1<sup>st</sup> symposium on UF 2D NMR, 26/09/13

# Analytical Ultrafast 2D NMR



### **Patrick GIRAUDEAU**

CEISAM, Université de Nantes, CNRS, Nantes, France







## Main subjects in our research group



## Quantitative 2D NMR



Challenges



P. Giraudeau and S. Akoka, Adv. Bot. Res. 2013

## Quantitative 2D NMR on metabolic samples



E. Martineau, I. Tea, S. Akoka, P. Giraudeau, NMR Biomed. 2012.



Determination of metabolite concentrations in plant tissue extracts via a calibration procedure and a <sup>1</sup>H-<sup>13</sup>C HSQC experiment

I. A. Lewis, S.C. Schommer, B. Hodis, K.A. Robb, M. Tonelli, W.M. Westelr, M.R. Sussman, J.L. Markley *Anal. Chem.* 2007

## Ultrafast 2D NMR for quantitative analysis?



- 1. Increasing the analytical performance
- 2. Applications in quantitative metabolomics
- 3. Applications in fluxomics
- 4. Other recent analytical applications



P. Giraudeau, S. Akoka, J. Magn. Reson. 192 (2008) 151

## Reducing diffusion effects - multi-echo encoding



P. Giraudeau, S. Akoka, *J. Magn. Reson.* 2008

10 F1 [HZ]

-2

. F2 [ppm]



L. Rouger, D. Loquet, S. Massou, S. Akoka, P. Giraudeau, ChemPhysChem (2012)

## Increasing the spectral range - folding



P. Giraudeau, S. Akoka, J. Magn. Reson. 2010

## Improving the lineshape by processing

![](_page_9_Figure_2.jpeg)

P. Giraudeau, S. Akoka, Magn. Reson. Chem. 2011

![](_page_10_Picture_1.jpeg)

# Making UF 2D NMR more accesssible

### Dedicated webpage including:

-pulse sequences
-implementation protocol
-processing routine
-web interface for
parameter setting

![](_page_10_Picture_5.jpeg)

| <u>F</u> ichier                                                                       | Éditio <u>n</u>                 | <u>A</u> ffichage               | Historique                                   | <u>M</u> arque-pages                   | <u>O</u> utils              | 2            |                 |                  |         |   |    |
|---------------------------------------------------------------------------------------|---------------------------------|---------------------------------|----------------------------------------------|----------------------------------------|-----------------------------|--------------|-----------------|------------------|---------|---|----|
| 者 http                                                                                | ://www.so                       | iences.uul                      | trafast/uf_acc                               | q.html +                               |                             |              |                 |                  |         |   |    |
| (+)                                                                                   | 🕘 www.so                        | iences, <b>univ-</b>            | nantes.fr/CEI                                | [SAM/ebsi/ultrafas                     | st/uf_acq.h                 | html         | ☆ ▼ C           | 🛃 -              | Google  | P | Â  |
| 🐨 ADVERTISEMENT 🔎 Les plus visités 🥘 Débuter avec Firefox 底 À la une 💷 Se déconnecter |                                 |                                 |                                              |                                        |                             |              |                 |                  |         |   |    |
|                                                                                       |                                 |                                 |                                              |                                        |                             |              |                 |                  |         |   |    |
| Acquisition Parameters in UltraFast NMR                                               |                                 |                                 |                                              |                                        |                             |              |                 | -                |         |   |    |
|                                                                                       | A                               | cquisi                          | ition I                                      | Paramet                                | ters i                      | in I         | Jltral          | Fast             | NM      | R |    |
|                                                                                       | A                               | cquis                           | ition I                                      | Paramet                                | ters i                      | in (         | Jltra           | Fast             | NM      | R |    |
|                                                                                       | A                               | cquis                           | ition I                                      | Paramet                                | ters i                      | in (         | Jltra           | Fast             | NM      | R |    |
|                                                                                       | A                               | cquis                           | ition I                                      | Paramet                                | ters i                      | in (         | Jltra           | Fast             | NM      | R |    |
| Impl                                                                                  | A                               | cquis                           | ition I                                      | Paramet                                | ters i                      | in T         | Jltra           | Fast             | NM      | R |    |
| Impl                                                                                  | A                               | cquis<br>ntion of               | ition I<br><sup>Ultrafas</sup>               | Paramet                                | experi                      | in T         | J <b>ltra</b> l | Fast             | NM      | R |    |
| Impl<br>The p                                                                         | A<br>ementa                     | cquis<br>ntion of<br>pulse sequ | ition I<br>Ultrafas                          | t 2D NMR                               | experi                      | in (<br>imen | <b>Itra</b>     | Fast<br>afast 21 | NMR e   | R | ts |
| Impl<br>The p<br>on yo                                                                | ementa<br>rotocol,<br>ur spectr | <b>ation of</b>                 | <b>Ultrafas</b><br>uences and<br>e available | t 2D NMR<br>processing profor download | experi<br>ogram to<br>here: | in (<br>imen | <b>Itra</b>     | afast 21         | ) NMR e | R | ts |

Please first read carefully the protocol and download the files. Once the ultrafast experiments are implemented on your spectrometer, use the following pages to set up your acquisition parameters:

-Type of experiment:

Pulse sequence : <u>UFCOSY</u>

<u>UFHSQC</u>

Troubleshooting You can <u>here</u> download the pages to run on a local computer.

<u>QUANTUM project</u>: Quantitative Ultrafast Analysis by 2D NMR To Unravel Metabolic complexities 2011-2014 (ANR grant 2010-JCJC-0804-01)

Important remark: Ultrafast 2D NMR has been patented by the Weizmann Institute of Science, Israel. Its use for commercial purposes requires a licence from the Weizmann Institute.

× Rechercher : NMR

👃 Suivant 👚 Précédent 🖌 Tout surligner 🛛 Respecter la casse

M. Pathan, B. Charrier, I. Tea, S. Akoka, P. Giraudeau, Magn. Reson. Chem 51 (2013) 168

![](_page_11_Figure_1.jpeg)

## Context: NMR metabolomics

![](_page_12_Figure_2.jpeg)

## Ultrafast quantitative 2D NMR?

Anal. Chem. 2009, 81, 479-484

### Evaluation of Ultrafast 2D NMR for Quantitative Analysis

Patrick Giraudeau,\* Gérald S. Remaud, and Serge Akoka

Université de Nantes, CNRS, CEISAM UMR 6230, B. P. 92208, 2 Rue de la Houssinière, F-44322 Nantes Cedex 03, France

![](_page_13_Picture_6.jpeg)

## What about metabolic mixtures?

![](_page_13_Figure_8.jpeg)

![](_page_14_Picture_1.jpeg)

## « Long-ultrafast » vs conventional 2D NMR

![](_page_14_Figure_3.jpeg)

A. Le Guennec, I. Tea, I. Antheaume, E. Martineau, B. Charrier, M. Pathan, S. Akoka, P. Giraudeau, *Anal. Chem.* 84 (2012) 10831

## Why is long UF more repeatable?

UF 2D NMR is more immune to hardware instabilities This is particularly true in quantitative conditions

![](_page_15_Figure_3.jpeg)

M. Pathan, S. Akoka, I. Tea, B. Charrier, P. Giraudeau, Analyst 2011.

![](_page_16_Picture_1.jpeg)

## Application to biological samples

**1.** Growth of various breast cancer cell lines

![](_page_16_Picture_4.jpeg)

**2.** Optimized metabolite extraction

![](_page_16_Picture_6.jpeg)

E. Martineau, I. Tea, P. Giraudeau, S. Akoka, Anal. Bioanal. Chem. 2011

**3.** NMR quantification with standard addition procedure

![](_page_16_Figure_9.jpeg)

![](_page_17_Picture_1.jpeg)

## Application to biological samples

![](_page_17_Figure_3.jpeg)

Comparison of 3 breast cancer cell lines
 20 min / spectrum
 Standard addition procedure

A. Le Guennec, I. Tea, I. Antheaume, E. Martineau, B. Charrier, M. Pathan, S. Akoka, P. Giraudeau, *Anal. Chem.* 84 (2012) 10831

Context : measurement of <sup>13</sup>C isotopic enrichments in fluxomics

![](_page_18_Figure_2.jpeg)

![](_page_18_Figure_3.jpeg)

Simple cases: 1D <sup>1</sup>H NMR

Site-specific <sup>13</sup>C isotopic enrichment (IE) = S<sup>satellites</sup>/S<sup>total</sup>

## Limitations of 1D NMR - biological mixtures

![](_page_19_Figure_2.jpeg)

biomass hydrolysate from E. coli cells grown on 20% [U-<sup>13</sup>C]-glucose +80% [1-<sup>13</sup>C]-glucose

### Measurement of specific isotopic enrichments IMPOSSIBLE

![](_page_19_Picture_5.jpeg)

![](_page_20_Figure_1.jpeg)

# Conv. 2D ZQF TOCSY $^{13}C$ decoupling in $F_1$

Acquisition time: 5-10h in quantitative conditions (TR ≥ 5·T₁<sup>max</sup>)

![](_page_20_Figure_4.jpeg)

S. Massou et al, Metab. Eng. 2007

## Ultrafast COSY and zTOCSY

![](_page_21_Figure_2.jpeg)

Mixture of variously labeled alanines, 400 MHz

## Analytical performance - <sup>13</sup>C glucose samples

![](_page_22_Figure_2.jpeg)

![](_page_23_Picture_1.jpeg)

# Application to a biological sample

![](_page_23_Figure_3.jpeg)

COSY UF Ta = 40 s

Biomass hydrolyzate (*E. coli*) Grown on 50 % [U-13C]-glucose and 50 % *n.a.* glucose

Isotopic enrichments measured from 2D spectra

|                  | TOCSY<br>Conv. | TOCSY<br>UF | COSY<br>UF |
|------------------|----------------|-------------|------------|
| A <sub>AB</sub>  | 44.5           | 45.7        | 41.2       |
| A <sub>BA</sub>  | 46.8           | 51.3        | 50.7       |
| E <sub>AB</sub>  | 47.9           | 44.7        | 45.2       |
| L <sub>AB</sub>  | 48.3           | 43.8        | 43.4       |
| L <sub>DG</sub>  | 47.9           | 42.7        | 45.1       |
| P <sub>AD</sub>  | 47.0           | 43.1        | 42.0       |
| T <sub>BG</sub>  | 26.9           | 23.0        | 25.8       |
| Т <sub>GB</sub>  | 24.5           | 23.3        | 24.7       |
| V <sub>GG'</sub> | 47.9           | 42.3        | 47.6       |

P. Giraudeau, S. Massou, Y. Robin, E. Cahoreau, J.C. Portais, S. Akoka Anal. Chem. 2011.

## Limitations of 2D NMR

### Conventional 2D

### 2D UF

![](_page_24_Figure_4.jpeg)

Peak overlaps still prevent accurate quantification

3D NMR

![](_page_25_Figure_2.jpeg)

## 3D NMR

![](_page_26_Figure_2.jpeg)

## Fast-Hybrid 3D NMR

![](_page_27_Figure_2.jpeg)

P. Giraudeau, E. Cahoreau, S. Massou, M. Pathan, J.-C. Portais, S. Akoka, ChemPhysChem 2012

## Fast-Hybrid 3D NMR (12 min, labeled alanine sample)

![](_page_28_Figure_2.jpeg)

P. Giraudeau, E. Cahoreau, S. Massou, M. Pathan, J.-C. Portais, S. Akoka, *ChemPhysChem* 2012

### Fast-Hybrid 3D NMR: application to a biological sample (12 min)

![](_page_29_Picture_2.jpeg)

Site-specific IEs  $\mathsf{V}_{\mathsf{GB}}$ [ppm I<sub>DG</sub> I<sub>G'B</sub> 3D 2D  $\mathsf{T}_{\mathsf{GB}}$ UFCOSY **COSY-Jres** peak ABA <mark>, K<sub>GE</sub>+K<sub>DE</sub> →</mark> 41,2 44,7  $\mathbf{A}_{AB}$  $\mathsf{P}_{\mathsf{GD}}$  $\mathsf{E}_{\mathsf{BG}}$ 50,7 47,1  $A_{BA}$ 83  $\langle \circ \rangle$  $\mathsf{E}_{\mathsf{AB}}$ 45,2 47,9  $\mathsf{E}_{\mathsf{GB}}$  $|\mathsf{D}_{\mathsf{BA}}+\mathsf{Y}_{\mathsf{BA}}+\mathsf{F}_{\mathsf{BA}})$  $\mathsf{E}_{\mathsf{B}\mathsf{G}}$ 48,6 © K<sub>BD</sub>+R<sub>DG</sub>  $\mathsf{E}_{\mathsf{GB}}$ 37,6 49,9 6  $\mathbf{I}_{G'B}$ 44,8 46,9  $\mathsf{E}_{\mathsf{AB}}$ LAB  $A_{AB}$  $D_{AB}+Y_{AB}+F_{AB}$ 43,4 48,5 L<sub>AB</sub> K<sub>AB</sub>+R T<sub>BG</sub> 45,1 47,9 L<sub>DG</sub> PAD  $\mathsf{P}_{\mathsf{AD}}$ 42 47,2  $\mathsf{T}_{\mathsf{B}\mathsf{G}}$ 25,8 27,1 F2 [ppm] 24,7 24,9  $\mathsf{T}_{GB}$  $V_{BG}$ A<sub>AB</sub>  $\mathsf{T}_{\mathsf{B}\mathsf{G}}$  $\mathsf{V}_{\mathsf{B}\mathsf{G}}$ 47,6 48,0  $\mathsf{V}_{GB}$ 46,8  $\mathsf{P}_{\mathsf{GD}}$ 41,4

R. Boisseau, B. Charrier, S. Massou, J.-C. Portais, S. Akoka, Submitted for publication-

**Other recent analytical applications** 

![](_page_30_Picture_1.jpeg)

## Measurement of Residual Dipolar Couplings (RDCs) in oriented media

![](_page_30_Figure_3.jpeg)

F<sub>2</sub>-coupled UF HSQC

![](_page_30_Figure_5.jpeg)

P. Giraudeau, T. Montag, B. Charrier, C.M. Thiele, Magn. Reson. Chem. 2012.

**Other recent analytical applications** 

## Coupling with on-line HPLC

![](_page_31_Picture_2.jpeg)

![](_page_31_Figure_3.jpeg)

L.H.K. Queiroz Jr., D.P.K. Queiroz, L. Dhooghe, A.G. Ferreira, P. Giraudeau, Analyst 137 (2012) 2357

### Other recent analytical applications

## Towards ultrafast in vivo spectroscopy

![](_page_32_Figure_2.jpeg)

T. Roussel, P. Giraudeau, H. Ratiney, S. Akoka, S. Cavassila, J. Magn. Reson. 2012

![](_page_32_Figure_4.jpeg)

- •Improved analytical performance of ultrafast experiments
- •Immunity to spectrometer temporal instabilities
- High potential for quantitative analysis
- Application to samples of increasing complexity
- •Next steps : in vivo and hyperpolarization

### Acknowledgements

### CEISAM, University of Nantes

Serge Akoka Renaud Boisseau Benoît Charrier Adrien Le Guennec Estelle Martineau Meerakhan Pathan Laetitia Rouger Illa Tea

![](_page_34_Picture_3.jpeg)

### Funding

![](_page_34_Picture_5.jpeg)

Starting grant QUANTUM 2011-2014

UNIVERSITÉ DE NANTES

![](_page_34_Picture_8.jpeg)

### Collaborators

### INSA Toulouse, France Stéphane Massou Jean-Charles Portais Edern Cahoreau

Weizmann Institute of Science, Israel Lucio Frydman Univ. Lyon, France Tangi Roussel Hélène Ratiney Sophie Cavassila

**Univ. Sao Carlos, Brazil** Antonio Gilberto Ferreira Tech. Univ. Darmstadt, Germany Christina Thiele Tobias Montag

Univ. Goias, Brazil Luiz Keng Queiroz Jr.

### Univ. Barcelona, Spain Teodor Parella Laura Castañar

Univ. Geneva, Switzerland Damien Jeannerat Mohammadali Foroozandeh