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A B S T R A C T   

Regulatory T (Treg) cells maintain immune tolerance to allergens at the environmental interfaces in the airways, skin and gut, marshalling in the process distinct 
immune regulatory circuits operative in the respective tissues. Treg cells are coordinately mobilized with allergic effector mechanisms in the context of a tissue- 
protective allergic inflammatory response against parasites, toxins and potentially harmful allergens, serving to both limit the inflammation and promote local 
tissue repair. Allergic diseases are associated with subverted Treg cell responses whereby a chronic allergic inflammatory environment can skew Treg cells toward 
pathogenic phenotypes that both perpetuate and aggravate disease. Interruption of Treg cell subversion in chronic allergic inflammatory conditions may thus provide 
novel therapeutic strategies by re-establishing effective immune regulation.   

1. Introduction: allergic diseases as disorders of immune 
regulation 

Allergic diseases, including such common disorders as asthma, atopic 
dermatitis (AD), and food allergy (FA), arise in the context of aberrant 
tissue immune responses against normally innocuous environmental 
agents (e.g. foods and aeroallergens) [1]. The prevalence of allergic 
diseases has increased over the last decades in association with social 
and environmental changes ushered in by the industrial revolution that 
have profoundly altered patterns of human activity, including living 
arrangements, diet and infections [2]. The dramatically increased 
prevalence of allergic diseases is a public concern both because of the 
morbidity that these diseases exact and also the substantial financial 
costs associated with their care and therapy. While therapies for allergic 
disorders have steadily improved thanks to a better understanding of the 
underlying immune processes involved and their targeting with 

precision therapies, those therapies have remained, for the most part, 
noncurative. 

Allergic diseases primarily involve dysregulated type 2 immune re
sponses at the environmental interfaces in skin, gut and lung. While 
allergic (type 2) immunity plays a protective role against exposure to 
parasites, toxins and potentially harmful allergens [3,4], its dysregula
tion gives rise to pathologic responses associated with the variety of 
allergic diseases [5–7]. Allergic inflammation mobilizes integrated 
innate and adaptive immune response circuits, the former including 
epithelial barrier cells, innate lymphoid cells (ILC), mast cells, basophils, 
eosinophils, and neutrophils and the latter T helper 2 cells (Th2), T 
follicular cells (Tfh), regulatory T (Treg) cells and B cells [8–11]. The 
first line of defense against allergens encompasses the barrier epithelial 
cells in the skin, gut, and airways. Damage to epithelial cells will release 
different alarmins such as IL-25, IL-33, and thymic stromal lympho
poietin (TSLP) that initiate cascading innate and adaptive immune 
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responses characteristic of type 2 immunity [12–15]. These include 
epithelial cell proliferation and mucus hypersecretion leading to tissue 
remodeling, activation and proliferation of innate lymphoid cells type 2 
(ILC2), and mast cells, recruitment of eosinophils, basophils, and the 
initiation of adaptive T and B cell allergic immunity including Th2 and 
Tfh responses and IgE production. 

Genetic and immunologic evidence also reinforces the idea of a 
pivotal role for immune regulatory mechanisms centered on Treg cells in 
promoting tolerance to allergens and preventing allergic disorders (see 
below). While it is tempting to propose that a quantitative imbalance 
between regulatory and effector type 2 immune responses underlies the 
development and persistence of allergic disorders, a more complex 
picture has emerged whereby a subverted immune regulatory response 
arising out of a disturbed barrier homeostasis actively contributes to 
disease [16,17]. The mechanisms underlying this subversion and its role 
in the breakdown of the immune regulatory mechanisms normally 
operating to maintain allergen tolerance are the subject of this review. 

2. Regulatory T cells 

2.1. Physiological functions of Treg cells in peripheral tolerance 

Treg cells represent a subset of 5–15% of CD4+ T cells characterized 
by their capacity to suppress auto-immunity and inflammation [18,19]. 
They are critically involved in maintaining immune homeostasis and 
preventing self-tolerance breakdown [20,21]. Treg cells express a spe
cific transcription factor, Forkhead box P3 (Foxp3), essential for their 
differentiation and function. Foxp3 loss of function mutations in mice 
(Scurfy mice) or humans (IPEX: immune dysregulation poly
endocrinopathy enteropathy X linked) induce a breakdown of immune 
homeostasis associated with intense autoimmunity and allergic dysre
gulation due to a deficient Treg cell function [22–25]. Several attributes 
of Treg cells including their immune regulatory activities, distinct 
metabolism, and lack of inflammatory cytokines production are under 
the control of Foxp3 [26,27]. 

Treg cells control both the innate and adaptive branches of the im
mune response, including different types of innate immune cells (den
dritic cells, mast cells, monocytes/macrophages, and ILC) and T and B 
cell-dependent adaptive immunity [28–34]. The capacity of Treg cells 
to exercise such wide-ranging immune regulatory functions is enabled 
by their endowment with an array of distinct and non-redundant 
immunosuppressive mechanisms [35]. These include key regulatory 
factors such as IL-10, TGF-β, IL-35 and Fibrinogen-like protein 2, the 
extracellular nucleotide sensors CD39 and CD73, and cell surface re
ceptors enforcing cell contact-mediated suppression including CTLA-4, 
PD-1, LAG-3 and Galactin-1 [36]. In addition to the immunosuppres
sive functions and capacities to restrict the intensity of immune re
sponses, Treg cells can also promote non-immunologic processes, such 
as organismal metabolic regulation and tissue repair, the latter by virtue 
of secreting cytokines such as the epidermal growth factor receptor 
ligand amphiregulin (Areg) [37–40]. 

Several studies have identified tissue Treg cells in a wide variety of 
nonlymphoid organs including, relevant to allergic diseases, the envi
ronmental interfaces (skin, intestinal mucosa, and lungs) as well as 
visceral tissues such as muscles and fat [41]. Treg cells in those tissues 
acquire transcriptional and functional specializations conducive to their 
functions in those tissues. This is exemplified by the acquisition of tissue 
Treg cells in the gut and the skin of functional specialization relevant to 
maintaining microbial commensalism and tolerance to environmental 
antigens [42–46]. 

Treg cells are broadly subdivided into two different populations that 
play complementary roles in maintaining peripheral tolerance [47,48]. 
One population is derived from thymic precursors and is identified as 
natural or thymic Treg (nTreg/tTreg) cells [49,50] and the other is 
derived from naïve CD4+ T cells post-thymic development and known as 
induced or peripheral Treg (iTreg/pTreg) cells [51–53]. iTreg cells arise 

at mucosal interfaces in response to commensal metabolites, retinoic 
acid, and TGF-β [53–55]. They can also be differentiated from naïve CD4 
cells in vitro following TCR stimulation in presence of TGF-β and IL-2 
[53]. While the two populations share common regulatory mecha
nisms, they are endowed with distinct TCR repertoire [56,57], an 
attribute that broadens Treg cell antigen specificity. Treg cells present a 
certain degree of plasticity, which is defined by the capacity to acquire 
in part the transcriptional and functional programs of other Th cell types 
while maintaining regulatory activity [44,58–60]. Thus, Treg cells can 
co-express together with Foxp3 other specific transcription factors such 
as T-bet, BCl6, GATA3 and RORγt relevant to ongoing Th effectors cell 
programs [44,58–63]. Treg plasticity is crucial to coordinately mount 
effector Th and immune regulatory responses by means of shared sets of 
chemokine receptors regulated by the respective Th cell transcription 
factors, leading to a more focused Th cell response and limiting potential 
off-target damage due to uncontrolled immune activation. Nevertheless, 
under pressure of chronic inflammation, Treg cells may proceed to ex
press the full program directed by the respective Th cell-specific tran
scription factors, becoming in effect Th cell like. As discussed below, the 
devolution of Treg cells into Th2 cell-like effector T cells is relevant to 
pathogenesis of chronic allergic inflammation. 

2.2. Treg in allergic diseases 

A key role of Treg cells in allergic diseases was first gleaned from 
Treg cell deficiency due to mutations in the transcription factor FOXP3. 
Patients carrying such mutations exhibit severe allergic inflammation 
with elevated serum IgE and manifest allergic disorders such as FA and 
AD [64]. In mice, depletion of antigen-specific Treg cells by diphtheria 
toxin in "depletion of regulatory T cell" (DEREG) mice was sufficient to 
induce a breakdown of oral tolerance [65]. Moreover, a break of oral 
tolerance associated with increased allergy severity is induced by 
antibody-mediated depletion of CD4+CD25+ cells in peanut-sensitized 
mice [66]. Several studies support the notion that Treg cell destabili
zation and/or Treg cell loss of function are involved in allergic disease 
pathogenesis [30,40,67–69]. Deficient suppression of Th cell responses 
to allergens which are regulated by CD4+CD25+ Treg has been reported 
in patients with allergic disease [70]. 

Both nTreg and iTreg cells participate in maintaining mucosal 
tolerance, playing distinct immune regulatory roles and responding to 
different cues. In particular, a prominent role for iTreg cells in main
taining mucosal homeostasis has emerged especially in the gut in the 
context of a microbe-rich environment. Mice with a specific deletion of 
the Foxp3 intronic Conserved Non-coding Sequence 1 (CNS1), which is 
required for iTreg cell differentiation, do not develop fatal autoimmu
nity but present a pro-allergic phenotype [71]. The development of 
iTreg cells in the gut is shaped by the microbiota. Particularly relevant 
are the RORγt+ iTreg cells which form the majority of iTreg cells in the 
gut and are strictly dependent on ongoing microbial stimulation. These 
cells expand around weaning time in conjunction with expanded mi
crobial diversity ushered in by the introduction of solid food. Their 
deficiency in mice is associated with heightened susceptibility to FA. In 
contrast, nTreg cells seem to play a role in chronic allergic diseases by 
undergoing a process of Th2 cell-like reprogramming, which confers Th2 
cell-like attributes on these cells. 

Several studies show that allergic patients manifest defective 
allergen-specific Treg cell responses, which are partially or fully restored 
upon allergen-specific immunotherapy [72]. Indeed, peanut-allergic 
patients who respond to oral immunotherapy present a quantitative 
and qualitative increase in antigen-specific Treg cells [73]. The regula
tory functions of Treg cells in allergic diseases are mediated by several 
non-redundant mechanisms and a defect in these functions is also 
associated with the development of allergic diseases. For example, Treg 
cell TGFβ1 expression appears to be critical for the regulation of allergic 
responses especially in the gut, which is relevant to oral tolerance and 
FA [74,75]. 

M. Benamar et al.                                                                                                                                                                                                                              



Seminars in Immunology 70 (2023) 101847

3

2.3. Role of Treg cells in Asthma 

Asthma is a common chronic inflammatory disease of the airways 
that affects more than 350 million individuals worldwide [76]. Asthma 
is subdivided into two different types, allergic asthma, which constitutes 
the majority of cases especially in children, and non-allergic asthma, 
more common in adults [77]. In this review, we will focus on allergic 
asthma. Severity in asthma is influenced both by genetic and environ
mental factors [77–80]. For example, a genetic coding variant in the 
IL4R gene in which a glutamine residue at position 576 of the human 
IL-4Rα is changed to arginine (IL4RR576) is associated with an increase in 
asthma severity in patients and in a mouse model of allergic airway 
inflammation [81–84]. Asthma is characterized by excessive 
allergen-specific CD4+ T cells immune response, enhanced IgE anti
bodies production, and a massive release of Th2 cytokines such as IL-4, 
IL-5, and IL-13 [16]. Studies on asthma patients indicated that CD4+ Th 
cell subsets play a crucial role in asthma pathogenesis. The dysregulated 
Th immune response, including Th2, Th17 and Tfh cells, produces in
flammatory cytokines and chemokines that contribute to the immuno
pathogenesis of severe asthma [67,85]. 

Treg cells are critical to maintaining airway tolerance. At steady 
state, signalling via the IL-33 receptor (IL-33R, also known as ST2) found 
on a subpopulation of resident lung tissue Treg cells induces expression 
of the cytokine IL-35, which suppresses IL-17-producing lung innate γδ T 
cells and consequently restrains the development of allergic airway 
inflammation [86]. Other studies have shown that adoptive transfer of 
ovalbumin (OVA)-specific CD4+CD25+ Treg cells into the 
OVA-sensitized mice attenuated airway hyper-responsiveness and 
reduced recruitment of eosinophils, and Th2 cytokine expression in the 
lung following allergen challenge [87]. 

In addition to reinforcing tolerance in lung tissues, Treg cells act to 
promote tissue repair [37,38]. Depletion of Treg cells by diphtheria 
toxin in mice expressing the diphtheria toxin receptor (DTR) specifically 
in Treg cells significantly decreased epithelial proliferation and lung 
tissue repair after acute injury in mice [88]. When co-cultured with 
primary type II alveolar cells (AT2), Foxp3+ Treg cells directly enhanced 
epithelial AT2 cell proliferation [88]. Indeed, Treg cell transfer in 
Rag1–/– mice decreases fibrosis after LPS injection and promotes lung 
tissue repair [89]. Mechanistically, Treg cells can reduce lung epithelial 
CXCL12 production and reduce fibrocyte recruitment [89]. Treg cells 
can also mediate airway tolerance and tissue repair by controlling other 
immune cells. For example, Treg cells can inhibit pro-inflammatory 
macrophage responses that will promote tissue inflammation resolu
tion and ultimately enhance bronchioalveolar stem cell proliferation 
[89]. Furthermore, the epidermal growth factor family member Areg 
produced by Treg cells can promote lung tissue repair and regeneration 
to prevent permanent tissue damage [37,90–92]. 

2.4. Role of Treg cell subversion in asthma pathogenesis 

Cumulative evidence supports the hypothesis that dysregulated Treg 
cells play a crucial role in the pathogenesis of allergic asthma [17]. 
Subversion of allergen-specific Treg cells can lead to the loss of their 
immune regulatory activity and their conversion into Th2 and Th17 T 
effector-like cells. While this mechanism may have an adaptive role in 
immunity to helminth infections, it has emerged as a key pathogenic 
mechanism of allergic diseases including asthma [83,93–95]. Studies 
have shown that Treg cells from patients with allergic asthma or mouse 
models of allergic airway inflammation present a shift toward a Th2 
cell-like phenotype. For example, asthmatics patients present an in
crease of CRTH2+ circulating Treg cells, which produce a large amount 
of IL-4 and show reduced suppressive function, compared to healthy 
controls [96]. Moreover, mouse lung Treg cells isolated following 
IL-33-dependent allergen-driven airway inflammation show upregula
tion of the canonical Th2 transcription factor GATA binding protein 3 
(GATA3) and the IL-33 receptor (ST2) along with enhanced secretion of 

type 2 cytokines [97,98]. In addition, recruited CCR6+ Treg cells are 
likely to differentiate into Th17-like cells, which could be associated 
with the pathology of allergic asthma by promoting Th17 responses 
[99]. 

The role of Treg cell subversion in allergic airway inflammation and 
the mechanisms by which this subversion takes effects have been 
recently clarified. Critical to this subversion is the induced expression of 
the Notch receptor Notch4 on lung tissue Treg cells in the context of 
allergic airway inflammation, which subverts their immune tolerance 
function and promotes Th2 and Th17 tissue responses [11]. Notch4 is 
upregulated by an IL-6 dependent mechanism, and the magnitude of the 
upregulation correlates with disease severity in both human subjects 
with asthma and mouse models of allergic airway inflammation [10,11]. 
Notch4 activates two main signaling branches, including the 
WNT/β-catenin and the Hippo pathway, to direct distinct lung tissue Th 
cell responses. Wnt//β-catenin directs Th2-like Treg cell skewing and 
promotes ILC2 responses, the latter in part by producing the cytokine 
GDF-15, which drives ILC2 activation. In contrast, the Hippo pathway 
directs Treg skewing toward a Th17 cell fate, mediated in part by 
destabilizing Treg cells through methylation of the Foxp3 CNS2 element 
[11]. Treg cell-specific deletion of the gene encoding WNT pathway 
effector/β-catenin suppressed the Th2 and ILC2 cell responses in allergic 
airway inflammation. Reciprocally, Treg cell-specific deletion of the 
genes encoding the Hippo pathways effectors Yap1 and TAZ suppressed 
the lung tissue Th17 cell responses (Fig. 1). These findings illustrated the 
critical role of lung tissue Treg cells in allergic airway inflammation and 
the modularity of the regulatory responses in controlling distinct aspects 
of tissue inflammation in asthma. 

2.5. Viral infections, Asthma and Treg cells 

A confluence of studies now supports the hypothesis that asthma 
development is influenced by respiratory viral infections in early life 
[100]. Furthermore, asthma exacerbations can be triggered by respira
tory viruses, notably human rhinovirus (HRV) and respiratory syncytial 
virus (RSV) [101,102]. Respiratory viral infections may potentiate 
airway allergic inflammation and lung eosinophilia by augmenting 
allergic sensitization and Th2 responses [93,103–107]. Early infection 
with RSV has been shown to be closely associated with the development 
of asthma by skewing the immune response towards a Th2 phenotype. 

A role for Treg cells in virus-induced asthma has been suggested. 
Treg cells from healthy subjects and those with asthma displayed an 
anti-viral response after HRV infection and showed reduced suppressive 
capacity, suggesting that Treg cell function might be impaired or altered 
during RSV infection [108]. Novel functions for Treg cells have been 
identified in shaping the CD4+ effector T cell response during RSV 
infection and promoting resolution of pathology [109]. Treg cells may 
also play an important role in the association between HRV and the 
development of asthma and asthma exacerbations [108]. Lung tissue 
Treg cells are subverted in the context of severe viral infections 
including influenza and SARS-CoV2, with heightened expression of 
Notch4, suggesting that common subversion mechanisms may be oper
ative in allergic and virus-induced asthma [90]. Causal association and 
mechanistic studies on early-life viral infections and later asthma 
development will help us to better understand asthma pathogenesis and 
highlight a potential therapeutic target in the treatment of asthma 
disease. 

2.6. Treg cells in AD 

AD is a common chronic inflammatory skin disease that affects 
15%− 20% of children and is the first step of the “atopic march” that can 
lead to the development of FA and asthma [110,111]. AD is character
ized by a Th2-dominated skin inflammation ushered in by a defective 
skin barrier, with dermal infiltration by CD4+ Th2 cells and eosinophils, 
along with increased cutaneous expression of Th2 cytokines such as IL-4 
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and IL-13, high serum IgE production and eosinophilia [110,111]. The 
skin type 2 immune response, which normally plays a critical role in skin 
wound healing [112], is also essential for AD development and persis
tence as illustrated by studies in patients with eczema as a consequence 
of primary atopic disorders due to inborn errors of immunity and also in 
relevant mouse models of AD [113–115]. These observations are 
consistent with AD being a form of dysregulated, type 2 
immunity-mediated tissue repair response instigated by a defective skin 
barrier function [116]. 

Treg cells are abundant in the skin, where they are seeded early in 
life to mediate tolerance to the skin microbiota [43,117]. A majority of 
skin Treg cells express the transcription factor GATA3 [118,119], 
consistent with their function in tissue repair together with other type 2 
immune response components including ILC2 and Th2 cells. They also 
have been reported to express the retinoic acid receptor-related orphan 
receptor α (RORα), which may help restrain dysregulated type 2 immune 
responses in the skin [120]. Skin Treg cells also express alarmin re
ceptors including IL-33R and TSLPR [121,122], which allows them to 
sense tissue damage and to co-mobilize with the ensuing type 2 immune 
response to promote damage repair, made possible by alarmin-induced 
Treg cell production of Areg [37]. 

The role of Treg cells in AD was initially suggested by the observation 
that patients with IPEX due to loss of function FOXP3 mutations present 
with AD as a key manifestation of their disease [22,123]. An increase in 
Foxp3+ Treg cells has been observed in patients with AD, in the 

allergen-exposed skin area and in the secondary lymphoid organs in an 
AD model [124,125]. Treg cells in AD have also been observed to exhibit 
a Th2 cell-like phenotype [126], suggesting they are co-opted in a pro
cess of Th2 cell-like reprogramming. Such a process has been previously 
described in FA and shown to contribute to disease pathogenesis [94]. 
The extent to which Th2 cell-like reprogramming of Treg cells also 
contributes to AD remains to be established. 

Relevant to the issue of immune dysregulation in AD is the role of the 
changed skin microbiome in driving Treg cell dysfunction in this disease. 
Skin Treg cells co-localize with the commensal bacteria at the hair fol
licles [127,128] and are decreased in germ-free mice, consistent with a 
role of the microbiome in driving Treg cell skin expansion [127]. The 
skin microbiome is altered in AD, with near universal colonization by 
strains of S. aureus that frequently produce superantigenic toxins [129]. 
Patients with more severe AD exhibit S. aureus predominance while 
patients with less severe disease show S. epidermidis predominance 
[130]. S. aureus isolates from AD patients with more severe flares 
induced epidermal thickening and expansion of cutaneous Th2 and 
Th17 cells in a mouse skin colonization model [130]. In related studies, 
impaired skin Treg cell-mediated immunoregulation promotes type-2 
cytokine production by commensal-specific plastic Th17 cells [118]. 
Overall, these findings point to a confluence of the skin dysbiotic process 
in AD, the skin Treg cell dysfunction, and the dysregulated Th2 immu
nity that merit further future studies. 

Fig. 1. Regulatory T cells in Asthma. At steady state, Treg cells control innate and adaptive airway tissue immune responses and also promote tissue repair through 
the secretion of cytokines such as Areg. Upon aeroallergen exposure, airway epithelial cells will produce alarmins, including IL-25, IL-33, TSLP, to activate ILC2 and 
other innate and adaptive immune cells. Production by alveolar macrophages of IL-6 will promote Treg destabilization through a Notch4-dependent mechanism. 
Notch4+ Treg cells will also produce Th2 cytokines and GDF-15 that will promote ILC2 activation and cytokine production. The schematics were prepared 
using BioRender. 
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2.7. Treg cells in FA 

Foxp3+ Treg cells in the gut mediate active tolerance to a wide and 
ever-changing variety of foods while simultaneously enforcing tolerance 
to the gut microbiota, which presents the heaviest microbial load in the 
body [131]. The maintenance of tolerance in the gut is further com
pounded by the different anatomical regions involved, each endowed 
with a distinct microbial community, and by nutritional and microbial 
changes occurring during development. These include the early life 
seeding of the gut microbiota with the dominance of milk-dependent 
microbial taxa such as Bifidobacteria followed by a shift towards 
blooming Clostridiales and Bacteroidetes taxa promoted by the intro
duction of solid food during the peri-weaning period [132]. The 
complexity of these changes is reflected by the diversity of Foxp3+ Treg 
cells populations in the gut and their respective effector mechanisms. In 
particular, a large proportion of Treg cells in the gut are iTreg cells 
derived from naïve CD4+ T cells that differentiate extrathymically in the 
mesenteric draining lymph nodes and are particularly enriched in the 
lamina propria [133,131,44,45]. These cells are critically required for 
maintaining oral tolerance to gut microbiota and food antigens and are 
preferentially imprinted with gut-homing molecules such as integrin 
α4β7 and the chemokine receptor CCR9, allowing them to localize in the 
intestinal lamina propria [134]. 

A majority of the gut iTreg cells express the RAR-related orphan 
receptor gamma t (RORγt) [44–46]. These cells differentiate under the 
direct influence of the microbiota and become particularly enriched in 
the gut at around the weaning time [135]. Studies in mice indicate that 
these cells are long-lived and mediate tolerance into adulthood [136]. 
The differentiation of RORγt + Treg cells results from the confluence of 
three distinct sets of signals. The first involves antigen presentation by 
MHCII+ antigen-presenting cells (APCs) that also express RORγt+, 
including ILC3 and the newly described Thetis cells, the latter being 
dominant in early life [137–139] (reviewed in [140]). The second signal 
involves a TGFβ1-dependent mechanism that is mediated by αVβ8 
integrin on the APCs [137–139], with differentiating iTreg cells likely 
providing the latent TGFβ1 source [131,132]. Finally, the differentiation 
of RORγt+ is further directed by microbial metabolites including but not 
limited to secondary bile acids [136–138]. 

Defects in the microbiota/RORγt+ Treg cell axis have been impli
cated in the pathogenesis of FA. First, Treg cell-specific deletion of Rorc, 
encoding RORγt, exhibits increased serum IgE and heightened suscep
tibility to FA [38,133]. In several mouse models of FA, including one 
with a gain of function mutation in the IL-4Ra chain (Il4raF709) and 
another with Treg cell-specific deletion of Tgfb1, susceptibility to FA is 
associated with deficient RORγt+ Treg cells in the gut. In both mouse 
models, both the susceptibility to FA and the RORγt+ Treg cell defi
ciency could be corrected by treatment with immunomodulatory 
commensal Clostridia and Bacteroidetes species. However, the capacity of 
commensal bacteria to rescue FA in these mice is strictly contingent on 
the competency of RORγt expression in Treg cells. The capacity of the 
immunomodulatory Clostridia and Bacteroidetes bacteria to upregulate 
RORγt+ Treg cell differentiation was dependent on Treg cell-intrinsic 
signaling via the toll-like receptor (TLR) coupled adaptor MyD88 [38, 
133]. Treg cell-specific MyD88 deletion impaired RORγt+ Treg cell 
differentiation in the gut, indicative of a role for TLR/MyD88 signaling 
in the induction of this Treg cell subset in the gut. 

The importance of the microbiota/ RORγt+ Treg cell axis in FA can 
also be inferred from human studies. Thus, patients with FA exhibit 
decreased frequency of RORγt+ Treg cell in circulation [141]. Analyses 
of the gut microbiota of human subjects with FA reveal the presence of 
dysbiosis associated with alterations in immunomodulatory bacteria. 
The functional significance of this dysbiosis was revealed in studies 
whereby the microbiota of human subjects with FA but not those of 
control subjects failed to support effective RORγt+ Treg cell differenti
ation or provide protection from FA when transplanted into germ-free 
mice. Collectively, the mouse and human data give rise to the concept 

of a microbial origin of FA, whereby dysbiosis in human subjects with FA 
results in failure of effective microbiota-directed differentiation of 
RORγt+ Treg cells, resulting in susceptibility to FA [131,135]. Such a 
dysbiosis may occur early in life due to diverse factors, including among 
others antibiotic treatment or cesarian delivery, or may emerge later in 
life due to insults that impact the integrity of the gut microbiota. 

In addition to RORγt+ Treg cell deficiency, FA is associated with the 
expansion of Helios+ Treg cells the exhibit heightened expression of the 
transcription factor GATA3 and otherwise manifest attributes associated 
with Th2 cell-skewing including increased expression of the cytokines 
IL-4 and IL-13 [142]. This pathogenic process, which was also observed 
in human FA subjects, appears critical in promoting disease suscepti
bility as Treg cell-specific deletion of a genetic cassette encompassing 
the Il4 and Il13 genes greatly attenuated disease severity in mice [94, 
142]. The expansion of pathogenic Th2 cell-like reprogrammed Treg 
cells coincident with the contraction of the RORγt+ Treg cell population 
suggests that the two populations may compete for the same niche. This 
could involve competition for IL-2 produced by antigen-specific T cells 
[143] and ILC3 cells [144]. The emergence of pathogenic Th2 cell-like 
reprogrammed Treg cells may be abetted by dysbiosis-driven activa
tion of innate immune cells driving type 2 (allergic) skewing including 
Tuft cells and ILC2. The former may sense changes in luminal metabo
lites including succinate to drive ILC2 expansion by secreting IL-25 
[145–149]. 

The Treg cell disturbances in FA have direct bearing on the regula
tion of allergy-promoting innate immune cells. RORγt+ Treg cells are 
critical in restraining mast cell expansion and activation by a TGFβ1- 
dependent mechanism [46,74]. Reciprocally, Th2 cell-like reprogram
ing impairs the capacity of Treg cells to suppress ILC2 activation in FA 
[150]. Yet another instance where Treg cell disturbances impact FA is at 
the level of the IgE response. A subpopulation of Th2-skewed T follicular 
helper (Tfh) cells is critical for the development of pathogenic 
high-affinity IgE responses relevant to anaphylaxis to foods and also 
allergic airway inflammation. This population, termed T follicular 
helper cells 13 (Tfh13), co-expresses GATA3 and Bcl6, has Th2 cytokine 
profile (IL-4hiIL-13hiIL-5hiIL-21lo), and activates IgE class switching in B 
cells by virtue of IL-4 secretion [151–153]. The capacity of Tfh13 cells to 
promote IgE responses is restrained by Foxp3+ T follicular regulatory 
cells (Tfr). These cells develop from Foxp3+ Tregs residing in the B cell 
follicles and have a context-dependent function in allergic diseases, 
acting as repressors or helpers of the IgE response [154,155] (Fig. 2). 
Importantly, the balance between Tfr and Tfh dictates B cell activation 
and antibody production. Depletion of Tfr cells exacerbates the Tfh13 
response and potentiates high-affinity allergen-specific IgE production 
[151]. Treg cell-intrinsic microbial signaling acting via the TLR adaptor 
MyD88 may also shape the differentiation and function of Tfr cells in the 
gut relevant to allergic diseases [42]. 

Seeking to use the capacity of some bacteria to induce tolerance- 
promoting RORγt+ Treg cells, therapeutic strategies using targeted 
mono- or poly- bacteriotherapy for re-establishing oral tolerance in 
mouse models have been developed [141,156]. The capacity to 
manipulate the regulatory response induced by the microbiota through 
the production of different metabolites and the implication for engi
neered bacteriotherapy further expands the horizon for novel therapies, 
but additional and in-depth investigations are required. Overall, 
microbiota-based, Treg cell-targeted approaches could be an efficient 
strategy for restoring oral tolerance in FA. 

3. Conclusion 

While Treg cells play a key role in suppressing responses to allergens 
in different allergic diseases, cumulative evidence suggests that their 
function may be subverted in the context of chronic allergic inflamma
tion, leading to their reprogramming into pathogenic pro-inflammatory 
cells. The dual nature of Treg cells in suppressing or promoting allergic 
diseases in a context-dependent manner provides novel opportunities for 
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targeted precision therapies to restore tissue tolerance in these 
disorders. 
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