as the transcription of germline transcript (GLTs aka Ix) which 
are crucial regulators of CSR via specific transcription factor binding 
sites20 under the dependence of super-enhancer 3’RR.21 Selection 
of IgE isotype is driven by cytokine micro-environment, IL-4, IL-13, 
and IL-9.22

IgE CSR has unique features. On a first hand, Sε structure is 
shorter (around 2kb) than other S region making more difficult DNA 
recombination all the more so chromatin is condensed according to 
epigenetic information.23,24 On a second hand, IgE CSR can occur 
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1702  |    COLAS et al.

directly from Sμ to Sε or indirectly from Sμ to Sγ1 and from Sγ1 to 
Sε.25 Recently, a probabilistic model suggested that direct CSR occur 
more frequently with a low activation threshold generating low-
affinity IgE26  mostly from naive B cells in SLO27 whereas indirect 
CSR would be more frequently associated with high-affinity-specific 
IgE26,28 (Figure 1).

2.2  |  IgE BCR impacts on B-cell fate

IgE BCR itself induces B-cell fate toward short life. First of all, IgE 
mRNA transcript lack the canonical polyadenylation tail and thus a 
lower ratio of IgE BCR at the cell membrane.29 Moreover, IgE B entry 
in germinal center (GC) is impaired due to lower mobility preventing 
memory B cells or long-live plasma cell differentiation all the more so 
recent findings have revealed that CSR occurs preferentially before 
GC formation.15 At last, membrane IgE BCR induces a suicide locus 
conferring to IgE+B cells a higher propensity to apoptosis.30 Those 
observations argue that IgE+B cells are fragile, prone to apoptosis 
and to become short-live plasma cells consistent with low but not 
null IgE secretion (Figure 1).

3  |  E X TRINSIC REGUL ATION OF IgE

3.1  |  IgE CSR is tightly regulated in SLO

As aforementioned, indirect class switch recombination results 
more frequently in high-affinity IgE.26,28 Though for a same rate of 
somatic hypermutation, IgE affinity remains lower compared to IgG1 
affinity suggesting that T follicular helper cells (Tfh) regulate IgE CSR 
and affinity maturation in SLO. A new population of Tfh, “Tfh-13,” 
was described in several mice models of food allergy and allergic 
asthma promoting high-affinity IgE maturation compared to non-
allergic or helminth-infected mice.31 These particular Tfh expressed 
canonical master genes for type 2 inflammation (GATA3) and fol-
licular polarization (Bcl-6). They also expressed high amount IL-4 and 
IL-13 and low amount of IL-21 leading to indirect CSR. Indeed, IL-21, 
IFN-γ, and IL-10 are known to restrain IgE CSR all the more so they 
act in synergy.32-34 At last, Tfh-13 are associated with IgG1 memory 
B cells that held IgE memory.31 Clement et al described a novel fol-
licular regulatory T cells (Tfr) producing neuritin that were able to 
constrain IgE-CSR and Tfh-13 formation preventing IgE high-affinity 
maturation.35,36 Of note, human IgE repertoire was shown to have 

F I G U R E  1  Intrinsic regulation of IgE. Class switch recombination (CSR) to IgE is regulated by the size of the ε acceptor region (Sε), which 
is smaller than all the others making more difficult to access for transcription factors. Furthermore, CSR can occur either directly from μ to ε 
or indirectly from μ to γ1 to ε. In both cases, the expression of IgE BCR leads to an increase rate of apoptosis and a lower mobility to germinal 
centers. This figure was created with BioRender.com
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    |  1703COLAS et al.

less SHM in healthy individuals.37,38 Furthermore, Shade et al dem-
onstrated that several glycosylation patterns on IgE correlated with 
its function. More precisely, N384-linked oligomannose on Cε3 was 
essential to enhance FceRI binding39,40 whereas a higher number of 
sialic acid residues on N168 (Cε1) and N265 (Cε2) was essential to 
promote mast cell degranulation in food allergic patients.41 Those 
modification were probably acquired after affinity maturation in the 
germinal center.42 IgE binds a C-type lectin domain on its low-affinity 
receptor (CD23 or FcεRII; Kd ~0.1–1 μM).43 Interestingly, IgE binding 
on its monomeric form (soluble or membrane-anchored) acts as a 
negative feedback loop on B cells, suppressing IgE synthesis when 
interacting with CD21.44(p21),45

Taken together, those observations suggest that, in SLO, IgE pro-
duction and memory are constitutively constrained at low level with 
a relative low affinity to their cognate antigen. This is mostly due to 
Tfr balancing with Tfh-13 and CD21/CD23-mediated negative fee-
back loop. These concepts are summed up in Figure 2.

3.2  |  IgE function is actively constrained out of 
SLO and in peripheral tissues

In 2018, Shan et al described an novel mechanism constraining IgE-
driven basophil degranulation in epithelia and inflamed tissues via 
IgD and galectin 9. Briefly, in an ovalbumin (OVA)-sensitized mice 
model, OVA-specific IgD could bound basophils via galectin 9 and 
CD44 preventing their degranulation and enhanced type 2 inflam-
mation. Galectin 9 could also bind IgE subsequently inhibiting FcεRI 

mast cell degranulation.46 Finally, no intrinsic defect in activating 
nor regulatory signals were found in human basophils either from al-
lergic patients or healthy volunteers.47 These data strongly suggest 
that anaphylactic IgE are tuned down even when type 2 immunity 
is triggered.

FcεRI (aka high-affinity receptor—Kd ~ 1 nm) is found as a te-
tramer, αβγ2, on mast cells and basophils, and as a trimer, αγ2, on 
other cells such as monocytes, dendritic cells, eosinophils, and 
platelets. FcεRI interacts with IgE through Cε3.48-50 A mathemat-
ical modelization of immunoglobulin metabolism found that IgE 
undergoes substantial catabolism at extravascular sites related to 
IgE/FcεRI interaction in the peripheral tissues.51 This prediction 
was confirmed in vitro (human dendritic cells/monocytes) and 
in vivo (transgenic mice humanized with human trimeric form of 
FcεRI). Briefly, IgE is quickly endocytosed in a FcεRI-dependent 
manner promoting serum IgE clearance and participate in IgE 
homeostatis.52

At last, IgG1-4 autoantibodies against IgE were described in 
atopic/allergic diseases and auto-immune disorders and healthy vol-
unteers.53-55 Those anti-IgE auto-IgG are able to recognize free and 
FcεR-bound IgE in contrast to Omalizumab that can bind only free 
IgE.54,56 Recently, Chan et al showed that anti-IgE auto-IgG could 
either activate or inhibit in vitro basophil degranulation test to grass 
pollen recombinant protein57 suggesting an inhibitory role prevent-
ing type 2 inflammation though mechanism is still unclear.

Altogether, those data highlight that in peripheral tissues, IgE 
function is constitutively tracked down by active mechanisms 
(IgD-mediated inhibition of basophil degranulation +/- inhibitory 

F I G U R E  2  Extrinsic regulation of IgE in 
secondary lymphoid organs. When a naive 
B cell commits into IgE CSR (direct or 
indirect), there are two main mechanisms 
limiting the appearance of IgE long-live 
plasma cells. The first one is the presence 
of IL-10 or neuritin secreted by regulatory 
follicular helper cells (Tfr). The second 
mechanism is the negative feedback loop 
by IgE itself via monomeric CD23 (low-
affinity receptor) binding on centrocyte 
or on plasma cell. This figure was created 
with BioRender.com
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1704  |    COLAS et al.

auto-IgG against IgE and constant IgE catabolism) in addition to pre-
viously detailed mechanisms in SLO (Figure 3).

3.3  |  IgE production is a basal trait of mucosal and 
imbalanced immunity

More systemic and integrative hypothesis of IgE homeostasis arose 
from germ-free (GF) mice studies and monogenic primary immuno-
deficiencies in humans (PID). Such deficiencies result in hyper-IgE 
and atopic/allergic-like clinical manifestations along with suscepti-
bility to infections and/or auto-immune manifestations. Those PID 
could affect either regulatory T-cell compartment (FoxP3 mutation 
loss of function), TCR/cytokine signaling (ZAP-70 hypomorphic mu-
tation loss of function as an example), TCR repertoire (restrained 
oligo-clonal repertoire), glycosylation protein pathway (phosphoglu-
comutase 3 deficiency), transduction pathways (STAT3 or DOCK8 
deficiency), or even barrier function (Netherton syndrome caused 
by SPINK5 mutation loss of function).58 Despite precise mechanisms 

leading to hyper-IgE are still poorly understood, a common mecha-
nism would be that the imbalanced/impaired type 1 or type 17 im-
munity unmask type 2 immunity.59

Indeed, a high amount of IgE in GF mice occurred early in life 
(before 5 weeks of age) in secondary lymphoid structure at muco-
sal sites. It was dependent on IL-4 produced by CD4+ T cells which 
precise lineage is not known. IgE production could be abolished by 
neonatal microbiota colonization or (before 5 weeks of age) by fecal 
microbiota transplantation from conventional-housed mice whereas 
in adults the process was stabilized.60 In addition, food antigens in 
non-sensitized GF mice induced sustained specific IgE production at 
mucosal site but also in SLO. The IgE synthesis was dependent on 
CD40L+ ICOS+Tfh in secondary lymphoid structures.61 In both stud-
ies, GF mice developed aberrant Ag-specific IgE bound to mast cells 
that could induce anaphylactic symptoms after second Ag exposure.

Taken together, these data suggest that IgE production (Tfh 
dependent) is set by default either at mucosal sites in absence of 
physiological microbiota colonization and/or by an imbalanced type 
1 and/or type 17 immunity during early life. This makes an echo to 

F I G U R E  3  Extrinsic regulation of IgE production in peripheral tissue. Under homeostatic condition, IgE binds his high-affinity 
receptor (FcεRI) on mast cells and monocyte without antigen leading to a rapid internalization of IgE and its receptor to lysosomes. Under 
inflammatory condition, basophils/mast cell degranulation due to IgE cross-linking with antigen is constrained 1) by the antigen/IgD complex 
binding to its receptor (CD44 and galectin 9) and 2) by the autoreactive IgG against IgE under its soluble and bound form. This figure was 
created with BioRender.com
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    |  1705COLAS et al.

birth-delivery mode that impact on neonatal gut microbiota colo-
nization and diversity leading to miseducation of immune system. 
Indeed, neonates with low gut microbiota diversity have a higher 
risk to develop atopic/allergic diseases consistent with IgE dysregu-
lation62,63 (Figure 4).

4  |  IMMUNOGLOBULIN E BIOLOGY

4.1  |  Does natural IgE production exist?

Several mechanisms are at play to tune down IgE production. 
Though, IgE titer is not null under homeostatic condition suggesting 
that a natural secretion of IgE does exist despite the absence of long-
lived IgE plasma cells. One hypothesis would stand that IgE memory 
is kept by IgG1  memory B cells.64(p1) Thus, constant IgE secretion 
would suggest a low-to-intermediate affinity to avoid uncontrolled 
type 2 inflammation and a constant/regular stimulation by (auto-)
antigens that remain to be determined. Another hypothesis relies on 
the secretion of natural IgE independent of major histocompatibility 

complex (MHC) cognate T-cell help in secondary lymphoid struc-
tures in a GF and T-cell-deficient mice models. Those IgE had a low 
rate of SHM suggesting a low-to-intermediate affinity for antigens. 
At last, no evidence of deleterious type 2 activation was observed.65

Whatever their origin, the role of natural IgE remains poorly 
understood. An hypothesis comes from old clinical observations 
where tissular damages (burns or in immediate post-operative pe-
riod) resulted in a rapid polyclonal increase of circulating IgE without 
deleterious type 2 inflammation.66,67 A recent study by Crawford 
et al demonstrated that a carcinogenic environmental xenobiotic 
called 7,12-dimethylbenz[a]anthracene  (DMBA) triggered a strong 
polyclonal IgE response with self-reactivity when applied on skin. 
This IgE response, which was dependent on FcεRI binding, pre-
vented epithelial damage.68 Although their exact specificities remain 
to be determined, those IgE could be implied in maintaining immune 
tolerance to self-antigens from damaged tissues.10 This is supported 
by two recent studies in mice humanized for FcεRI alpha subunit 
which demonstrated anti-inflammatory properties of IgE-FcεRI ac-
tivated dendritic cells. Platzer et al showed that antigen/specific 
IgE complex dampened systemic inflammation in an allergic asthma 

F I G U R E  4  Loco-regional IgE secretion at mucosal sites. Loco-regional IgE secretion is a basal trait at mucosal sites in case of impaired 
type 1 or 17 immunity which can occur in case of 1) abiotic or aberrant microbiota leading to barrier deficiency (i.e., leaky epithelium); 2) TCR 
signaling or restrained repertoire; 3) tolerance impairment (mainly regulatory T cells); and 4) deficient or aberrant N-glycosylation. This figure 
was created with BioRender.com
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1706  |    COLAS et al.

mice model in a FcεRI-dependent manner.69 Baravalle et al showed 
that monovalent antigen covalently bound to IgE first induced CD4+ 
T-cell proliferation, quickly followed by a systemic clonal deletion 
of the antigen-specific CD4+ T cells.70 In addition, IgE-FcεRI acti-
vated DC promoted a IL-10 dependent retro-control loop leading to 
effector T-cell deletion and regulatory T-cell activation via indole-
2,3-diamine oxygenase (IDO) activation.71-73 A FcεRI soluble form 
was detected in human serum74 and exhibited an inhibitory effect 
on mast cell degranulation.75 Altogether, those data argue for an 
immuno-modulatory role of natural IgE on innate immunity and 
indirectly on adaptative immunity. Of note, soluble form of FcεRs 
could be an add-on level of regulation. Yet, further investigations are 
needed to understand the complex inter-play between IgE, FcεRs, 
and immune tolerance (Figure 5).

4.2  |  IgE facilitated antigen presentation—a pivotal 
role in unmasking IgE response/inflammation

IgE-mediated response/inflammation is somehow necessary.10 The 
IgE facilitated antigen presentation (IgE-FAP) aka IgE antigen focus-
ing plays a pivotal role in IgE inflammation. This process has been 
mainly studied in immediate allergic diseases where it set up and 
amplified the allergic inflammation against allergens.76

In 1993, Heyman et al showed that the rate of IgG anti-bovine 
serum albumin (BSA) and BSA-specific IgG+B cells was higher 
when mice were immunized with trinitrophenyl (TNP)—BSA and 
TNP-specific IgE.77,78 Another description of IgE-FAP came from 
the “toxin hypothesis” that stood a protective role of IgE against 
venom.79 Later, it was demonstrated that bee-venom immunized 
mice were more resistant to IgE-mediated anaphylaxis when re-
challenged with a lethal dose of bee or viper venom.80 In the same 
line, a recent study demonstrated that a pre-existing IgE sensitiza-
tion against Staphylococcus aureus (SA) toxin enhanced SA IgG im-
munization and infection clearance in a mice model of pulmonary 
infection.81 These data suggest that one role of IgE-FAP would be 
to enhance humoral and cellular response against non-self-antigen.

There are two main mechanisms known so far for IgE-FAP im-
plying either FcεRI or FcεRII. Multivalent antigen/IgE complexes 
were shown to activate dendritic cells82 mostly toward a type 2 in-
flammation but not exclusively.83 IgE-FAP-activated dendritic cells 
were also showed to boost specific CD4+ effector T cells via MHC-II 
presentation with a 100-fold to 1000-fold higher efficiency than 
canonical MHC-II presentation (low dose of antigen).82 Moreover, 
IgE-FAP-activated basophils were more efficient at MHC-II cross-
presentation than dendritic cells.84,85 At last, FcεRI-driven IgE-
FAP demonstrated in vitro a broad spectrum of action on human 
mast cells ranging from self-survival, pro-inflammatory cytokines 

F I G U R E  5  Natural IgE secretion. There are two main hypotheses to explain natural IgE secretion at steady state. 1) The first one consists 
of constant stimulation of naive or IgG1 memory B cells with (auto?)antigens without cognate T cells help leading to short live plasma cells. 2)
The second one consists as well in constant stimulation of IgG1 memory B cells by (auto?)antigens with Tfh help in presence of IL-4 leading 
to shot live plasma cells. Those natural IgE could exert an anti-inflammatory role by promoting active mechanisms of peripheral tolerance 
(tolerogenic dendritic cells, regulatory T cells) but also preventing effector T-cell activation. This figure was created with BioRender.com
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secretion to complete degranulation according to the nature of IgE 
and the antigen86 (Figure 6A).

CD23  has three major known ligands: CD21, MHC-II, and IgE 
with different interaction sites, respectively,87 especially with B 
cells and monocytes/macrophages.88 Noteworthy, CD23  has two 
isoforms: CD23a is constitutively expressed and up-regulated after 
IL-4 stimulation whereas CD23b is expressed only after IL-4 stim-
ulation.89 Only CD23a under its trimeric form is implied in anti-
gen processing whereas CD23b is more related to phagocytosis.90 
Conversely to FcεRI-driven IgE-FAP, several studies demonstrated 
that CD23a IgE-FAP enhanced humoral response (IgG and IgM) and 
the specific cellular response (CD4+ T cells) against a multivalent 
antigen (TNP-OVA) in mice models either adjuvanted with TNP-
specific IgE or transgenic mice over-expressing CD23.91,92 The mag-
nitude of the response was higher with antigen/IgE complex and low 
dose of antigen.92 Those data were confirmed in human by in vitro 
models where B cells from allergic patients expressed a high density 
of CD23 arguing for a trimeric form.93,94 Trimeric soluble CD23 is 
also detectable in human serum which function seems to be identi-
cal to the membrane form95 (Figure 6B).

Altogether, those data suggest another role of IgE-FAP which 
could be 1) the detection of low amount of antigen and 2) the onset 
of an adaptative type 2 immune response mainly but not exclusively. 
This suggests that IgE takes part to immuno-surveillance to non-self. 
As well, IgE-FAP seems to trigger an inflammatory response with 
multivalent antigens. This makes an echo to a recent study where 
the more the IgE interacting epitopes were numerous and close to 
each other the more the IgE complexes were able to cluster IgE re-
ceptors (FcεRI) and trigger mast cell activation.96

5  |  POTENTIAL ROLES OF 
IMMUNOGLOBULIN E IN HE ALTH AND 
NON-ALLERGIC DISE A SES

5.1  |  IgE and venom toxicity—a host defense 
mechanism?

The hypothesis that IgE could play a protective role against toxins after 
arthropods or reptile bite was proposed by James Stebbings in 197497 
and Margie Profet in the early 1990s.79 Since, important works from 
Stephen Galli's group have get credit to this hypothesis suggesting that 
IgE and its interaction with mast cells can enhance host resistance to 
venoms. More precisely, honeybee venom resistance to a lethal dose 
can be transferred to a naive mice by systemic serum therapy from a 
honeybee immunized mice.80 This protective effect was lost either 
after depletion or inactivation of IgE in the serum or when FcεRI α or 
γ chain were knocked out in the naive recipient mice.80,98 Those result 
suggested that IgE-mediated resistance to venom is linked to a FcεRI-
IgE FAP on effector cells. Indeed, mice lacking mast cell and/or baso-
phils were unable to acquire venom resistance after immunization.99 
Furthermore, local FcεRI-IgE FAP mast cell degranulation enhanced 
venom detoxification99,100 thanks to proteases contained in their 

granule such as carboxypeptidase 3 and chymase,101,102 which de-
grade venom peptides (sarafotoxin and helodermin, respectively) with 
structure similarity to endogenous mammalian peptide (endothelin 1 
and vasoactive intestinal peptide, respectively).103 Interestingly in 
those mice model of envenomation, mast cell, basophil, or even innate 
lymphoid cells type 2 were not required to induce IgG1 and IgE im-
munization against venom antigen.98,99 Last but not least, previous IgE 
immunization against an irrelevant allergen added to venom resulted 
in enhanced resistance to the venom despite prior immunization.99 
Altogether, those data demonstrate that detoxification to a complex 
mixture of antigen such as venom involve specific IgE sensitization to 
a small fraction of antigen that induce the release of proteases due to 
FcεRI-IgE local degranulation of mast cells. Furthermore, those results 
suggest that venom itself induce specific IgE immunization independ-
ent of effector cells (Figure 7).

5.2  |  IgE and helminth—who is protecting who?

High IgE titer is one hallmark of active helminthic infection with eo-
sinophilia reflecting type 2 inflammation. In human, several stud-
ies associated resistance to (re)-infection to specific IgE against 
Schistosoma mansoni or haematobium104,105 whereas the underly-
ing mechanisms associated with IgE and parasite resistance remain 
unclear. So far, mice models of helminthic infection used to better 
decipher the role of IgE during helminthic infection in has led to 
conflicting results. An explanation, at least in part, could be the use 
of inadequate model to study IgE response such as AID-deficient 
mice, B-cell-deficient mice, or FcγR deficient (reviewed in106). 
Table  1  summarizes different studies that used IgE-deficient or 
FcεRI-deficient mice to better decipher their role during primary or 
secondary helminthic infections. Several interesting patterns draw 
according to worm burden mostly and to a lesser extent on granu-
loma in target organs. It is worth noticing that the time after infec-
tion inversely correlates with worm burden: The longer it is, the 
smaller the difference in worm burden is observed. In most stud-
ies, IgE or FcεRI deficiency is associated with an increased worm 
burden in the early phase (before 2 weeks) of the infection either 
during the first exposure (Schistosoma mansoni, Strongyloides vene-
zuelensis, or Brugia malayi) or the second exposure (Nippostrongylus 
brasiliensis and Heligmosomoides polygyrus).107-112 Interestingly, IgE 
or FcεRI deficiency was associated with a reduced specific IgG1 
response during the first exposure.110,112 The consequence of 
IgE or FcεRI deficiency in repeated exposures to helminths which 
can be modelized by the presence of granuloma in target tissue 
remains unclear. Though, IgE deficiency seems to be associated 
with smaller granuloma (i.e., smaller inflammatory infiltrate)112,113 
and FcεRI deficiency is associated with increased damages and 
inflammatory infiltrate in the target tissues.108,114 Furthermore, 
basophil activation by IgE/worm antigens complexes were es-
sentials for granuloma formation and limit tissue damages.108,109 
Altogether, those data suggest that IgE response might have differ-
ent impact in helminthic infection. Upon acute exposure, IgE would 
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1708  |    COLAS et al.

play a role in worm clearance 1) thanks to enhancement of spe-
cific IgG response, 2) FcεRI-driven IgE degranulation of effector 
cells such as mast cells, basophils, platelets, and eosinophils.106,115 

Upon repeated exposure (i.e., worm clearance failure), specific IgE 
and their interaction with FcεRI on basophils would take part in 
granuloma formation to constrain the worm, avoid target tissue 
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damages116 and tissue healing making an echo to the concept of 
natural IgE implied in tolerance.65 Nevertheless, this latter point 
remains speculative since to date no clear role for IgE in wound 
healing has been documented (Figure 8).

5.3  |  IgE in tumor immuno-surveillance—a kind 
friend?

Selective IgE deficiency is defined as total circulating IgE <2.5KU/L 
after excluding common variable immune deficiency.117 Recently, 

three studies demonstrated either retrospectively or prospectively 
a significant association between selective IgE deficiency and the 
onset of malignant diseases in adult and children. Interestingly, the 
demographic data of neoplasm diseases were identical to the tar-
get population: solid organ cancer in adulthood and hematologic 
cancer in childhood.118-120 These data suggest that IgE-FAP could 
play a role in tumor immune-surveillance. Indeed, a recent study 
by Crawford et al demonstrated that DMBA induced skin epithelial 
carcinogenesis triggered γδT cell activation and local self-reactive 
IgE production via IL-4 in mice. Those IgE took part in prevent-
ing epithelial carcinogenesis in a FcεRI dependent manner.68 This 

F I G U R E  7  Role of IgE in venom detoxification. In case of venom inoculation, a specific IgG1 and IgE response will arise independently 
from basophils/mast cells against a small protein fraction of the venom. These venom-specific IgE will lead to basophils/mast cell 
degranulation releasing enzymes such as tryptase, chymase as example in the micro-environment that will cleave venom proteins with 
deleterious biological activity. The IgG1 memory against venom will warrant the specific IgE recall and venom detoxification in case of latter 
exposures. This figure was created with BioRender.com

F I G U R E  6  (A): Pivotal role IgE facilitated antigen presentation (IgE-FAP) via FcεRI. FcεRI IgE-FAP has a broad spectrum of effects on 
basophils (baso) or mast cells ranging from survival in case of cross-linking with a monovalent antigen to degranulation, cytokine secretion, 
or even amplification of type 2 response in case of multivalent antigen cross-linking (indirect presentation by class II major histocompatibility 
complex, (MHC-II)). FcεRI IgE-FAP with a multivalent antigen can also occur on dendritic cells (DC) where it enhances type 2 response 
thanks to indirect MHC-II presentation of the antigen. This figure was created with BioRender.com. (B): Pivotal role IgE facilitated antigen 
presentation (IgE-FAP) via FcεRII aka CD23. There are two main effects of trimeric CD23 IgE-FAP with multivalent antigen that can be 
mediated by B cells and probably by monocytes (Mono). The first one is to boost humoral response with specific IgM and IgG immunization. 
The second one is to enhance clonal expansion of antigen-specific T cells. This figure was created with BioRender.com

 13989995, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/all.15230 by Inserm

 D
isc Ist, W

iley O
nline L

ibrary on [09/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1710  |    COLAS et al.

TA
B

LE
 1

 
Im

pa
ct

 o
f I

gE
 o

r F
cε

RI
 d

ef
ic

ie
nc

y 
in

 m
ic

e 
m

od
el

s 
of

 h
el

m
in

th
ic

 in
fe

ct
io

ns
 b

as
ed

 o
n 

tim
e 

af
te

r i
nf

ec
tio

n,
 s

in
gl

e 
or

 re
pe

at
ed

 e
xp

os
ur

e,
 w

or
m

 b
ur

de
n,

 e
gg

 p
ro

du
ct

io
n,

 a
nd

 th
e 

pr
es

en
ce

 o
f g

ra
nu

lo
m

a 
(i.

e.
, c

hr
on

ic
 e

xp
os

ur
e)

. N
D

 =
 n

ot
 d

et
er

m
in

ed

N
am

e 
of

 th
e 

pa
ra

si
te

M
ic

e 
m

od
el

Pr
im

ar
y 

in
fe

ct
io

n
Se

co
nd

ar
y 

in
fe

ct
io

n
Ev

al
ua

tio
n 

(ti
m

e 
af

te
r i

nf
ec

tio
n)

W
or

m
 b

ur
de

n
Eg

gs
 

pr
od

uc
tio

n
G

ra
nu

lo
m

a 
(if

 
ap

pl
ic

ab
le

)
Re

fe
re

nc
es

Tr
ic

hi
ne

lla
 s

pi
ra

lis
BA

LB
/C

 Ig
E-


de

fic
ie

nt
 m

ic
e

Ye
s

N
o

1 
w

ee
k 

to
 

4 
w

ee
ks

In
cr

ea
se

d 
co

m
pa

re
d 

to
 W

T 
m

ic
e

N
D

In
cr

ea
se

d 
co

m
pa

re
d 

to
 

W
T 

m
ic

e

10
7

SJ
A

/9
 m

ic
e

Ye
s

Ye
s

4 
w

ee
ks

N
o 

di
ff

er
en

ce
 fo

r b
ot

h 
in

fe
ct

io
n

N
D

N
o 

di
ff

er
en

ce
 fo

r b
ot

h 
in

fe
ct

io
n

15
0

A
ng

io
st

ro
ng

yl
us

 
co

st
ar

ie
ce

ns
is

SJ
A

/9
 m

ic
e

Ye
s

Ye
s

6 
w

ee
ks

N
o 

di
ff

er
en

ce
 fo

r b
ot

h 
in

fe
ct

io
n

N
D

N
o 

di
ff

er
en

ce
 fo

r b
ot

h 
in

fe
ct

io
n

15
1

N
ip

po
st

ro
ng

yl
us

 
br

as
ili

en
si

s
SJ

A
/9

 m
ic

e
Ye

s
Ye

s
1 

w
ee

k 
&

 
2 

w
ee

ks
N

o 
di

ff
er

en
ce

 fo
r b

ot
h 

in
fe

ct
io

n
N

D
N

o 
di

ff
er

en
ce

 fo
r b

ot
h 

in
fe

ct
io

n

15
0

BA
LB

/C
 F

cε
RI
α-


de

fic
ie

nt
 m

ic
e

N
o

Ye
s

2–
5 

da
ys

N
o 

di
ff

er
en

ce
 fo

r t
he

 fi
rs

t i
nf

ec
tio

n;
 d

ec
re

as
ed

 
in

 th
e 

sk
in

 a
nd

 in
cr

ea
se

d 
in

 th
e 

lu
ng

 fo
r t

he
 

se
co

nd
 in

fe
ct

io
n 

co
m

pa
re

d 
to

 W
T 

m
ic

e.

N
D

D
ec

re
as

ed
 n

um
be

r o
f 

gr
an

ul
om

a 
in

 th
e 

sk
in

 a
nd

 la
rg

er
 lu

ng
 

in
ju

rie
s 

co
m

pa
re

d 
to

 
W

T 
m

ic
e.

10
8

BA
LB

/C
 Ig

E-


de
fic

ie
nt

 m
ic

e
N

o
Ye

s
2 

w
ee

ks
N

D
 fo

r t
he

 fi
rs

t i
nf

ec
tio

n;
 in

cr
ea

se
d 

nu
m

be
r i

n 
th

e 
sm

al
l i

nt
es

tin
e 

co
m

pa
re

d 
to

 W
T 

m
ic

e 
fo

r 
th

e 
se

co
nd

 in
fe

ct
io

n

N
D

N
D

10
9

H
el

ig
m

os
om

oi
de

s 
po

ly
gy

ru
s

BA
LB

/C
 Ig

E-


de
fic

ie
nt

 m
ic

e
N

o
Ye

s
2 

to
 3

 w
ee

ks
N

o 
di

ff
er

en
ce

N
D

N
o 

di
ff

er
en

ce
11

6

BA
LB

/C
 Ig

E-


de
fic

ie
nt

 m
ic

e
N

o
Ye

s
2 

w
ee

ks
N

D
 fo

r t
he

 fi
rs

t i
nf

ec
tio

n;
 in

cr
ea

se
d 

nu
m

be
r i

n 
th

e 
sm

al
l i

nt
es

tin
e 

co
m

pa
re

d 
to

 W
T 

m
ic

e 
fo

r 
th

e 
se

co
nd

 in
fe

ct
io

n

N
D

N
D

10
9

St
ro

ng
yl

oi
de

s 
ve

ne
zu

el
en

si
s

Fc
εR

I-/
- m

ic
e

Ye
s

N
o

1,
5 

w
ee

ks
In

cr
ea

se
d 

co
m

pa
re

d 
to

 W
T 

m
ic

e 
w

he
n 

Fc
γR

 a
re

 
bl

oc
ke

d
N

D
N

D
11

0

Br
ug

ia
 m

al
ay

i
BA

LB
/C

 Ig
E-


de

fic
ie

nt
 m

ic
e

Ye
s

Ye
s

2 
to

 6
 w

ee
ks

In
cr

ea
se

d 
co

m
pa

re
d 

to
 W

T 
m

ic
e 

in
 p

rim
ar

y 
in

fe
ct

io
n;

 n
o 

di
ff

er
en

ce
 o

n 
se

co
nd

ar
y 

in
fe

ct
io

n

N
D

N
D

11
1

Sc
hi

st
os

om
a 

m
an

so
ni

12
9/

te
rS

v 
Ig

E-


de
fic

ie
nt

 m
ic

e
Ye

s
Ye

s
8 

w
ee

ks
In

cr
ea

se
d 

co
m

pa
re

d 
to

 W
T 

m
ic

e 
in

 p
rim

ar
y 

in
fe

ct
io

n 
w

ith
 lo

w
er

 s
pe

ci
fic

 Ig
G

1 
re

sp
on

se
; 

no
 d

iff
er

en
ce

 o
n 

se
co

nd
ar

y 
in

fe
ct

io
n

N
D

Sm
al

le
r g

ra
nu

lo
m

a 
in

 
th

e 
liv

er
 th

an
 W

T 
m

ic
e

11
2

BA
LB

/C
 F

cε
RI
α-


de

fic
ie

nt
 m

ic
e

Ye
s

N
o

8 
w

ee
ks

N
o 

di
ff

er
en

ce
N

o 
di

ff
er

en
ce

La
rg

er
 g

ra
nu

lo
m

a 
w

ith
 

hi
gh

er
 li

ve
r f

ib
ro

si
s 

th
an

 W
T 

m
ic

e.

11
4

SJ
A

/9
 m

ic
e

Ye
s

N
o

8 
w

ee
ks

N
o 

di
ff

er
en

ce
 fo

r b
ot

h 
in

fe
ct

io
n

N
o 

di
ff

er
en

ce
N

D
15

2

Sc
hi

st
os

om
a 

ja
po

ni
cu

m
SJ

A
/9

 m
ic

e
Ye

s
N

o
8 

w
ee

ks
N

o 
di

ff
er

en
ce

N
o 

di
ff

er
en

ce
Sm

al
le

r g
ra

nu
lo

m
a 

in
 

th
e 

liv
er

 th
an

 W
T 

m
ic

e

11
3

 13989995, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/all.15230 by Inserm

 D
isc Ist, W

iley O
nline L

ibrary on [09/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  1711COLAS et al.

assumption is supported by several observations in human where 
non-anaphylactic-specific IgE immunization against tumors could 
trigger specific cytotoxic responses in patients with colorectal, 
pancreatic, prostatic, and breast cancer121-124 in a FcεRI-dependent 
manner.125 On the opposite, two recent observations demon-
strated a detrimental role of IgE in a mice model of skin cancer. 
More precisely, Taniguchi et al demonstrated that skin tumors were 
infiltrated with IL-33-induced FcεRI+ macrophages that promoted 
tumor growth suggesting a role of IgE on those tumor-infiltrating 
macrophages.126 Also, Hayes et al demonstrated that tumor growth 
was promoted by an increase of polyclonal “natural” IgE after 12
-O-tetradecanoylphorbol-13-acetate (TPA) repeated applications. 
Tumor growth was also dependent on FcεRI IgE-FAP on basophils 

that infiltrated the tumor. Interestingly, selective IgE deficiency in 
those mice model abrogated tumor growth.127 Altogether, those 
data suggest that IgE would prevent tumor growth in the early 
phase of carcinogenesis whereas IgE would promote tumor growth 
at an advanced stage (Figure 9). The distinct IgE repertoires induced 
by DMBA and TPA (self-reactive versus polyclonal natural, respec-
tively) could explain, at least in part, the janus-faced role of IgE in 
cancer immunopathology despite type 2 immunity induction in both 
case.68,127 In conclusion, further researches are needed 1) to con-
sider selective IgE deficiency as a predictive biomarker of cancer 
onset128 and 2) to better characterize the role of IgE at molecular 
(IgE repertoire, antigen identification, receptors) and cellular (CD8+ 
T cells, NK cells, γδT cells) levels in the tumor micro-environment 

F I G U R E  8  Role of IgE in anti-helminthic immunity. In case of helminthic infection (oral route mainly), the role of worm-specific IgE is 
different in case of acute or chronic infection. In case of acute infection, worm-specific IgE will lead to basophils/mast cells or eosinophils 
or platelets degranulation of cytotoxic molecules to kill and expulse worms. In parallel, a specific humoral immunity (IgM and IgG) will be 
boosted by worm-specific IgE. In case of chronic infection (i.e., failure of worm clearance), worm-specific IgE will take part in the creation of 
eosinophilic granuloma to constrain the worms and also prevent tissue damage. This figure was created with BioRender.com
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(enhancing or preventing tumor growth) in order to achieve new 
add-on therapeutic strategies.129,130

5.4  |  IgE self-reactivity: from autoallergy to 
autoimmunity—friend or foe?

The concept of autoallergy implies the presence of self-reactive IgE 
(srIgE) and was introduced by the end of 1950s131,132 without any 
understanding of its role. To date, this concept has evolved into IgE 
autoimmunity with a growing spectrum of autoantigens identified 
in systemic erythematous lupus (double-strand DNA, SSA/B, RNP, 
nucleosome, acidic ribosomal P2 protein among others), chronic ur-
ticaria (thyroperoxidase, double-strand DNA, IL-24), bullous pemphi-
goid (BP180 or BP230), and atopic dermatitis (>140 autoantigens 
identified) mostly.133 srIgE were associated with disease severity 
in systemic erythematous lupus,134,135 bullous pemphigoid,136 and 
chronic urticaria.137 They are probably important in atopic dermati-
tis pathogenesis since a high percentage of patients have srIgE,138,139 
though the correlation between srIgE and disease severity remains 
debated requiring further investigations.133 The cellular and molecu-
lar effects of srIgE were mainly deciphered in lupus where they en-
hance disease activity through two main pathways. On one hand, 
FcεRI-driven srIgE-FAP on plasmacytoid dendritic cells enhance 
srIgG/srIgE through B cells expansion and plasma cell differentiation 

in SLO in a TLR9-dependent manner.134 On the other hand, MHC-II 
cross-presentation of autoantigen (double-strand DNA) via FcεRI-
driven srIgE-FAP by activated basophils enhanced autoantibodies 
and B-cell differentiation through type 2 inflammation in SLO in a 
BAFF-dependent manner140 (reviewed in141). In bullous pemphigoid, 
cellular and molecular effects of autoreactive IgE are not that well 
deciphered.133 In chronic urticaria, the importance of auto-IgE has 
been strongly suggested by the great efficiency of omalizumab on 
disease activity142 and also by passive anaphylaxis transfer with sera 
from patients with chronic urticaria.143 Though, the precise mecha-
nisms remain poorly understood.133 In conclusion, the data strongly 
argue for a deleterious implication of srIgE through FcεRI-driven 
FAP. It also suggests that srIgE are of high affinity (indirect CSR) able 
to cross-link multivalent autoantigens and activate effector cells. 
Though, how autoreactive IgE and type 2 immunity are triggered 
leading to complex and different clinical features remains poorly 
understood.

5.5  |  Unexpected associations between 
IgE and diseases

Implication of IgE was suggested in cardiovascular diseases thanks to 
mice models of aorta aneurysm where FcεRI alpha subunit knock-out 
partially protected from smooth muscle senescence,144 neutrophils, 

F I G U R E  9  Janus-faced role of IgE in cancer immunopathology. In the early phase of cancer growth, self-reactive IgE will produced thanks 
to the help of IL-4 and resident γδ T cells. Those self-reactive IgE will activate the basophils thanks to FcεRI IgE-FAP that will prevent tumor 
growth and enhance anti-tumoral immunity. On the opposite at an advanced stage of cancer, the pro-inflammatory micro-environment 
will lead to the local secretion of polyclonal “natural” IgE that will enhance tumor out-growth thanks to FcεRI IgE-FAP on basophils and 
macrophages that infiltrate the tumor. This figure was created with BioRender.com
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and macrophage infiltration and IL-6-mediated inflammation.144,145 
Yet, those results were not translated to human. Another observa-
tion suggested that IgE sensitization against alpha-gal oligosaccharide 
without any anaphylactic features was associated with a higher risk 
of coronary atheromatous disease at a younger age146 which precise 
mechanisms remain to be determined. Altogether, those observations 
open a whole new field of IgE biology in cardiovascular homeostasis 
and disease.

Recently, functional anti-MHC IgE (i.e., inducing mast cell degranu-
lation) was detected in mice models of skin and heart allograft serum. 
The author could also detect anti-HLA IgE in sera from kidney trans-
planted patients with high titers of donor-specific antibodies (n = 5).147 
Another recent study associated antibody-mediated rejection with 
anti-HLA IgE in the serum and IgE deposit colocalizing with mast cell/
basophil in the kidney transplant.148 Altogether, those data suggest 
that the HLA/IgE complex could interact with mast cell/basophils in 
the transplant and trigger deleterious type 2 immunity. It also ques-
tions about 1) the interaction of IgE with other cognate effector cells 
such as eosinophils149; 2) the triggers of allo-immune response in solid 
organ transplantation.10

6  |  CONCLUSION

Since its characterization in 1966, IgE has been extensively studied in 
allergic diseases such as food or drug anaphylaxis, allergic rhinitis, and 
allergic asthma where it has a pivotal role. Furthermore, it would be 
finalistic to assume a simple pathological role for IgE especially since 
IgE is only found in mammals.7 Some evidence argues for a consti-
tutive secretion of IgE in the body fluids with homeostatic or even 
immune-modulatory properties. However, their precise roles and in-
teractions with other immunoglobulins and immune cells remain to be 
determined. Some evidence also argues for a pro-inflammatory role 
of IgE when type 2 inflammation is triggered. In that case, IgE could 
enhance immune response against small amounts of antigen (IgE-FAP) 
with a wide spectrum of downstream responses modulated either by 
IgE affinity and/or receptor binding (FcεRI or FcεRII) and/or the target 
cell (basophils, mast cells, eosinophils, or even platelets). However, 
further studies are needed to decipher how these responses are finely 
tuned. Additionally, breakthrough works have unraveled some physi-
ological roles of IgE such as resistance and detoxification to venom, 
worm clearance during acute infection, prevention of tissue damage 
in case of helminthic chronic infection. More surprising, there is a 
janus-faced role in cancer immunopathology where IgE seems to take 
part in tumor clearance/immuno-surveillance at an early stage. On 
the opposite, IgE seems to enhance tumor out-growth at an advance 
stage suggesting a diversion of IgE response which mechanisms re-
main unclear to date. Last but not least, IgE was unexpectedly impli-
cated vascular disease or even rejection in solid organ transplantation 
where immunopathological mechanisms remain to be determined. 
Altogether, those interesting developments argue for a role of IgE 
response as an immunological adaptor to complex environmental 

changes which better characterization will lead to the development of 
innovating therapeutic strategies.
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