Part I:

An introduction to Nano-particle particle size using light scattering : Principle & Applications

David Jacob – PhD Cordouan Technologies Nantes, le 21 Février 2022

Licence Professionnelle mention Chimie Analytique, Contrôle, Qualité, Environnement spécialité Métrologie Chimique et Nucléaire

Nano-Materials & Nanoparticles :

- Promise of major technologic, economic, societal & environmental impacts \bullet
- Already in the field And it is just the beginning! •

Environment

Nano-Materials & Nanoparticles : definition and types

Definition (Europe) : "A natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm - 100 nm"; But more generally for colloid size ranges from 1 nm to 10 μm!

http://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm

Nano particle size measurement : why is it important?

- Related to the specific surface of the particles
- Ability to penetrate membranes or interact with surface
- Aggregation and stability of suspensions
- Functionnalisation and self assembly capabilities
- > Optical, mechanical and electrical properties

Many mature characterization techniques for particle size

DLS uses Brownian motion as a signature of particle size

Brownian motion= Random "walk"

Meaning of hydrodynamic diameter $Ø_H$

Hydrodynamic diameter = diameter of the particle + double layer thickness

Hydrodynamic diameter is usually > Core diameter (TEM/SAXS) Value by several nm!

DLS measurement principle: 3 steps process

>Measure light scattering fluctuation to probe the Brownian motion

Intensity measurement and correlogram

Considering coherent electromagnetic waves scattered and measured at a specific angle (scattering vector $\mathbf{q} = \mathbf{k}_i - \mathbf{k}_s$):

Detected field and Intensity : EM field: $E_{tot_detect}(\omega t) = \Sigma E_i exp(i(\mathbf{q}.\mathbf{r}-\omega t))$

Intensity: $I(t) = E_{tot}(t) \times E_{tot}^{*}(t)$

Autocorrelation : Field : $g^{(1)}(\tau) = \frac{\langle E^*(t)E(t+\tau) \rangle}{\langle E^2(t) \rangle}$ Intensity : $G^{(2)}(\tau) = \frac{\langle I(t) . I(t+\tau) \rangle}{\langle I^2(t) \rangle}$

This leads : $G^{(2)}(\tau) = A + \beta \exp(-2q^2 D\tau)$ with $q = \frac{4\pi n_0}{\lambda} \sin(\theta/2)$

Inversion problem : finding the best Mathematical fitting of the correlogram?

Fit leads to D, and D to the diameter of NPs ϕ_H .

Correlogram representation: Linear vs Logarithmic

linear correlator

Multi-tau/Log correlator

Linear time scale

Logarithmic time scale

Inversion algorithms for monomodal and polymodal analysis

Algorithm	Number of populations	Distribution	Model
Cumulants	1 Continuous Gaussian with Zavg & PDI	Yes	G(T)=A +B e ^{-ΓT} $Z_{avg} = \frac{k_B T q^2}{3\pi \overline{\Gamma}};$ Distribution width = $Z_{avg} * \sqrt{PDI}$
Pade Laplace	Multi (up to 3) discrete	No	$G(T) = A + \sum_{i=1}^{250} B_i e^{-\Gamma_i T}$
SBL	Multi continuous	Yes	G(T)= A+ $\int_0^{10\mu m} B(z) e^{-\Gamma(z)T} dz$

The key point of the results : the FIT and the Residues

FIT= mathematical solution given by the algorithms (red curve)

Residues = difference between Fit and measured correlogram

A good fit = Low amplitude (<0,01) and statistically distributed residues

Monomodal sample (one population) 100 nm Latex NPs

Bi-modal sample (two populations) 30 nm +100 nm Latex NPs mixture

Importance of powerful algorithms for high resolution measurement

30 nm + 100 nm Polystyrene latex (PSL) - unknown ratio, blindfolded sample test

Efficient algorithms make a clear difference for high resolution particle size measurement on complex samples.

Rule of thumb #1: the scattering efficiency (cross section) of the particles is 2.3 times higher for a laser wavelength @532 nm than that of a laser @656 nm

Rule of thumb #2: light intensity scattered by 10nm spherical particles is 10⁶ (one million!) times lower than for 100 nm particles,

Light Scattering: some useful rules of thumb:

Scattering cross section angular dependance with particle size

Backscattering detection prevents from multiple scattering (concentrated samples) and allows to detect small particles in presence of bigger ones

DLS equipments until today:SLS/DLS bench with goniometer

- Adjustable scattering angle
- Several detectors
- Static and Dynamic Light Scattering
- Cross correlation
- Particle size and Molecular weight measurements
- Mainly for diluted samples
- Expensive and large dimensions

Modern DLS equipments :

- size range : from 1nm up to 10µm
- Mature and standardized method (ISO 13321 (1996) & ISO 22412 (2008)
- Bench top configuration: solutions dedicated to laboratory analysis
- Fast and relatively cheap compare to TEM and SAXS!
- But not fitted for process and in situ measurement!!!

Batch Measurements

Opaque & concentrated media

Vasco particle size analyzer: a unique sample Cell design

The thin layer analysis mode

- Innovation in the sample cell configuration: Dual Thickness Control (DTC- patented)
- Thin layer analysis: prevents the sample from local heating and multiple-scattering.
- Backscattering detection (135°): low multiple scattering, better contrast for small particles
- Higher detection efficiency in opaque media.
- Solvent-proof cell measurement without consumables
- Proprietary inversion algorithm allowing efficient size distribution analysis
- Technology transfer from the French Institute of Petroleum

Common DLS artefacts and DTC benefits:

A.U.

Intensity

20

25

Measurement of dark /opaque media

A standard polystyrene latex (\emptyset =**30nm** by TEM) is mixed with black soluble ink (10wt%).

Without DTC

30

Hydrodynamic diameter, nm

layer analysis

35

Measurement of concentrated samples A standard polystyrene latex (\emptyset =**100nm** by TEM) measured at 0.1 wt% 85 nm 115 nm 10.001 wt% K010 at 0.1wt% (mutiple scattering) ntensity A.U. 0 ₁ 0 Photo-detector 0 Decrease of the measured hydrodynamic radius 20 115nm K010 at 0.1% - thin laver analysis A.U. DTC reduces impact of multiple scattering and 80 100 120 140 180 160 light absorption Hydrodynamic diameter, nm

Dedicated software Optical unit Fast acquisition electronics APD detector Nano Laser source **Control unit** computer • power supply \bullet **Optical fiber umbilical** VASCO-FLEX

In situ remote probe

In situ head concept: the power of DLS, the flexibility of Optical fiber

A change of paradigm:"bring your measurement to your process!"

- •Non invasive, no need to bacth the sample
- Adjustable working distance /scattering angle
- Alignment laser for easy installation
- High accuracy remote temperature sensor
- Easy maintenance
- Ideal for measurements in glass capillaries, or in situ

In Situ fibre remote head principle

Features:

- Non invasive
- Small footprint
- Adjustable working distance /scattering angle
- Alignment laser for easy installation
- High accuracy remote temperature sensor
- Flexibility and upgradability : easy switch between options
- Easy maintenance
- Ideal for measurements in glass capillaries, or in situ

Application Examples

Example 1

Combined Remote DLS & High flux SAXS for NPs synthesis monitoring

SNOW CONTROL FP7 Project

Combined Remote DLS & High flux SAXS for NPs synthesis monitoring ²⁹

On line SiO2 NPs synthesis monitoring

Hydrolysis –condensation method : TEOS in Ethanol (F1) + NH3 in H2O (F2)

- Consistent results between SAXS and DLS measurements
- Allow to track and tune synthesis process in an accurate way

Example 2

In situ kinetics monitoring of Microwave assisted NPs synthesis

In situ kinetics monitoring of Microwave assisted NPs synthesis

In situ DLS successfully integrated into a commercial microwave reactor
Under test and qualification at the College de France-Paris

Real-time & In situ monitoring of Microwave assisted NPs synthesis

Validation tests done on SiO2 slurries

True temperature	Corresponding Viscosity (cP)	Corrected Averaged size (nm)
50°C	0.55	76
90°C	0.3	72
140°C	0.196*	68

- Very consistent an d reproducible results
- 1st demonstration ever done opening up new possibility on NP synthesis monitoring

Example 3

Particle Size Measurement inside supercritical CO₂ synthesis reactor

Particle Size Measurement inside supercritical CO₂ synthesis reactor

Reactor (100 bars, 40°C)

Particle Size Measurement in supercritical CO₂ synthesis reactor

- I0 wt% styrene rel. to system, 10 wt% Dowfax 8390 (surfactant) rel. to monomer, 8 wt% Hexa Decane rel. to styrene
- Sonicated for 10 min, 65% input intensity
- CO₂ is used to control the size of nano-emulsion droplets

- Use DLS measurements to correlate turbidity variation with particle size
- Implement accurate control of the size of monomer droplets/NP

Example 4

Environmental application: Nano Plastic detection in Ocean water

Environmental study : Evidence of Plastic Nps in Ocean

Lab study of Plastic NPs formation under oceanic like UV insolation conditions

Example 5

Measurement in Bio pharma injectable

THERAPEOMIC, INC., not published data

Prelimiray measurements on Flew injectable vaccines

Other examples...

Examples of instrumental coupling

with SAXS instrument

With SANS/SAXS Lines

with crystalization reactors

to µfluidics chips

Bibliography

Generality and theory on nano particle characterisation using light scattering :

- Dynamic Light Scattering, John Wiley & Sons, Inc. New York by Berne, B.J. and Pecora, R. (1975)
- Laser Light Scattering: Basic Principles and Practice. Second Edition (Dover Books on Physics) by Benjamin Chu (2007-05-11)
- Particle Characterization: Light Scattering Methods, Kluwer Academic Piblisher; ISBN: 978-0-7923-6300-2, by Xu, Renliang ,
- Tharwat Tadros ; General Principles of Colloid Stability; Colloids and Interface Science Series, Vol. 1
- Hunter R, Zeta potential in colloidal science; Academic press, New York, 198
- ISO13099B1,Colloidal systems—Methods for Zeta potential determination Part 1:Electroacoustic and electrokinetic phenomena

Some publications with our instruments

- Polymer-grafted iron oxide nanoparticles as thermosensitive MRI contrast agents and magnetic nanoheaters, Gauvin Hemery & al, , Journal of Physics D: Applied Physics
- Combining SAXS and DLS for simultaneous measurements and time-resolved monitoring of nanoparticle synthesis; A. Schwamberger & al, Nuclear Instruments and Methods in Physics Research B 343 (2015) 116–122
- Structure and Dynamic Properties of Colloidal Asphaltene Aggregates; Joëlle Eyssautier & al; *Langmuir*, 2012, 28 (33), pp 11997–12004 American Chemical Society
- Marine plastic litters: the unanalyzed nano-fraction, Julien Gigault & al; The Royal Society of Chemistry, Env. Sci. Nano, 2016, 00, 1-3