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SUMMARY

Regulatory T (Treg) cells represent a distinct lineage of cells of the adaptive immune system indispensable for
forestalling fatal autoimmune and inflammatory pathologies. The role of Treg cells as principal guardians of
the immune system can be attributed to their ability to restrain all currently recognized major types of inflam-
matory responses through modulating the activity of a wide range of cells of the innate and adaptive immune
system. This broad purview over immunity and inflammation is afforded by themultiple modes of action Treg
cells exert upon their diverse molecular and cellular targets. Beyond the suppression of autoimmunity for
which they were originally recognized, Treg cells have been implicated in tissue maintenance, repair, and
regeneration under physiologic and pathologic conditions. Herein, we discuss the current and emerging un-
derstanding of Treg cell effector mechanisms in the context of the basic properties of Treg cells that endow
them with such functional versatility.
INTRODUCTION

The immunosuppressive activity of T cells discovered in the

1960s was ascribed by subsequent studies to a subset of

CD4+ T cells characterized by the constitutive expression of

the high-affinity binding subunit of interleukin (IL)-2 receptor,

CD25, and lower abundance of a high molecular weight isoform

of CD45, CD45RB, relative to naive T cells.1–9 In vivo experi-

ments using complementary approaches of adoptive cell trans-

fers and antibody-mediated depletion showed that CD25+CD4+

or CD45RBloCD4+ cells effectively suppressed T cell-mediated

autoimmunity and colonic inflammation caused by the reactivity

of immune cells against the intestinal microbial community.6–9

Mice lacking genes encoding CD25 (Il2ra), CD122 (Il2rb), and

IL-2 (Il2) manifest uncontrolled immune activation and autoim-

munity, suggesting a functional role for CD25 and IL-2 signaling

in these cells, with a non-redundant cell-intrinsic role of this

pathway in regulatory T (Treg) biology demonstrated in cell trans-

fer studies.10–14 Separately, investigations of a pediatric heredi-

tary monogenic immune disorder termed immunodysregulation,

polyendocrinopathy enteropathy X-linked (IPEX), and a sponta-

neous mousemutant scurfy showed that fatal, early-onset, auto-

immune disease in both mice and humans was due to lesions in

the Foxp3 gene.15–18 The disease is characterized by autoim-

mune destruction of endocrine organs, enteric inflammation,

allergic skin inflammation, dysregulated antibody responses,

autoimmune anemia, hyper-IgE syndrome, lympho- and myelo-

proliferation, and other lesions.19

These two lines of inquiry converged with the identification of

Foxp3 as a transcription factor required for the differentiation

and function of Treg cells.20–25 Experimentation employing

both genetic loss and gain of function, alongwith classical immu-

nological and cell transfer approaches, showed an exclusive
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cell-intrinsic role for Foxp3 in Treg cells and demonstrated that

the paucity of functional Treg cells accounts for all pathologies

resulting from the Foxp3 deficiency.20,23 Further studies using

Foxp3DTR knockin mice, which express the simian diphtheria

toxin receptor exclusively in Foxp3+ cells, enabling the in vivo

depletion of Treg cells by diphtheria toxin administration, refuted

the possibility that the development of these cells guaranteed

immune quiescence merely by diverting pathogenic inflamma-

tory self-reactive T cell precursors into a non-inflammatory state.

Rather, these studies demonstrated that Treg cells continuously

and proactively suppress autoimmunity and inflammation.26–28

A PLURALITY OF EFFECTOR MECHANISMS

Considering the singular role of Foxp3 in establishing Treg cell

identify and functionality, these studies raised the possibility

that their mechanism of suppression was directly controlled by

Foxp3 and unique to Treg cells, as opposed to multiple mecha-

nisms of suppression—each individually not unique to Treg cells,

but collectively so—in amanner indirectly assisted by Foxp3. Ul-

timately, the use of genetic tools enabling constitutive or induc-

ible Treg-cell-specific targeting of genes encoding putative ef-

fectors of Treg-cell-mediated suppression supported the latter

scenario. Numerous studies searching for potential effectors of

Treg-cell-suppressive action have revealed an array of mole-

cules and mechanisms, including the immunomodulatory cyto-

kines IL-10 and TGF-b, and a pair of cell surface ectoenzymes

CD39 and CD73, which convert extracellular ATP, a potent

pro-inflammatory mediator, into its anti-inflammatory product

adenosine.29–32 Single deficiency in the genes encoding some

of these effectors in Foxp3-expressing cells does not result in

systemic autoimmunity amounting to that observed in Foxp3

deficiency or upon Treg cell depletion, demonstrating that Treg
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cells do not rely on one essential mechanism to enforce systemic

immune tolerance.29,33,34 Indeed, few of these molecular mech-

anisms appear to be unique to Treg cells but in fact are shared by

multiple types of cells of the innate and adaptive immune

systems.35–37

Despite that, loss of thesemechanisms in Treg cells cannot be

compensated for by their seemingly redundant deployment by

other immune cells. Instead, what has collectively emerged is

that the action of a single effector of Treg-cell-mediated sup-

pression can exert nuanced, context-specific, effects in control-

ling distinct aspects of immune responses in specific inflamma-

tory environments. In this regard, Treg cells deficient in IL-10

production failed to control spontaneous colitis and restrain

allergic airway and skin inflammation, in spite of the presence

of IL-10 producing macrophages, B lineage cells, and T cells in

those tissues, while those deficient in the Ebi3 gene, expressed

by various immune cells in addition to Treg cells, exhibited dimin-

ished control of anti-tumor immune responses.34,38 Conversely,

Treg cell suppression has even been linked to an effector mole-

cule ordinarily deployed by innate and adaptive immune lympho-

cytes mounting a conventional immune response. In this way,

Treg-cell-mediated immunosuppression in certain tumors and

in allogeneic transplants has been also linked to the expression

of granzyme B by Treg cells, even though its mechanisms of

action remain unknown.39,40 GranzymeB produced by Treg cells

in these settings might exert its ‘‘canonical’’ cell-extrinsic intra-

cellular proteolytic activity on specific targets, carry out extracel-

lular proteolysis of inflammatory mediators, or might have some

undiscovered cell-intrinsic intracellular function in Treg cells.

Loss of CTLA-4 or IL2R subunits in Treg cells may appear to

be an exception to the above notion, as severe autoimmunity

nearly paralleling Foxp3 deficiency, albeit less aggressive, re-

sults from the deletion of thesemolecules in Treg cells. However,

these molecules also perform important cell-intrinsic functions

affecting Treg cell development and survival, and T cell receptor

(TCR) repertoire selection.41–43 The bona fide immune suppres-

sive functions of these molecules when deployed by Treg cells

appear limited to, in the case of CD25, functioning as a sink for

IL-2, thereby controlling the expansion and activation of CD8+

T cells, natural killer (NK) cells, and type 2 innate lymphoid cells,

which are all highly sensitive to IL-2 and, in the case of CTLA-4,

interfering with dendritic cell (DC)-mediated T cell activa-

tion.43–47 Additionally, although high expression of CTLA-4 and

CD25 served as hallmarks of Treg cells prior to the discovery

of Foxp3, these mediators of suppression have proven to be

hardly unique to Treg cells. Even though Treg cells express argu-

ably the highest levels of CD25 outside of the thymus and are

able to reduce IL-2 availability though its consumption, activated

effector T cells, innate lymphoid cells, DCs, and even fibroblasts

expressing CD25 can sequester IL-2 to achieve immunoregula-

tion.48,49 Likewise, upregulation of CTLA-4, originally described

during conventional T cell activation, has been shown to confer

immunoregulatory capacity to effector T cells.50

Besides their ‘‘archetypal’’ immune suppressive and modula-

tory roles, which indirectly support tissue resilience in settings of

inflammation, Treg cells have been suggested to contribute

directly to the maintenance and repair of a diverse range of tis-

sues. Treg cells in the white adipose tissue have been shown

to express the transcription factor Peroxisome proliferator-acti-
vated receptor gamma (PPARg) and regulate the functions of

that major metabolic organ, to some degree through the produc-

tion of IL-10; those in the bone marrow (BM) enforce quiescence

in the hematopoietic stem cell (HSC) niche through the CD73/

CD39-mediated conversion of extracellular ATP to adenosine;

Treg cells in the injured muscle, brain, and lung promote tissue

regeneration, at least in part through the elaboration of the

growth factor amphiregulin (Areg), and Treg cells in the skin

deploy various potential mechanisms, including stimulating

Notch or TGF-b receptor signaling in hair follicle stem cells

(SCs), through the provision of their corresponding ligands, to

support the SC niche and promote hair follicle and epithelial bar-

rier regrowth.33,51–60 Interestingly, despite the fact that the dis-

covery of the tissue repair function of Treg cells was more recent

than that of their canonical immunomodulatory role, it appears as

though these two broad functions co-evolved, as zebrafish Treg

cells were shown to accumulate at sites of injury and participate

in tissue regeneration through the production of organ-specific

tissue repair factors rather than immunomodulatorymediators.61

A takeaway from the last decade of research of Treg cell func-

tion is that no single effectormolecule explains all the immunosup-

pressive or tissue-supportive abilities of Treg cells; rather, Treg

cells deploy distinct mechanisms acting upon a range of immune

and non-immune target cells and in different contexts. The fact

that many effector molecules elaborated by Treg cells, including

the ones highlighted above, are also expressed by activated con-

ventional T cells and various innate immune cells, suggest a pos-

sibility that the essential, uniquely non-redundant immunosup-

pressive function of Treg cells has less to do with specific

molecules produced andmore to do with other features particular

to Treg cells. Below, we will discuss the effector mechanisms of

Treg cells in the context of these broader features enabling

Treg-cell-mediated control of tolerance and inflammation.

PRECISION TARGETING

Treg cells bear a diverse TCR repertoire distinct from that of con-

ventional CD4+ T cells.26,62–64 This repertoire is highly enriched

for receptors recognizing self-antigens, including tissue-

restricted antigens expressed in the thymus due to the activity

of the autoimmune regulator or AIRE.26,62,65–68 Furthermore,

continuous expression of the TCR itself, and the diversity of

the TCR repertoire of Treg cells, is crucial for their ability to sup-

press untoward immune activation.69–72

In addition to diversity and general autoreactivity, it is also

clear that the recognition of specific self-antigens guides Treg

cell suppression of tissue-restricted autoimmunity. Early studies

of the ability of Treg cells to suppress oophoritis or orchitis sug-

gested a requirement for physiological levels of tissue-specific

antigens for Treg cells to be able to suppress the corresponding

autoimmunity and revealed an enrichment of Treg cell suppres-

sor activity on a per-cell basis in the corresponding draining

lymph nodes as opposed to non-draining lymph nodes and

spleen, suggesting access to tissue-derived antigens by these

potent Treg cells.73–75 Consistent with these observations,

monoclonal Treg cells expressing the chromogranin A-specific

BDC2.5 TCR are markedly more efficient at suppressing dia-

betes in NOD mice than polyclonal Treg cells.76 Treg-cell-medi-

ated suppression is associated with modulation of the activation
Immunity 56, February 14, 2023 241



Figure 1. Precision targeting
TCR engagement by cognate ligands presented by
DCs allows for co-localization of Treg and conven-
tional T cells (1) during the early stages of T cell
activation and enables Treg TCR-assisted removal
of shared cognate antigen from DCs (2), restraining
the activation of T cells recognizing the same epi-
topes (3). By co-localizing with DCs (4), Treg cells
sequester IL-2 produced by effector T cells through
consumption enabled by high CD25 expression (5),
allowing them to subvert nascent responses.
Additionally, Treg-cell-derived IL-10 can diminish
DC stimulatory activity and inflammatory cytokine
production (6).
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and survival of effector T cells during their interactions with DCs,

with recent studies suggesting that the TCRs expressed by Treg

cells ensure their positioning within the local niches in the sec-

ondary lymphoid organs where the three cell types intermingle

(Figure 1).77,78 Furthermore, antigen-specific Treg cells were

able to efficiently suppress conventional CD4+ T cells that recog-

nized a shared peptide epitope and not those recognizing a non-

cross-reactive peptide displayed by major histocompatibility

complex (MHC) class II molecules on the same DC, through a

process mechanistically linked to the direct removal of pep-

tide-MHC complexes from the DC by the TCRs expressed by

the Treg cells (Figure 1).79 In line with this, the CTLA-4 dependent

function of Treg cells in disrupting DC activation of T cells in tu-

mors appears to be carried out by Treg cells recognizing tumor-

derived antigens, suggesting TCR-guided identification of tar-

gets for suppression.44

There are other scenarios where TCR-guided ‘‘identification’’

of target cells by Treg cells may be key to their immune suppres-

sion function. The induction of IL-10 expression by Treg cells re-

quires the TCR, and mouse genetic models suggest that the

major cellular targets of IL-10 are MHC-class-II-expressing

mononuclear phagocytes; therefore, it is possible that cognate

antigen interactions license Treg cells to target mononuclear

phagocytes for IL-10-mediated suppression.34,69,80,81 Treg-

cell-derived IL-10 also plays a role in viral infections by restricting

the production of inflammatory cytokines and the expression co-

stimulatory molecules by DCs, even though a likely role for spe-

cific TCR-peptide-MHC interactions in this process remains un-

tested82 (Figure 1). Treg cells have been shown to contribute to

the regulation of tissue SCs and their niches, and to their mobi-

lization upon challenge, particularly in the skin, intestine, and

BM. Although the requirement for cognate antigen recognition

through the TCR by Treg cells in these contexts is also untested,

it seems likely given the documented expression of MHC class

II by SCs and their niche cells. Additional tissue-supportive
242 Immunity 56, February 14, 2023
and -regenerative functions of Treg cells,

which may or may not be mediated by in-

teractions with SCs, appear to be depen-

dent on TCR specificity, as the accumula-

tion of Treg cells in challenged adipose

tissue and skeletal muscle requires their

expression of specific TCRs.83,84

However, recognizing cognate antigen

and receiving signaling through the TCR

cannot be viewed by itself a mechanism
of immune suppression. Although Treg cells recognize target

cells or their micro-assemblies based on TCR-mediated detec-

tion of cognate antigen, they execute their suppressor actions

by multiple means beyond antigen removal. Although some

mechanisms deployed in this targeting have been well defined,

including IL-2 deprivation through CD25 contributing to Treg

cell control of CD8+ T cell activation, the means by which Treg

cells inhibit CD4+ T cell activation or remove peptide epitopes

from APCs, and to what extent the latter mechanism is particular

to Treg cells, still remain unclear. Furthermore, TCR-mediated

‘‘precision targeting’’ does not automatically imply that the

mechanisms deployed to thereafter achieve suppression

depend on TCR signaling in Treg cells. Indeed, elaboration of

at least some Treg cell effector molecules, including tissue pro-

tective amphiregulin and a suite of immunomodulatory mole-

cules deployed by colonic Treg cells, is uncoupled from, or

independent of, TCR signaling—at least after their initial TCR-

mediated induction.52,85 That being said, the profound loss of

control of immune responses upon induced TCR ablation in

Treg cells, and the pronounced enhancement of immunosup-

pressive activity upon ablation of PD-1, a major negative regu-

lator of TCR and CD28 signaling, suggest a requirement for

continuous TCR signaling for the suppressive functions of Treg

cells.69,72,86,87 Therefore, the deployment of both TCR-depen-

dent and -independent effector functions of Treg cells following

cognate antigen stimulation, which activates and guides these

cells to the right niches and targets, underpins their far-reaching

purview of organismal health.

GETTING THERE

In addition to overlapping TCR specificities enabling Treg cell

encounter with and control of their effector T cell targets, the

shared expression of chemokine receptors and other cell guid-

ance molecules supports coordinated Treg and effector cell



Figure 2. Getting there
Treg cells expressing the chemokine receptor
CXCR4 traffic to the bone marrow and access the
niches populated by CXCR4-expressing HSCs
and B cells (1) guided by the CXCR4 ligand
CXCL12 produced by stromal cells (2). The
enzymatic activity of CD39 (and CD73 in mice)
displayed by Treg cells converts ATP to adenosine
(3), which acts on purinergic receptors to support
HSC quiescence (4). Treg cells expressing the
transcription factor T-bet acquire expression
of the chemokine receptor CXCR3 (5), which
enables their close spatial opposition to CXCR3-
expressing Th1 and activated CD8 T cells,
orchestrated by the CXCR3 ligands CXCL9 and
CXCL10 (6), and selective repression of type 1
immune responses by T-bet-expressing Treg cells.
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trafficking to, and their positioning within, secondary lymphoid

organs and non-lymphoid target tissues.88 This notion stems

from findings that the chemokine receptor CCR7 and

L-selectin (CD62L), in parallel to their roles in naive CD4

T cells, promote ‘‘naive’’ or ‘‘resting’’ Treg cell recirculation

through the secondary lymphoid organs.89 In addition to these

features shared with naive T cells, Treg cells constitutively ex-

press high amounts of CCR4, whose ligand CCL22 is displayed

by DCs activated upon their engagement by cognate antigen-

specific T cells.90 Such a coordinated process allows for the

effective and timely recruitment of Treg cells to niches where

they can curtail overexuberant T cell responses in the secondary

lymphoid organs.While these and other molecules facilitate Treg

cell patrolling of the secondary lymphoid organs and blood

vasculature, activated Treg cells express diverse inducible che-

mokine and other tissue homing receptors. These enable the

Treg-cell-mediated restraint of inflammation and the enforce-

ment of tolerance at barrier tissues chronically exposed to mi-

crobes and xenobiotics under physiologic conditions and sup-

port Treg cell trafficking to sites of induced inflammation in

response to infection and injury.91

While constitutive CCR4 expression by Treg cells was shown

to be a specific prerequisite for preventing inflammation in the

skin, differential expression of CCR2, CCR5, CCR6, and

CXCR3 by activated Treg cells enables their preferential entry

into a variety of inflamed and non-inflamed peripheral tis-

sues.92–95 Additionally, CCR4 plays a role in Treg cell recruitment

to skin and solid organ cancers, where preferential accumulation

of these cells subverts anti-tumoral immunity and directly sup-

ports tumor progression.96,97 Notably, a subset of highly acti-

vated intratumoral Treg cells displays high amounts of CCR8,

whose expression, while dispensable for their migration to and

suppressor function within the tumor, offers an opportunity for

their therapeutic targeting in human cancers.92,98–102 The

expression of both CCR4 and CCR8 is selectively induced in

type 2 helper T cells alongside, and likely in a manner dependent

on, GATA3 and IRF4, the lineage specifying transcription factors

for Th2 cells.103–106 Expression of these transcription factors in

activated Treg cells identifies those specifically capable of con-

trolling type 2 immunity, and it is reasonable to assume that

constitutive expression of those chemokine receptors by these
Treg cell subsets grants them preferential access to the site of

type 2 inflammation.107–110

Likewise, T-bet-expressing Treg cells have been suggested to

exhibit a potent ability to selectively restrain type 1 immunity, a

capacity linked at least in part to T-bet-dependent expression

of CXCR3.111–113 Indeed, T-bet-expressing Treg cells are found

in close opposition to T-bet-expressing CD8+ and CD4+ T

effector counterparts in the secondary lymphoid organs113

(Figure 2). Likewise, in non-lymphoid tissues affected by type 1

inflammation, such as the pancreas in the setting of type 1 dia-

betes and the kidney in the setting of crescentic glomerulone-

phritis, the T-bet CXCR3 axis is required for Treg cell localization

to and immune suppression within these tissues.114–116

Further, CCR6, a chemokine receptor often associated with

type 3 immunity, has been also shown to regulate Treg cell traf-

ficking, facilitating Treg cell function in various settings. CCR6

plays a role in recruiting an early wave of Treg cells to the skin,

where they promote tolerance to skin commensal microbes by

a yet undetermined mechanism.117,118 Treg cells also require

CCR6 for recruitment to the intestine and limiting Th17 re-

sponses therein, likely through IL-10 elaboration.119,120 Besides

these canonical chemokine receptors, a recently deorphanized

GPCR, GPR15, recognizing a ligand, GPR15L, has also been

shown to play an important role in enabling Treg cell trafficking

to barrier epithelial tissues, including the colon and skin, in order

to suppress colitis and allograft rejection, respectively.121,122

Similarly, the CXCR4 chemokine receptor expressed by a popu-

lation of Treg cells guides them to sources of CXCL12 in the BM,

where they regulate the numbers and self-reactive antibody pro-

duction by B-1 B cells and limit the overall amount of serum

IgM.123 Based on the analysis of constitutive Treg-cell-restricted

CXCR4 deficiency, CXCR4-guided Treg cells have been also

proposed to modulate HSC quiescence33,124 (Figure 2). There

is a strong likelihood, however, that this effect is due to a devel-

opmental defect, as the induced loss of CXCR4 in Treg cells and

their consequent depletion from the BM in adulthood has not

affected the HSC numbers or their differentiation potential.123

A Treg cell subset, known as follicular Treg cells (Tfr), is char-

acterized by the expression of CXCR5, a feature shared with

follicular helper T (Tfh) cells, whose responses they modulate,

along with those of B cells.125,126 They are suggested to do so
Immunity 56, February 14, 2023 243
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via the production of IL-10, neuritin (previously known as a

neuronal-plasticity-associated molecule), TGF-b, and additional

mechanisms127–132 (see Sage and Sharpe125 for an in-depth re-

view). Intriguingly, as in the case of the conventional follicular

helper (Tfh) cells they control, Tfr cells do not require the expres-

sion of the B cell follicle homing receptor CXCR5 for their local-

ization or function.133 However, both require the expression of

the transcription factor Bcl6; which Bcl6-regulated localization

molecules are necessary, alone or in combination with CXCR5,

remains to be examined.134,135

Distinct expression of integrins by activated Treg cells also con-

tributes to their trafficking to, positioning in, and function within

non-lymphoid tissues. Seemingly specific expression of Raph1,

an integrin adaptor molecule, in Treg cells preserves normal

Treg cell trafficking in the absence of RIAM (encodedbyApbb1ip),

a Raph1 paralog,whose deletion hasmore pronounced effects on

conventional T cells.136 This reinforces the aforementioned notion

that Treg cells, more than relying on unique effector molecules,

may harbor particular mechanisms by which they traffic to and

localize within key non-lymphoid tissues. The aVb8 and a4b7 in-

tegrins play important roles in Treg cell function in controlling in-

testinal inflammation. While aVb8 integrin enables Treg cells to

activate latent TGF-b, leading to the suppression of enteric inflam-

mation, it could also play a role in recruiting these cells to inflamed

gastrointestinal tissue or positioning them within this organ, given

the promiscuous binding of this integrin.137–139 The a4b7 integrin

plays a broad role in enabling leukocyte migration to the intestine

and associated lymphoid tissues but seems to be of particular

importance for Treg cells, as the intestinal inflammation associ-

atedwith loss of Itgb7, which encodes b7, is due in part to the dis-

rupted homing and function of Treg cells.140–142 Another chemo-

taxis-related strategy employed by Treg cells for co-localizing

with their intended cellular targets is by actively attracting them

through the production of chemotactic cues. In this regard, Treg

cell production of CCL3 and CCL4 supports the recruitment of

pro-inflammatory T cells to Treg cells, allowing them to become

targets of suppression.143

Populations of Treg cells found at barrier sites, particularly in

the intestines, include a large number of peripherally generated

Treg (pTreg) cells, that is, cells acquiring Foxp3 expression and

Treg cell identity extrathymically.144–146 The enhanced ability of

these cells to persist in—and their specialized function within—

these tissues likely depends on their antigenic specificity distinct

from self-antigens recognized by their thymically generated

(tTreg) counterparts, as it has become increasingly clear that

these cells harbor TCRs recognizing antigens derived from the

microbiota and, potentially, diet.147–151 In addition, commensal

microbiota-derivedmetabolites enriched at these sites, including

retinoic acid, short-chain fatty acids, and secondary bile acids,

contribute to imparting the distinct features of these cells along-

side local inflammatory cues.152–162 It is reasonable to assume

that these environmental effects are responsible for the recently

demonstrated dispensability of Foxp3 expression by pTreg cells

for their stability, fitness, and ability to contain effector T cell

expansion.145 pTreg cells have been shown to perform a number

of non-redundant functions, including support of the assembly of

beneficial commensal microbial communities and tissue physi-

ology, and curbing local inflammation elicited by commensal mi-

crobes and pathobionts.144,145,148,163,164 While it appears that
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the effector mechanisms deployed by these cells to these ends

might not be unique, their specific localization and ontogeny un-

derpin their distinct functionality.

Upon activation under inflammatory conditions, Treg cells ex-

press even higher levels of effector molecules and become

markedly more potent suppressors.165–167 However, this activa-

tion is largely transient, with gene expression and immune sup-

pressive ability returning to baseline levels as inflammation sub-

sides.167 Rather than showing features of persisting memory of

heightened suppressor activity, the lasting characteristics of

inflammation experienced Treg cells consist largely of stably

increased expression of genes whose products promote homing

to non-lymphoid tissues.166,167 This outcome may reinforce the

link between the ability of Treg cells to maintain immune toler-

ance and a heightened capacity for localizing to peripheral

tissues.

While most of the studies so far have focused on the functional

significance and mechanistic aspects of entry by Treg cells into

lymphoid and non-lymphoid tissues and their spatial distribution

therein, the regulation and functional significance of their recircu-

lation, entailing emigration from non-lymphoid tissues and re-en-

try into the draining lymph nodes and eventually circulation, are

less well understood. In that ‘‘vein,’’ activated Treg cell migration

from inflamed skin to draining lymph nodes has been suggested

to suppress immune responses to allografts, and the trafficking

of Treg cells from large intestine lamina propria to distal locations

has been reported.94,168 Similarly, integrin a2b1 expression

marks, and potentially contributes to, the recirculation of a

mature, highly suppressive population of Treg cells.169 Addition-

ally, it has been recently shown that Treg-cell-specific expres-

sion of layilin (encoded by Layn), a C-type lectin acting as a hya-

luronan receptor, may limit Treg-cell-suppressive functions in

the skin by restricting Treg cell motility, suggesting the possibility

of complementary negative regulation of Treg cell activity

through the modulation of their localization.170

Although studies over the last two decades revealed a clear

relation between the broad localization of Treg cells and their

ability to perform effector functions, the finer-grain picture of

spatial distribution of Treg cells within lymphoid and non-

lymphoid organs and how this enables their function is less

well appreciated and understood. Because the effectiveness of

a particular effector molecule is a product of its ability to be de-

ployed in the right circumstance and at the proper target cell,

identifying the cues that guide them to and within distinct tissues

and their different interaction partners therein, alongside the

effector molecules deployed by Treg cells, is essential for a bet-

ter understanding of immune tolerance.

TIMELY ACTION

The developmental timing of Treg cell maturation within and their

egress from the thymus has been a major focus of studies since

their initial characterization and the first demonstrations of their

activity.3,22,171,172 As it turns out, the timing of thymic egress of

Treg cells also enables their proper seeding of and localization

within tissues. Early experiments showed that disruption of this

process, by thymectomy at three days of age in mice, led to sig-

nificant organ-specific autoimmunity.3,171 Recent work from the

Mathis and Benoist laboratory has shown that paucity in an early



Figure 3. Timely action
Treg cells constitutively express ICOS (1),
enabling ongoing interaction with and inhibition of
group 2 ILCs (2), leading to reduced production of
IL-5 and IL-13 by these cells (3). Treg cells in the
mucosa constitutively express the aVb8 integrin
(4), allowing them to efficiently activate latent
TGF-b to enforce tolerance at mucosal barriers (5).
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wave of thymic Treg cells, enriched for reactivity against AIRE-

dependent tissue-restricted antigens, leads to autoimmune

lesions in the corresponding tissues.68 Interestingly, gene

expression profiling showed that these Treg cells, though more

activated and proliferative than the bulk population, did not

uniquely express specific immunosuppressive effectors. Overall,

this suggests that proper and timely access to peripheral tissues,

more than elaboration of certain effector molecules, is essential

for Treg cells to establish and maintain immune homeostasis.

More recent work has supported this idea. Treg cells expanding

in the liver early in life have been shown to play a role in promot-

ing tolerance in that organ.173 Further, neonatal Treg cells were

suggested to restrain the proliferation of autoreactive neonatal

helper T cells, potentially by competing for and limiting IL-33

availability.174

Both tTreg and pTreg cells exit their places of birth as pre-acti-

vated, antigen-experienced cells, due to their unique develop-

mental trajectory.145,167,175 This property includes high, constitu-

tive expression of a number of their effector molecules, while for

conventional T cells this requires antigen exposure and differen-

tiation. In comparison to conventional T cells, even resting Treg

cells in physiologic settings are characterized by markedly

higher expression of genes associated with canonical Treg cell

suppression mechanisms, e.g., Il2ra, Il10, Ctla4, Ebi3, Gzmb,

and Entpd1, among others.21,165,176,177 It is this attribute that is

likely pivotal to the ability of Treg cells to suppress specious im-

mune activation. In this way, Treg cells have a head start on such

T cell activation processes. By contrast, effector T cells acquire

expression of these same immune suppressive molecules late in

their activation and differentiation process, which, while curtail-

ing their activity and contributing to immune response resolution,

fails to prevent autoimmunity and inflammation in the absence of

Treg cells.

As an illustration of this ‘‘background activity’’ of Treg cells,

which stems from their primordial activation and is further tuned

in response to the basal inflammatory tone, Treg cells at mucosal

barrier sites constitutively express IL-10 and the genes encoding

proteins involved in ensuring an efficient display of an active form

of TGF-b, which allows them to impart a constitutive immune
quiescent state onto macrophages and

other tissue resident cells, and thereby

prevent colonic inflammation34,137,139

(Figure 3). Similarly, a large proportion of

Treg cells constitutively express high

amounts of CD25, allowing them to

quench not only nascent CD8+ T cell re-

sponses but also pro-inflammatory re-

sponses by various innate lymphocytes

such as NK cells, which can respond to
this cytokine alone.43,46,47,77 Additionally, Treg cells can control

other innate lymphocytes, such as group 2 innate lymphoid cells

(ILC2s), because of their heightened, constitutive ICOS expres-

sion178,179 (Figure 3).

Timing is also key for the function of the aforementioned T-bet

expressing Treg cells. IL-27, an immunomodulatory cytokine

produced by DCs has been shown to play a non-redundant

role in inducing T-bet expression in Treg cells, while signaling

by IFNg and IL-12, the cytokines that collectively drive Th1

cell differentiation, are seemingly dispensable or even inhibi-

tory.180–182 That Treg cells might acquire this program in

response to IL-27 alone might enable their function on a different

timescale and in different settings than that with which conven-

tional T-bet expressing type 1 polarized T helper cells differen-

tiate, as that process requires sequential IL-12 and IFNg produc-

tion by innate and adaptive cells. Presumably acting at later

stages, IFNg can also support T-bet expression in Treg cells,

while stimulating IL-27 production by DCs.180,181 This suggests

that Treg cells may act as amplifiers of immunomodulatory

cues, i.e., IL-27, elaborated by accessory cells, as a counterpart

to the amplification of pro-inflammatory cues by effector CD4+

T cells. Thus, the induction and maintenance of T-bet in Treg

cells can be viewed as part of both indirect and direct cell-

extrinsic negative loops restraining type 1 immunity.

Interestingly, the ability of Treg cells to mount early re-

sponses during pathogen encounter has also been associated

with promoting protective immunity in experimental genital her-

pes, respiratory syncytial virus, and West Nile virus and oral

Candida infections. Treg cells were shown to contribute to

orchestrating migration of innate and adaptive immune cells

to infected barrier tissues by limiting production of pro-inflam-

matory chemokines, and consequently opposing retention of

early effectors in the draining lymph nodes, leading to

enhanced adaptive immune responses and improved pathogen

clearance, and by IL-2 sequestration and CTLA-4 dependent

modulation of DC function.183–187 These unusual vanguard ac-

tions of Treg cells are likely intertwined with the well appreci-

ated ability of Treg cells to restrain early, innate inflammation,

as in many of these models enhanced adaptive immunity was
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also associated with reduced tissue damage and collateral im-

mune pathology, and abundance of various inflammatory medi-

ators. Therefore, the ability to Treg cells to act early in immune

responses, ahead of conventional T cell responses, results in a

compound benefit: a reduction in inflammation and the associ-

ated damage and improved adaptive immune responses and

pathogen control. A similar function of Treg cells, resulting in

improved virus-specific T cell memory during lymphocytic cho-

riomeningitis virus (LCMV) infection, shown to be dependent on

IL-10 production by Treg cells was suggested to function

through polarizing DCs away from promoting inflammation

and toward CD8 T cell priming.82 However, the kinetics of IL-

10 production by Treg cells throughout LCMV infection leave

it unclear whether this results from innate-like or early Treg

cell action.

This notion of preparedness for action extends to effector

mechanisms of Treg cells that are not directly involved in

modulating immune responses, as Treg cells also serve as an

important early source of tissue-supportive factors during

inflammation and immunity. Treg cells are among the earliest

producers of Areg during experimental influenza infection.

Thus, they provide essential support for the tissue at a time

when the responses of effector T cells capable of Areg produc-

tion are still ramping up, while mobilized innate immune cells

are already inflicting collateral damage.52 This rapid deploy-

ment is likely possible because at least a subset of tissue resi-

dent Treg cells constitutively expresses Areg transcript and

these cells can rapidly produce Areg in an alarmin responsive,

TCR-independent manner.52,54,188–190 Likewise, Treg cells in

the skin constitutively express the Notch ligand Jagged-1, al-

lowing them to support hair follicle SCs and rapidly mobilize

them upon tissue damage.51 While poorly understood, addi-

tional mechanisms might explain the ability of Treg cells to

outperform conventional T cells in accumulating in peripheral

tissues. The capacity of certain Treg cells to expand in

response to IL-33, likely stemming from their high expression

of the IL-33 receptor ST2, has been suggested to factor in their

accumulation in adipose tissue and the injured or aged mus-

cle.191–193 Even though mature Treg cells have experienced

initial TCR stimulation during thymic or peripheral differentia-

tion, timely mobilization of their function in many cases requires

subsequent TCR engagement in addition to poorly defined sig-

nals, which report on the particularities of the perturbed state,

such as the immune tone, inflammation, and tissue stresses.

The specifics and timing of these various signals, how they

contribute to setting up the pre-activated state of Treg cells

as well as driving their full mobilization when required, and

finally, which combinations of signals are required for which

effector modalities are questions of obvious interest.

SENDING A CLEAR MESSAGE

Treg cells are by far not the only specialized lineage of agonist-

selected T cells that emerge from their differentiation process

in a pre-activated state. The other non-conventional T cell line-

ages, including gdT cells, natural killer T (NKT) and mucosal

associated invariant T (MAIT) cells, and intra-epithelial CD8aa+

T cells, likewise constitutively express some, if not all of the

aforementioned effector molecules and chemotactic receptors
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expressed by Treg cells.194–197 Despite this seeming resem-

blance, in settings of congenital Treg cell deficiency due to

loss-of-function Foxp3 mutations or experimental depletion of

Treg cells, these non-conventional T cell populations fail to effec-

tively carry out essential immunosuppressive functions of Treg

cells and prevent autoimmunity. Likewise, the increased expres-

sion of IL-10, CTLA-4, CD39, and other immunosuppressive

effector molecules by differentiated conventional T cells late in

immune responses is inadequate to prevent lethal autoimmunity.

Even in narrower contexts, and absent systemic inflammation,

the fact that conventional T cells express substantial levels of

IL-10 and Areg post-activation, does not allow them to compen-

sate for the lack of these molecules derived from Treg

cells.34,52,82,198 Although this discrepancy is likely explained in

part by their localization and timing discussed above, this alone

may not fully explain the inability of non-conventional T cells to

substitute for Treg cells.

Thus, the activity of Foxp3 within Treg cells coupled with their

diverse TCR repertoire is the primary, cell-intrinsic determinant

enabling the unique indispensable function of Treg cells for the

health of vertebrate animals. Foxp3 has been shown to suppress

either directly or indirectly the expression of pro-inflammatory

genes at baseline and to maintain this suppressed state particu-

larly when Treg cells are activated in inflammatory environ-

ments.165,199–202 By subtly tuning the expression of relatively

few genes, resulting in the modulation of Wnt b-catenin signaling

among other changes, Foxp3 ensures a fundamental distinction

between Treg cells and all other T cell lineages: Treg cells do not

co-deliver pro- and anti-inflammatory signals and are dedicated

to the inhibition of immune responses203–206 (Figure 4). Never-

theless, in human disease settings and in experimental models

of inflammation, autoimmunity, and infection Treg cells have

been shown to produce cytokines typically considered pro-in-

flammatory, including IFNg and IL-13, which may be interpreted

as exceptions to this rule.207–215 Although maladaptive conse-

quences of Treg cell production of IFNg have been reported,

its potential physiological role has not been addressed in

sufficient depth, although several reports suggest protective,

immunoregulatory functions in settings of allogeneic re-

sponses.208,212,213 In a similar regard, tissue protective, rather

than pro-inflammatory, functions for Treg-cell-derived IL-13

have been reported, likely reflecting in part a longstanding

misclassification of this tissue remodeling cytokine as pro-in-

flammatory.207,209,216 Whether Treg cells have ‘‘co-opted’’ other

pro-inflammatory cytokines in particular contexts, and whether

this should lead to a re-evaluation of the utility of rigid categori-

zation of cytokines as pro- or anti-inflammatory, deserve further

consideration. A recent unexpected observation of an opposite

phenomenon of Tfh cells acquiring regulatory capacity and

losing immune promoting functions upon upregulation of

Foxp3 in late germinal centers offers an interesting wrinkle in

the understanding of the importance of Foxp3 in specifying the

unique abilities of Treg cells.217 Additionally, stable Foxp3

expression has also been reported to be induced in CD8

T cells in tumors, conferring some suppressive properties on

these cells.218,219 On the one hand, it appears as though in this

case Foxp3 performs a mechanistically consistent function of

repression of pro-inflammatory functionalities; on the other

hand, this work raises a provocative question about the



Figure 4. Sending a clear message
Treg cells acquire stable Foxp3 expression in
response to TCR and IL-2R signaling during dif-
ferentiation, which results in the repression of pro-
inflammatory gene expression, by direct or indi-
rect means. Repression of some pro-inflammatory
cytokines, such as Ifng, is relieved in competent
Treg cells in some inflammatory settings, sug-
gesting potential anti-inflammatory or tissue-
supportive functions for these molecules.
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evolutionary emergence of a dedicated immunosuppressive

lymphocyte function and an intriguing possibility of a primordial

or parallel function of Foxp3 in T cells.

CONCLUDING REMARKS

To date, efforts to understand the effector functions of Treg cells

have been largely focused on identifying and functionally testing

the mediators of these mechanisms: immunomodulatory mole-

cules such as IL-10, Ebi3, CD39/CD73, and TGF-b, among

others. These collective works have shown that the mediators

of Treg cell immunosuppressive and tissue-supportive function

are numerous and context dependent. Furthermore, the rather

broad expression of many of these effector molecules across

Treg cells and effector T cells, not to mention cells of the innate

immune system, poses a dilemma that needs further consider-

ation, especially in light of the non-redundancy of many of these

molecules revealed by Treg-cell-specific ablation experiments.

So far, investigations of the non-redundant functions of various

immunosuppressive molecules produced by either Treg cells

or conventional T helper cells have been rather biased, with

the conspicuous paucity of studies involving side-by-side cell

type specific loss-of-function analysis. Beyond the contributions

of specific molecular mediators, the principles by which Treg

cells carry out their ascribed functions are reasonably well

defined and likely broadly applicable. Thus, the special abilities

of Treg cells to act at the right place and time provide a frame-

work for future research in the field. While the cues that properly

position and marshal Treg cells to deploy known mediators are

relatively understudied, investigation of these cues and their

interplay with specific functional states of effector Treg cells pre-

sents an opportunity for uncovering novel mechanisms of im-

mune regulatory and tissue-supportive functions.

The role of the TCR in this rubric deserves special mention. The

majority of Treg cells experience agonist TCR signaling during dif-
ferentiation followedby tonic TCRstimula-

tion during their maintenance in the pe-

riphery, as well as likely heightened TCR

engagement in settings of inflammation

and other stresses. Further dissection of

how these distinct stimulatory modalities

result in the constitutive or inducible

expression of various effector molecules

by Treg cells should help clarify which

ones are antigen specific versus TCR

dependent, a subtle yet important distinc-

tion, or neither. In this regard, the ability of

Treg cells to prevent DC-mediated activa-
tion of T cells is in large part TCR- and contact-dependent and can

be viewed as antigen specific.69,72,77,220–222 However, TCR stim-

ulation can induce the expression of cell adhesion molecules,

such as lymphocyte function-associated antigen (LFA)-1, which

could enable subsequent direct, but antigen-independent interac-

tions with DCs.69,223 Asmentioned above, Treg cells are known to

interact with and modulate the activity of MHC-class-II-express-

ing cell types of different origins, including tissue SCs.33,51,81,224

The contribution of antigen-specific versus TCR-dependent regu-

lation to these cellular circuits, in particular in the context of barrier

tissue maintenance, remains to be elucidated. Finally, certain

effectormechanisms of Treg cells are deployed in a demonstrably

TCR-independent manner, implying that while Treg cells gain

competency for certain functions through TCR stimulation, there

is not an ongoing obligatory requirement for antigen recognition

or TCR signaling for these functions. This heterogeneity in TCR

dependence: whether signaling is needed developmentally,

chronically, or situationally for the elaboration of distinct mecha-

nisms likely reflects the heterogeneity of the environments in

which Treg cells act, as well as of their cellular targets. These

properties of Treg cells are also reflected by the breadth of TCR

signaling strength, and by extension antigen affinity, which can

drive productive Foxp3 expression and Treg cell lineage

commitment.225,226

Ultimately, the special characteristics of Treg cells—expres-

sion of Foxp3mechanistically coupledwith agonist-driven differ-

entiation and further diversification of their functional states—

support the manifestation of immune suppression and tissue

regeneration modalities at the right place, at the right time, and

in a calibrated manner.
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