
Part I: 

An introduction to Nano-particle particle  size using 

light scattering : Principle & Applications
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Nano-Materials & Nanoparticles : 

• Promise of  major technologic, economic, societal & environmental  impacts 

• Already in the field ….. And it is just the beginning!

food Pharma Cosmetic Battery/AutomotivePetrol

https://www.understandingnano.com/nanoparticles.html

Environment

https://www.understandingnano.com/nanoparticles.html
https://www.bing.com/images/search?view=detailV2&id=DBB54824ACDA10DD092295A261FEBC2FFADBD786&thid=OIP.C1HCDGjP-ukjTDMCIx42PgAAAA&mediaurl=https%3A%2F%2Fwisewomenredtent.files.wordpress.com%2F2017%2F04%2Fcooling-water.jpg%3Fw%3D525&exph=345&expw=450&q=environment+&selectedindex=0&ajaxhist=0&vt=0&eim=1,6&ccid=C1HCDGjP&simid=607986219557981064


Definition (Europe) : “A natural, incidental or

manufactured material containing particles, in an

unbound state or as an aggregate or as an agglomerate

and where, for 50 % or more of the particles in the number

size distribution, one or more external dimensions is in the

size range 1 nm - 100 nm”; But more generally for colloid

size ranges from 1 nm to 10 µm!

Nano-Materials & Nanoparticles : definition and types

http://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm
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Nano particle size measurement : why is it important?
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d?

➢ Related to the specific surface of the particles

➢ Ability to penetrate membranes or interact with surface

➢ Aggregation and stability of suspensions

➢ Functionnalisation and self assembly capabilities

➢ Optical, mechanical and electrical properties



0 1 µm 1 mm100 nm1 nm

Classical Optical microscopy

Many mature characterization techniques for particle size

4 decades of size range!!!

Laser Diffraction

(Static light scattering)

SAXS, TEM

DLS: 1 nm to 10 µm
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DLS uses Brownian motion as a signature of particle size

Brownian motion= Random “walk”

NPs:

hard spheres without 

interactions

Viscosity TemperatureBoltzmann
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Meaning of hydrodynamic diameter ∅𝐇

Hydrodynamic diameter is usually > Core diameter (TEM/SAXS) 

Value by several nm! 

Hydrodynamic diameter = diameter of the particle  + double layer 

thickness
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DLS measurement principle: 3 steps process 
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➢Measure light scattering fluctuation to probe the Brownian motion  

polarized

1

2
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Intensity measurement and correlogram

Considering coherent electromagnetic waves scattered

and measured at a specific angle (scattering vector q=ki-ks) : 
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Detected field and Intensity :

EM field: Etot_detect(ωt)=ΣEiexp(i(q.r-ωt))

Intensity: I(t)= Etot(t) x Etot*(t)

This leads : G(2) (t) = A + β exp (-2q2Dt)

with 𝒒=
𝟒𝝅𝒏𝟎

𝝀
𝐬𝐢𝐧(𝜽/𝟐) 

Autocorrelation : 

Field : g(1) (t) =  
<E∗(t)E(t+t)>

<E2(t)>

Intensity : G(2) (t) = 
<𝐼 𝑡 . 𝐼 𝑡+t >

<𝐼2 𝑡 >



Inversion problem : finding the best Mathematical fitting of the 

correlogram?

G(2)(t) = A + β exp (-2q2Dt)

t

D?

D ∅𝐻 =
𝐾𝑇

3𝜋hD

Fit  leads to D, and D to the  diameter of NPs ∅𝐻.

G(2) (t)
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Correlogram representation: Linear vs Logarithmic

Linear time scale Logarithmic time scale

Multi-tau/Log correlatorlinear correlator

30 nm 300 nm

30 nm + 300 nm



Inversion algorithms for monomodal and polymodal analysis
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Algorithm Number of 

populations

Distribution Model

Cumulants 1

Continuous

Gaussian with 

Zavg & PDI

Yes G(τ)=A +B e−Γτ

𝒁𝒂𝒗𝒈 =
𝒌𝑩𝑻𝒒²

3𝝅ഥ𝜞
;

Distribution 𝒘𝒊𝒅𝒕𝒉 = 𝒁𝒂𝒗𝒈 ∗ 𝑷𝑫𝑰

Pade Laplace Multi (up to 3) 

discrete

No
G(τ) =A +

𝑖=1

250

𝐵𝑖 e−𝛤𝑖τ

SBL Multi

continuous

Yes G(τ)= A+ 0
10µ𝑚

𝐵(𝑧) e−𝛤 𝑧 τdz



The key point of the results : the FIT and the Residues 

FIT= mathematical solution given by the algorithms (red curve) 

A good fit = Low amplitude (<0,01) and statistically distributed residues

Residues = difference between Fit and measured correlogram

amplitude 

13



Monomodal sample (one population) 100 nm Latex NPs

Algorithm Size Residus

Cumulants

Pade 

Laplace

SBL

Good 

Good 

Good 
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Bi-modal sample (two populations) 30 nm +100 nm Latex NPs mixture

Algorithm Size Residus

Cumulants

Pade 

Laplace

SBL
Good 

Good 

Bad fit 
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Efficient algorithms make a clear difference for high resolution particle size 
measurement on complex samples.

Importance of powerful algorithms for high resolution measurement 

30 nm + 100 nm Polystyrene latex (PSL) - unknown ratio, blindfolded sample test



17Light Scattering: some useful rules of thumb: 

MIE/ Rayleigh Theory

𝐈 𝐒𝐜𝐚𝐭𝐭 ~ 𝐊 . 𝐼0
(𝐧𝟐−𝟏)
(𝐧𝟐+𝟐)

2

. 

∅𝐻
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𝛌4
Particle refractive index Laser Wavelength

Rule of thumb #2: light intensity scattered by 10nm spherical particles is 106 (one

million!) times lower than for 100 nm particles,

=

Intensity Number
1/10

100 000/1

Rule of thumb #1: the scattering efficiency (cross section) of the particles is 2.3

times higher for a laser wavelength @532 nm than that of a laser @656 nm



Light Scattering: some useful rules of thumb: 

Backscattering detection prevents from multiple scattering (concentrated

samples) and allows to detect small particles in presence of bigger ones

Back scattering

Scattering cross section angular dependance with particle size
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19DLS equipments until today:SLS/DLS bench with goniometer

• Adjustable scattering angle

• Several detectors

• Static and Dynamic Light Scattering

• Cross correlation

• Particle size and Molecular weight measurements

• Mainly for diluted samples

• Expensive and large dimensions

Laser 

Detector 

Sample chamber 



Modern DLS equipments :
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Embedded cellDisposable cell

▪ size range : from 1nm up to 10µm
▪ Mature and standardized method (ISO 13321 (1996) & ISO 22412 (2008)

▪ Bench top configuration: solutions dedicated to laboratory analysis

▪ Fast and relatively cheap compare to TEM and SAXS!

▪ But not fitted for process and in situ measurement!!!



VASCO™

Opaque & concentrated media 

Batch Measurements
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• Innovation in the sample cell configuration: Dual Thickness Control (DTC- patented)

• Thin layer analysis: prevents the sample from local heating and multiple-scattering.

• Backscattering detection (135°): low multiple scattering, better contrast for small

particles

• Higher detection efficiency in opaque media.

• Solvent-proof cell measurement without consumables

• Proprietary inversion algorithm allowing efficient size distribution analysis

• Technology transfer from the French Institute of Petroleum

Vasco particle size analyzer: a unique sample Cell design

Sample

Photon trap

Mobile glass rod

And Beam Dump

Photon counting 

Detector
Prism

Laser

Back scattered light

The thin layer analysis mode
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➢ Measurement of dark /opaque 

media

Common DLS artefacts and DTC benefits:

A standard polystyrene latex (Ø=30nm by

TEM) is mixed with black soluble ink (10wt%).

With DTC

32nm
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115nm

With DTC

A standard polystyrene latex (Ø=100nm by TEM)

measured at 0.1 wt%

➢ Measurement of concentrated 

samples

85 nm

Photo-detector1

2

3

115nm

Without DTC

DTC reduces  impact of 

multiple scattering and 

light absorption 

24nm 32nm

Without DTC

➢ 25% error caused by 

the laser absorption!!
➢ Decrease of the measured

hydrodynamic radius 



Optical unit

• Fast acquisition electronics

• APD detector

• Laser source

Optical fiber umbilical

In situ remote probe

Control unit

• computer

• power supply

VASCO KIN: In Situ Time Resolved Nanoparticle Size Analyzer

Dedicated software
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▪Non invasive, no need to bacth the sample
▪Adjustable working distance /scattering angle
▪ Alignment laser for easy installation
▪High accuracy remote temperature sensor
▪Easy maintenance
▪Ideal for measurements in glass capillaries, or in situ

In situ head concept: the power of DLS, the flexibility of Optical fiber

A change of paradigm:“bring your measurement to your  process!”
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Features:  

▪ Non invasive

▪ Small footprint

▪ Adjustable working distance /scattering angle

▪ Alignment laser for easy installation

▪ High accuracy remote temperature sensor

▪ Flexibility and upgradability : easy switch between options

▪ Easy maintenance

▪ Ideal for measurements in glass capillaries, or in situ

In Situ fibre remote head principle 26

Fiber umbilical

Sample vial

Laser beam

Scattered light



Application Examples
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Example 1

Combined Remote DLS & High flux SAXS 

for NPs synthesis monitoring 

SNOW CONTROL FP7 Project
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Combined Remote DLS & High flux SAXS for NPs synthesis monitoring 

F1
F2
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On line SiO2 NPs synthesis monitoring 

Impact on precursors mixing ratio (F1/F2) Impact of flow rate  (F1+F2)

Flow rate = 120µL /min

Hydrolysis –condensation method : TEOS in Ethanol  (F1) + NH3 in H2O (F2)

• Consistent results between SAXS and DLS measurements

• Allow to track and tune synthesis process in an accurate way
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Example 2

In situ kinetics monitoring 

of Microwave assisted NPs synthesis
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In situ kinetics monitoring of Microwave assisted NPs synthesis

• In situ DLS successfully integrated into a commercial microwave reactor

• Under test and qualification at the College de France-Paris
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Real-time & In situ monitoring of Microwave assisted NPs synthesis

Particle sizeCorrelograms

• Very consistent an d reproducible results

• 1st demonstration ever done opening up new possibility on NP synthesis monitoring

True temperature
Corresponding 

Viscosity (cP)

Corrected 

Averaged size 

(nm)

50°C 0.55 76

90°C 0.3 72

140°C 0.196* 68

Validation tests done on SiO2 slurries
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Example 3

Particle Size Measurement inside supercritical CO2 

synthesis reactor
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Particle Size Measurement inside supercritical CO2 synthesis reactor

Reactor (100 bars, 40°C) 

DLS probe
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Particle Size Measurement in supercritical CO2 synthesis reactor

▪ 10 wt% styrene rel. to system, 10 wt% Dowfax 8390 (surfactant)  rel. to 

monomer, 8 wt% Hexa Decane rel. to styrene

▪ Sonicated for 10 min, 65% input intensity

▪ CO2 is used to control the size of nano-emulsion droplets

▪ Use DLS measurements to correlate turbidity variation with particle size

▪ Implement  accurate control of the size of monomer droplets/NP
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Example 4

Environmental application: Nano Plastic detection in 

Ocean water
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Environmental study : Evidence of Plastic Nps in Ocean

Floating particles

Lab study of Plastic NPs formation under oceanic like UV insolation conditions 
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Example 5

Measurement in Bio pharma injectable

39





Prelimiray measurements on Flew injectable vaccines

Remote probe 

Injectable syringe 



Other examples… 42

PAL + Particle Size Analyzer VASCO FLEX.avi


Examples of instrumental coupling

with SAXS instrument with crystalization reactors

With SANS/SAXS Lines to µfluidics chips
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