
12. Mapping RDBs to XML Introduction

Why map relational database contents to XML?

Interoperability: we may want to use (parts of) our RDB contents
in many different application contexts (XML as data interchange
format).

Reconstruction: we might have stored (parts of) our XML
documents in an RDBMS in the first place (RDBMS as XML store).

Dynamic XML contents: we may use RDBMS queries to retrieve
dynamic XML contents (cf. dynamic Web sites).

Wrapping: everybody likes XML . . . , so why don’t we give it to
them?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 302

12. Mapping RDBs to XML Introduction

Why do we look at that mapping?

What we’re really interested in is the mapping in the opposite direction:
How to get XML into a database!

Yes, but . . .

this one is easier to start with,
we do get some insight for the other mapping,
we can see some of the problems,
we’ll see some of the “standard” XML benchmark data,
we’ll see in what respect XML supports semi-structured data,
we’ll learn more about SQL as well.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 303

12. Mapping RDBs to XML Wrapping Tables into XML

Representing relational tables in XML

. . . is easy, since they have such a simple structure:

In a straightforward mapping, we generate elements for the relation,
for the tuples, and for the attribute values.

Example

Consider a relational schema Employees(eno, name, salary , phone),
and a corresponding table

Employees

eno name salary phone

.

.

.

.

.

.

.

.

.

.

.

.
007 James 1, 000, 000 123 456

.

.

.

.

.

.

.

.

.

.

.

.

⇒

<Employees>

...

<Employee>

<eno>007</eno>

<name>James</name>

<salary>1,000,000</salary>

<phone>123 456</phone>

</Employee>

...

</Employees>� This is but one possible representation! There are many more . . .

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 304

12. Mapping RDBs to XML Wrapping Tables into XML

Schemas of relational tables

In the XML representation just shown, every <Employee> element
“carries the relational schema” of the Employees relation.

This can be considered some kind of “self-descriptive”
representation.

As such, it incurs quite some (space) overhead—“attribute” names
are “stored” twice with each value!
On the other hand, missing (NULL) values are easily represented by
leaving them out.
Also, deviations from the given schema, such as extra attributes,
would be covered easily (→ semi-structured data).

Even more self-descriptive representations can be chosen . . .

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 305

12. Mapping RDBs to XML Wrapping Tables into XML

Fully self-descriptive table representation

Completely generic XML “table” representation
<relation name="Employees">

...

<tuple>

<attribute name="eno">007</attribute>

<attribute name="name">James</attribute>

<attribute name="salary">1,000,000</attribute>

<attribute name="phone">123 456</attribute>

</tuple>

...

</relation>

Obviously, we could also represent table and attribute names using
additional XML elements instead of XML attributes.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 306

12. Mapping RDBs to XML Wrapping Tables into XML

Deriving DTDs for relational schemas

Given the schema of a relational table, we can generate a DTD that
describes our chosen XML representation.

DTD for the (first) XML representation of the Employees relation

<!DOCTYPE Employees [

<!ELEMENT Employees (Employee*) >

<!ELEMENT Employee (eno, name, salary, phone) >

<!ELEMENT eno (#PCDATA) >

<!ELEMENT name (#PCDATA) >

<!ELEMENT salary (#PCDATA) >

<!ELEMENT phone (#PCDATA) >

]>

Optional attributes (NULL allowed) can be characterized as such in
the element specification for Employee, e.g., “. . . phone? . . . ”

All representations (and DTDs) can easily be extended to capture
whole relational databases (as a collections of tables).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 307

12. Mapping RDBs to XML Beyond Flat Relations

Beyond flat relational tables

Example: Nested Relation

A bibliography referring to journal articles might be described as a “Nested
Relation” Articles, where each tuple has atomic attributes, e.g., for title,
journal , year , pages, as well as relation-valued attributes (aka. sub-relations),
e.g., Authors with a set of (firstname, lastname)-tuples and Keywords:
(keyword ,weight)-tuples:

Artcls(tit, jnl , yr , pp,Auths(fn, ln),Kwds(kw ,wt))

One tuple in that table might look like this:

Artcls

tit jnl yr pp Auths Kwds

fn ln kw wt

bla jacm 2000 30–57 J. Doe java 0.9
S. Shoe object 0.5

pgmg 0.7

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 308

12. Mapping RDBs to XML Beyond Flat Relations

SQL-3 tables

SQL-3 offers a number of extensions beyond 1NF (flat) relations. For
example, attributes may now be record-, array-, or (multi-)set-valued.
Nested relations are thus part of the SQL standard!

Nested table Artcls can be described by the following DTD:
<!DOCTYPE Artcls [

<!ELEMENT Artcls (Art*) >

<!ELEMENT Art (tit, jnl, yr, pp, Auths, Kwds) >

<!ELEMENT tit (#PCDATA) >

<!ELEMENT jnl (#PCDATA) >

<!ELEMENT yr (#PCDATA) >

<!ELEMENT pp (#PCDATA) >

<!ELEMENT Auths (Auth*) >

<!ELEMENT Auth (fn, ln) >

<!ELEMENT fn (#PCDATA) >

<!ELEMENT ln (#PCDATA) >

<!ELEMENT Kwds (Kwd*) >

<!ELEMENT Kwd (kw, wt) >

<!ELEMENT kw (#PCDATA) >

<!ELEMENT wt (#PCDATA) >

]>
Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 309

12. Mapping RDBs to XML Beyond Flat Relations

XML tree of the example (including database node)

DB

· · · ����������������������

Artcls

· · ·
∗

���������������

Art

∗

tit
��������������������������

bla

jnl ���������������������

jacm

yr �����������������

2000

pp ������������

30–57

Auths

Auth

∗��
��

�

fn
��

��
�

J.

ln

Doe

Auth

∗

fn

S.

ln

��
��

�

Shoe

Kwds
�������

Kwd

∗

kw

java

wt

��
��

�

0.9

Kwd

∗ �������

kw

object

wt

��
��

�

0.5

Kwd

∗ ����������������

kw

pgmg

wt

��
��

�

0.7

· · ·

∗

��������������� · · ·����������������������

“*”-edges indicate possible repetition (set-valued elements).
Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 310

12. Mapping RDBs to XML Generating XML from within SQL

Generating XML from within SQL

SQL/XML, a part of SQL:2003, allows the construction of XML
fragments within a SELECT–FROM–WHERE query.

SQL/XML example 1: generate XML from (1NF) Employees-tuple

SELECT XMLELEMENT(NAME "Employee",

XMLATTRIBUTES(eno),

name) AS element

FROM Employees

⇓

element

...
<Employee ENO="007">James</Employee>

...

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 311

12. Mapping RDBs to XML Generating XML from within SQL

Generating XML from within SQL

SQL/XML example 2: generate XML from (1NF) Employees-tuple

SELECT XMLGEN(’<Employee Name="{$name}">

<salary>{$salary/13}</salary>

</Employee>’) AS Empls

FROM Employees

⇓

Empls

...
<Employee Name="James"> <salary>76923.077</salary> </Employee>

...

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 312

14. Mapping XML to Databases Introduction

Mapping XML to Databases

We now start to look at our preferred mapping direction:

How do we put XML data into a database?

. . . and how do we get it back efficiently?

. . . and how do we run (XQuery) queries on them?

Mapping XML data to a database (and getting it back)

XML tree

E

��

database

E−1

��

We will call the mapping E an encoding in the sequel.
Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 317

14. Mapping XML to Databases Introduction

Exploiting DB technology

In doing so, our main objective is to use as much of existing DB
technology as possible (so as to avoid having to re-invent the wheel).

XQuery operations on trees, XPath traversals and node
construction in particular, should be mapped into operations over
the encoded database:

Our goal: let the database do the work!

Tree
XPath/construction

��

E
��

Tree

Rel
relational query

�� Rel

E−1

��

Obviously, E needs to be chosen judiciously. In particular, a faithful
back-mapping E−1 is absolutely required.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 318

14. Mapping XML to Databases Introduction

How can we exploit DB technology?

1 Reuse knowledge gained by the DB community while you implement
a “native” XML database management system from scratch.

It is often argued that, if you want to implement a new data model
efficiently, there’s no other choice.

2 Reuse existing DB technology and systems by defining an
appropriate mapping of data structures and operations.

Often, relational DBMS technology is most promising, since it is most
advanced and mature.
The challenge is to gain efficiency and not lose benchmarks against
“native” systems!

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 319

14. Mapping XML to Databases Introduction

Native XML processors

. . . need external memory representations of XML documents, too!

Main-memory representations, such as a DOM tree, are insufficient,
since they are only suited for “toy” examples (even with today’s
huge main memories, you want persistent storage).

Obviously, native XML databases have more choices than those
offered on top of a relational DBMS.

We will have to see whether this additional freedom buys us
significant performance gains, and

what price is incurred for “replicating” RDBMS functionality.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 320

14. Mapping XML to Databases Introduction

Relational XML processors (1)

Recall our principal mission in this course:

Database-supported XML processors

We will use relational database technology to develop a highly efficient,
scalable processor for XML languages like XPath, XQuery, and
XML Schema.

We aim at a truly (or purely) relational approach here:

Re-use existing relational database infrastructure—table storage
layer and indexes (e.g., B-trees), SQL or algebraic query engine and
optimizer—and invade the database kernel in a very limited fashion
(or, ideally, not at all).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 321

14. Mapping XML to Databases Introduction

Relational XML processors (2)

Our approach to relational XQuery processing:

The XQuery data model—ordered, unranked trees and ordered item
sequences—is, in a sense, alien to a relational database kernel.

A relational tree encoding E is required to map trees into the
relational domain, i.e., tables.

Relational tree encoding E
•

•������

•
• •�

�����

•��
�

•��
�

•
��

� •
��

�

•

E→ · · ·

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 322

14. Mapping XML to Databases Introduction

What makes a good (relational) (XML) tree encoding?

Hard requirements:
1 E is required to reflect document order and node identity.

Otherwise: cannot enforce XPath semantics, cannot support << and
is, cannot support node construction.

2 E is required to encode the XQuery DM node properties.

Otherwise: cannot support XPath axes, cannot support XPath node
tests, cannot support atomization, cannot support validation.

3 E is able to encode any well-formed schema-less XML fragment
(i.e., E is “schema-oblivious”, see below).

Otherwise: cannot process non-validated XML documents, cannot
support arbitrary node construction.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 323

14. Mapping XML to Databases Introduction

What makes a good (relational) (XML) tree encoding?

Soft requirements (primarily motivated by performance concerns):

4 Data-bound operations on trees (potentially delivering/copying lots
of nodes) should map into efficient database operations.

XPath location steps (12 axes)

5 Principal, recurring operations imposed by the XQuery semantics
should map into efficient database operations.

Subtree traversal (atomization, element construction, serialization).

For a relational encoding, “database operations” always mean “table
operations” . . .

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 324

14. Mapping XML to Databases Relational Tree Encoding

Dead end #1: Large object blocks

Import serialized XML fragment as-is into tuple fields of type CLOB

or BLOB:

uri xml

"foo.xml" foo· · · · · ·

The CLOB column content is monolithic and opaque with respect to
the relational query engine: a relational query cannot inspect the
fragment (but extract and reproduce it).
The database kernel needs to incorporate (or communicate with) an
extra XML/XPath/XQuery processor ⇒ frequent re-parsing will
occur.
This is not a relational encoding in our sense.
But: see SQL/XML functionality mentioned earlier!

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 325

14. Mapping XML to Databases Relational Tree Encoding

Dead end #2: Schema-based encoding

XML address database (excerpt)
<person>

<name><first>John</first><last>Foo</last></name>

<address><street>13 Main St</street>

<zip>12345</zip><city>Miami</city>

</address>

</person>

<person>

<name><first>Erik</first><last>Bar</last></name>

<address><street>42 Kings Rd</street>

<zip>54321</zip><city>New York</city>

</address>

</person>

Schema-based relational encoding: table person

id first last street zip city

0 John Foo 13 Main St 12345 Miami

1 Erik Bar 42 Kings Rd 54321 New York

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 326

14. Mapping XML to Databases Relational Tree Encoding

Dead end #2: Schema-based encoding

Note that the schema of the “encoding” relation assumes a quite
regular element nesting in the source XML fragment.

This regularity either needs to be discovered (during XML encoding)
or read off a DTD or XML Schema description.
Relation person is tailored to capture the specific regularities
found in the fragment.

Further issues:

This encodes element-only content only (i.e., content of type
element(*)* or text()) and fails for mixed content.
Lack of any support for the XPath horizontal axes (e.g., following,
preceding-sibling).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 327

14. Mapping XML to Databases Relational Tree Encoding

Dead end #2: Schema-based encoding

Irregular hierarchy

<c>X</c><c/>

<c>Y</c>

<a>

A relational encoding

id @no b

0 0 α
3 1 β
5 NULLa γ
6 3 NULLb

id b c

1 α X

2 α NULLc

4 β Y

Issues:

Number of encoding tables depends on nesting depth.

Empty element c encoded by NULLc , empty element b encoded by
absence of γ (will need outer join on column b).

NULLa encodes absence of attribute, NULLb encodes absence of
element.

Document order/identity of b elements only implicit.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 328

14. Mapping XML to Databases Relational Tree Encoding

Dead end #3: Adjacency-based encoding

Adjacency-based encoding of XML fragments

foo

<c>

<d>b</d><e>ar</e>

</c>

≡

a•

@id
•

��

��������

b•
��

��

text
•
��

text
•

�� �� c•
��

��������

d•
��

��

text
•
��

e•
�� ��

text
•
��

Resulting relational encoding

id parent tag text val

0 NULL a NULL NULL

1 0 @id NULL "0"

2 0 b NULL NULL

3 2 NULL "fo" NULL

4 0 NULL "o" NULL

5 0 c NULL NULL
...

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 329

14. Mapping XML to Databases Relational Tree Encoding

Dead end #3: Adjacency-based encoding

Pro:

Since this captures all adjacency, kind, and content information, we
can—in principle—serialize the original XML fragment.
Node identity and document order is adequately represented.

Contra:

The XQuery processing model is not well-supported: subtree
traversals require extra-relational queries (recursion).
This is completely parent–child centric. How to support
descendant, ancestor, following, or preceding?

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 330

14. Mapping XML to Databases Relational Tree Encoding

Node-based encoding

Several encoding schemes are based on an (appropriate) mapping of XML
nodes onto relational tuples. Key questions are:

How to represent node IDs, and

how to represent XML-structure, in particular, document order.

Obviously, both questions are related, and—since we deal we tree
structures—we might as well think of an edge-based representation
scheme (in a tree, each non-root node has exactly one incoming edge!)

Most representations encode document order into node IDs by chosing
an appropriately ordered ID domain.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 331

14. Mapping XML to Databases Relational Tree Encoding

Node IDs

Two very common approaches can be distinguished:

XML nodes are numbered sequentially (in document order).

XML nodes are numbered hierarchically (reflecting tree structure).

Observations:

In both cases, node ID numbers are assigned automatically by the
encoding scheme.

Sequential numbering necessarily requires additional encoding means
for capturing the tree structure.

Both schemes represent document order by a (suitable) numeric
order on the node ID numbers.

Both schemes envisage problems when the document structure
dynamically changes (due to updates to the document), since node
ID numbers and document structure/order are related! (see later)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 332

14. Mapping XML to Databases Relational Tree Encoding

Sequential node ID numbering

Typically, XML nodes are numbered sequentially in document order.

For an example, see the adjacency-based encoding above
(id-attribute).

IDs may be assigned globally (unique across the document) or locally
(unique within the same parent node.)

Document structure needs to be represented separately, e.g., by means of
a “parent node ID” attribute (par).

In the most simple case (ignoring everything but “pure structure”), the
resulting binary relational table

id parent
...

...

could be considered a node-based (1 tuple per node ID) as well as an
edge-based (1 tuple per edge) representation.39

39The edge-based representation would typically not include a tuple for the root
node ID.
Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 333

14. Mapping XML to Databases Relational Tree Encoding

Hierarchical node ID numbering

While sequential numbering assigns globally unique IDs to all nodes,
hierarchical numbering assigns node IDs that are relative to a node’s
parent node’s ID.

Globally unique node IDs can then be obtained by (recursively)
prepending parent node IDs to local node IDs. Typically, “dot notation”
is used to separate the parts of those globally unique IDs:

�rootID�.�rootchildID�. · · · .�parentID�.�nodeID�

Observations:

In general, a node on level i of the tree (root = level 0) will have a
global node ID with i + 1 “components”: �ID0�.�ID1�. · · · .�IDi �
Such IDs represent tree structure as well.

(Local) node IDs need not be globally unique.

This could also be considered a path-based representation.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 334

14. Mapping XML to Databases Relational Tree Encoding

Working with node-based encodings

Obviously, relational representations based on node-based encoding
(traditionally called “edge table encodings”) provide support for
(bi-directional) parent-child traversal, name tests, and value-based
predicates using the following kind of table:

edgetable

nodeID parentID elemname value
...

...
...

...

As mentioned before, this table wastes space due to repetition of element
names. Furthermore, to support certain kinds of path expressions, it may
be beneficial to:

store paths instead of element names, so as to
support path queries, while
introduce even more storage redundancy; thus

use a separate (“path table”) to store the paths together with path
IDs.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 336

14. Mapping XML to Databases Relational Tree Encoding

Path table representation

Element names (or rather paths) can now be represented via path IDs in
the edge table, pointing (as foreign keys) to the separate path table:

edgetable

nodeID parentID pathID value
...

...
...

...

pathtable

pathID path
...

...

Notice that the path table entries represent paths of the form /bib/doc/author/name,
i.e., they record paths that end in element names, not values. Hence, they are type-
and not instance-specific: all document nodes that have identical root-to-element
paths are represented by a single entry in the path table!

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 337

14. Mapping XML to Databases XPath Accelerator Encoding

Tree partitions and XPath axes

Axes: descendant, ancestor, preceding, following

•
•��������

•��������

•
•��������

•��������

•
•�����������

•
•�� •

��

•�����������

•
•�����

•�����

◦
•�����

•��•
•

•�� •
��

•
��

•�����

•

Given an arbitrary context node ◦, the XPath axes descendant,
ancestor, preceding, following cover and partition the tree
containing ◦.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 338

14. Mapping XML to Databases XPath Accelerator Encoding

Tree partitions and XPath axes

Context node (here: f) is arbitrary

a•
b•�������

c
•

d• e•�������

f◦���

g•
���

h
•

���
i•

���

j•

{a . . . j} = {f} ∪
�

α∈{preceding, descendant,
ancestor, following}

f/α::node()

NB: Here we assume that no node is an attribute node. Attributes
treated separately (recall the XPath semantics).

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 339

14. Mapping XML to Databases XPath Accelerator Encoding

The XPath Accelerator tree encoding

We will now introduce the XPath Accelerator, a relational tree encoding
based on this observation.

If we can exploit the partitioning property, the encoding will
represent each tree node exactly once.

In a sense, the semantics of the XPath axes descendant, ancestor,
preceding, and following will be “built into” the encoding ⇒
“XPath awareness”.

XPath accelerator is schema-oblivious and node-based: each node
maps into a row in the relational encoding.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 340

14. Mapping XML to Databases XPath Accelerator Encoding

Pre-order and post-order traversal ranks

Pre-order/post-order traversal

(During a single scan through the document:) To each node v , assign its
pre-order and post-order traversal ranks �pre(v), post(v)�.

Pre-order/post-order traversal rank assignment
a•

b•�������

c
•

d
• e•�������

f•��
��

g•
��

��

h
•

��
��

i•
��

��

j
•

0

1

2

3 4

5

6 7

8

9

0

1 2

3 4

5

6

7

8

9

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 341

14. Mapping XML to Databases XPath Accelerator Encoding

Pre-order/post-order: Tree isomorphism

a•
b•������

c
•

d
• e•������

f•���

g•
���

h
•

���
i•

���

j
•

0

1

2

3 4

5

6 7

8

9

0

1 2

3 4

5

6

7

8

9

�0,0�
−1
−
−
−
−5
−
−
−
−

|
1

| | | |
5

| | | |

post
��

pre��

•a

•b
•
c

•d

•e

•f

•g
•h

•i
•j

pre(v) encodes document order and node identity

v1 << v2 ⇐⇒ pre(v1) < pre(v2) v1 is v2 ⇐⇒ pre(v1) = pre(v2)

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 342

14. Mapping XML to Databases XPath Accelerator Encoding

XPath axes in the pre/post plane

Plane partitions ≡ XPath axes, ◦ is arbitrary!

a•
b•�������

c
•

d• e•�������

f◦���
�

g◦
���

�

h
•

���
�

i•
���

�

j
•

post
��

pre��
−
−
−
−
−
−
−
−
−

| | | | | | | | |�0,0�

•a

•b
•
c

•d

•e

•
f
•g

•h

•i
•j
��������

�
�
�
�
�
�
�
�

Pre/post plane regions ≡ major XPath axes

The major XPath axes descendant, ancestor, following, preceding
correspond to rectangular pre/post plane windows.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 343

14. Mapping XML to Databases XPath Accelerator Encoding

XPath Accelerator encoding

XML fragment f and its skeleton tree
<a>

c
<!--d-->
<e><f><g/><?h?></f>

<i>j</i>
</e>

a•
b•������

c
• d

• e•������

f•���

g•
���

h
•

���
i•

���

j
•

0

1
2

3 4
5

6 7
8
9

0
1 2

3 4
5

6
7

8

9

Pre/post encoding of f : table accel

pre post par kind tag text
0 9 NULL elem a NULL
1 1 0 elem b NULL
2 0 1 text NULL c
3 2 0 com NULL d
4 8 0 elem e NULL
5 5 4 elem f NULL
6 3 5 elem g NULL
7 4 5 pi NULL h
8 7 4 elem i NULL
9 6 8 text NULL j

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 344

14. Mapping XML to Databases XPath Accelerator Encoding

Relational evaluation of XPath location steps

Evaluate an XPath location step by means of a window query on the
pre/post plane.

1 Table accel encodes an XML fragment,

2 table context encodes the context node sequence (in XPath
accelerator encoding).

XPath location step (axis α) ⇒ SQL window query

SELECT DISTINCT v �.*
FROM context v , accel v �

WHERE v � INSIDE window(α, v)
ORDER BY v �.pre

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 345

14. Mapping XML to Databases XPath Accelerator Encoding

10 XPath axes40 and pre/post plane windows

Window def’s for axis α, name test t (∗ = don’t care)

Axis α Query window window(α::t, v)
pre post par kind tag

child � (v .pre, ∗) , (∗, v .post) , v .pre , elem , t �
descendant � (v .pre, ∗) , (∗, v .post) , ∗ , elem , t �
descendant-or-self � [v .pre, ∗) , (∗, v .post] , ∗ , elem , t �
parent � v .par , (v .post, ∗) , ∗ , elem , t �
ancestor � (∗, v .pre) , (v .post, ∗) , ∗ , elem , t �
ancestor-or-self � (∗, v .pre] , [v .post, ∗) , ∗ , elem , t �
following � (v .pre, ∗) , (v .post, ∗) , ∗ , elem , t �
preceding � (∗, v .pre) , (∗, v .post) , ∗ , elem , t �
following-sibling � (v .pre, ∗) , (v .post, ∗) , v .par , elem , t �
preceding-sibling � (∗, v .pre) , (∗, v .post) , v .par , elem , t �

40Missing axes in this definition: self and attribute.
Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 346

14. Mapping XML to Databases XPath Accelerator Encoding

Pre/post plane window ⇒ SQL predicate

descendant::foo, context node v

v � INSIDE �(v .pre, ∗), (∗, v .post), ∗, elem, foo�
≡

v �.pre > v .pre AND v �.post < v .post AND

v �.kind = elem AND v �.tag = foo

ancestor-or-self::*, context node v

v � INSIDE �(∗, v .pre], [v .post, ∗), ∗, elem, ∗�
≡

v �.pre <= v .pre AND v �.post >= v .post AND

v �.kind = elem

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 347

14. Mapping XML to Databases XPath Accelerator Encoding

(e,f)/descendant::node()

Context & frag. encodings

context
pre post · · ·
5 5
4 8

accel
pre post · · ·
0 9
1 1
2 0
3 2
4 8
5 5
6 3
7 4
8 7
9 6

�����

�
�
�
�
�
�
�

����

�
�
�
�

�0,0�
−1
−
−
−
−5
−
−
−
−

|
1

| | | |
5

| | | |

��
post

pre��

•a

•b
•
c

•d

◦e

◦f
•g
•h

•i
•j

SQL query with expanded window() predicate

SELECT DISTINCT v1.*

FROM context v, accel v1

WHERE v1.pre > v.pre AND v1.post < v.post

ORDER BY v1.pre

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 348

14. Mapping XML to Databases XPath Accelerator Encoding

Compiling XPath into SQL

path: an XPath to SQL compilation scheme (sketch)

path(fn:root()) =
SELECT v �.*

FROM accel v �

WHERE v �.pre = 0

path(c/α) =

SELECT DISTINCT v �.*
FROM path(c) v , accel v �

WHERE v � INSIDE window(α, v)
ORDER BY v �.pre

path(c[α]) =

SELECT DISTINCT v .*
FROM path(c) v , accel v �

WHERE v � INSIDE window(α, v)
ORDER BY v .pre

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 349

14. Mapping XML to Databases XPath Accelerator Encoding

An example: Compiling XPath into SQL

Compile fn:root()/descendant::a/child::text()

path(fn:root()/descendant::a/child::text())
=

SELECT DISTINCT v1.*
FROM path(fn:root/descendant::a) v , accel v1

WHERE v1 INSIDE window(child::text(), v)
ORDER BY v1.pre

=
SELECT DISTINCT v1.*

FROM





SELECT DISTINCT v2.*
FROM path(fn:root) v , accel v2

WHERE v2 INSIDE window(descendant::a, v)
ORDER BY v2.pre



 v ,

accel v1
WHERE v1 INSIDE window(child::text(), v)

ORDER BY v1.pre

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 350

14. Mapping XML to Databases XPath Accelerator Encoding

Does this lead to efficient SQL? Yes!

Compilation scheme path(·) yields an SQL query of nesting depth n
for an XPath location path of n steps.

On each nesting level, apply ORDER BY and DISTINCT.
�

Observations:
1 All but the outermost ORDER BY and DISTINCT clauses may be safely

removed.
2 The nested SELECT-FROM-WHERE blocks may be unnested without any

effect on the query semantics.

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 351

14. Mapping XML to Databases XPath Accelerator Encoding

Result of path(·) simplified and unnested

path(fn:root()/descendant::a/child::text())

SELECT DISTINCT v1.*
FROM accel v3, accel v2, accel v1

WHERE v1 INSIDE window(child::text(), v2)
AND v2 INSIDE window(descendant::a, v3)
AND v3.pre = 0

ORDER BY v1.pre

An XPath location path of n steps leads to an n-fold self join of
encoding table accel .

The join conditions are

conjunctions � of
range or equality predicates �.

�

multi-dimensional window!

Marc H. Scholl (DBIS, Uni KN) XML and Databases Winter 2007/08 352

