Foundations of XML Types: Tree Automata

Pierre Genevés

CNRS

M2R — University of Grenoble, 2009-2010

Prelude: Word Automata

b b
a
a

Transitions
even = odd
odd 3 even

1/43

3/43

Why Tree Automata?

From Words to Trees: Binary Trees

Provide algorithms for efficient validation

Binary trees with a even number of a's

a

a’ even
7\
b even a odd

How to write transitions?

(even,odd) 2 even

(even, even) 2 odd
etc.

even

™~

Foundations of XML type languages (DTD, XML Schema, Relax NG...)
Provide a general framework for XML type languages

A tool to define regular tree languages with an operational semantics

Basic tool for static analysis (proofs, decision procedures in logic)

a odd

/N

b even

b even

2/43

a/a3

Ranked Trees? Ranked Alphabet

They come from parse trees of data (or programs)...

A function call f(a, b) f(g(a, b, c), h(i)) is a ranked tree A ranked alphabet symbol is:

e a formalisation of a function call
® a symbol a with an integer arity(a)

e arity(a) indicates the number of children of a

f
/N
\c

) b
/| | Notation
a b i
a®: symbol a avec arity(a) = k
5/43 6/43
Example Ranked Tree Automata
Alphabet: {a®, b® c®) #07
Possible tree: L
A ranked tree automaton A consists in:
a Alphabet(A): finite alphabet of symbols
/ \ States(A): finite set of states
b a Rules(A): finite set of transition rules
/ \ “ 7N “ Final(A): finite set of final states (C States(A))
a c
here :
/ \ / ‘ \ where .
o a # b Rules(A) are of the form (g1, ...,qx) > g
/\ /\ A
a if k=0, we will write ¢ — ¢
/\
##

7/43 8/43

How do they work?
Example: Boolean Expressions

AR

’ ql/ \ o
Ado Vg1 VaL AqL
09 1q1 191 09o 0G 1q1 191 11
S Rules(A
Principle " (A))
€ — qo € — q1
e Alphabet(A) = {A,V,0,1} (g1, q1) AN o (q0,91) M a
e States(A) = {qo, q1} (90,91) = g0 (q1,90) > G
A \
e 1 accepting state at the root: (g1, qo) 7’ q0 (q1,q1) 7 g1
Final(A) = {q1} (90,90) = o (o, 90) = qo
9/43
Example
Tree automaton A over {3(2), b2 #(0)} which recognizes trees with a even
number of a's
Alphabet(A) :{a, b, #}
States(A) : {even,odd}
Final(A) : {even}
Rules(A)
(even,even) % odd (even,even) 2 even
(even,odd) 2 even (even, odd) 2 odd
(odd,even) 2 even (odd,even) 2 odd
(odd,0dd) % odd (odd,odd) -2 even
e % even
11 /43

Terminology

e Language(A) : set of trees accepted by A

e For a tree automaton A, Language(A) is a regular tree language

[Thatcher and Wright, 1968, Doner, 1970]

Outline

Can we implement a tree automaton efficiently? (notion of determinism)
Are tree automata closed under set-theoretic operations?

Can we check type inclusion?

Can we build equivalent top-down tree automata?

Nice theory. But... what should | do with my unranked XML trees?

Can we apply this for XSLT type-checking?

10/ 43

12 /43

Deterministic Tree Automata

Deterministic
does not have two rules of the form:

(k)
(qla"'7qk) > q

(k)
(qla’“aqk) = q

/

for two different states g and ¢’

Intuition
At most one possible transition at a given node — implementation...

13 /43
Implementing Validation

Membership Checking
Given a tree automaton A and a tree t, is t € Language(A)?
Remark b {q,qs,q}
We can implement even if A is 1‘) (}
non-deterministic... ‘ 9> b, 9r

b {q7 Qb}
Example \
Automaton with Final(A) = {gr} and : Y a N {a}
ceSqg q2ag qg2gq {g:a} b b {q,qs}

b a \ \

aw—aq (9,9)>q {q} < c {q}
Complexity

Membership-Checking is in PTIME (time linear in the size of the tree)

15 /43

Can we Make a Tree Automaton Deterministic?

Theorem (determinisation)

From a given non-deterministic (bottom-up) tree automaton we can build a
deterministic tree automaton

Corollary
Non-deterministic and deterministic (bottom-up) tree automata recognize the
same languages.

Complexity
EXPTIME (|States(Age:)| = 2/5tates(A))

14 /43
Set-Theoretic Operations
Recall
e We have seen that neither local tree grammars nor single-type tree
grammars are closed under boolean operations (e.g. union)
e What about tree automata?
16 /43

Closure under Union and Intersection...

Example

e Automaton A: even number of a's
e (even,even) 2 odd
e Automate B: even number of b's

e (even,even) 2 even

/ a &e Ven
b even a even
| |
| even ! even
| |

((even, even), (even, even)) 2 (odd, even)

17 /43

Closure under Union

Given A and B, build AU B
e Alphabet(A U B) = Alphabet(A) U Alphabet(B)
e States(A U B) = States(A) x States(B)
e Rules(AUB) =
(93, a5), - (a5, a5)) (g) 9o, G :_2 92 € Rules(4) }
qb; .-, ak X qu € Rules(B)
e Final(AU B) = {(ga, 9») | 92 € Final(A) V g, € Final(B)}

19 /43

Product Construction

Given A and B, build Ax B

Alphabet(A x B) = Alphabet(A) U Alphabet(B)

States(A x B) = States(A) x States(B)

Final(A x B) = {(qa, qb) | ga € Final(A) A g, € Final(B)}
Rules(A x B) =

(k)
(k) L., g5 g, € Rules(A
(a3, 0), - (a5, a)) = (gara) | 7 ’qz o W
Gp, - qp — qb € Rules(B)

Closure under intersection

Given A and B, build AN B
e Alphabet(A N B) = Alphabet(A) U Alphabet(B)
e States(A N B) = States(A) x States(B)
e Rules(ANB) =
(93, a5), - (a5, a5)) % (Go) 9o G :_2 92 € Rules(4)
qb; .-, G 2 qu € Rules(B)
e Final(AN B) = {(ga, g») | g2 € Final(A) A g, € Final(B)}

}

}

18 /43

20/43

Complexity of the Product

Size of the Result Automaton

e |States(A x B)| = |States(A)| - |States(B)|
e |Rules(A x B)| < |Rules(A)| - |Rules(B)|

Quadratic increase in size

Exemple

Incomplete (deterministic) tree automaton
Tree automaton A for {a(b, b)} :

€ i db

(96, q5) = G

with Final(A) = {qa.}

Completion of A, Complementation of A

Add a sink state ¢,
¢ qb €= qp
(96:G5) > @2 (95,92) > 9o (Gayq) = @p (9a,9a) — Gp
(6, @5) = Ga (d5:Ga) = G (4 06) = Gp (da: Ga) = G
(a0 q) = qp forall g € {qa, 96, Go} et o € {a, b}
(9,Gp) = qp forall g € {ga, qb, G} et o € {a, b}

with Final(A) = {qa} Final(A) = {qs, 5}

21/43

23 /43

Closure under Negation: Completion

Definition : Complete Tree Automaton
For each a¥) € Alphabet(A) et g, ..., gx € States(A), there exists a rule

(qla"'7qk) > q
with some g

Intuition
At least one transition at a given node...

22 /43
Closure under Negation: Summary
Building the Complement of A
e Make A deterministic
o Complete the result
e Switch final < non-final states
Complexity
e Determinisation of A : exponential explosion (states: 25tt<s(4))
e Completion of the result: exponential explosion of the number of rules:
k
|Alphabet(A)] - (2'5"“'“’5(’4)‘) where k is the maximal rank
e Switching final < non-final states : linear
Total: exponential explosion
24 /43

Emptiness Test

Given a tree automaton A, is Language(A) # 0?

Principle
Compute the set of reachable states and then see if any of them are in the final
set

Complexity
PTIME (time proportional to |A|)

25 /43

Top-Down Tree Automata

Is that useful?...

Example: Connection with Strings

QO —0—oT —o

abed = a(b(c(d))) =

Reading strings from left to right = reading trees top-down (— e.g. streaming
validation...)

27 /43

Application for Checking Type Inclusion

Type Inclusion
Given two tree automata A; and Ay, is Language(A1) C Language(Az) ?

Theorem
Containment for non-deterministic tree automata can be decided in exponential
time

Principle
e Language(A; N Az) =)
e For this purpose, we must make A, deterministic (size: O(2142!))

— EXPTIME
e Essentially no better solution [Seidl, 1990]

26 /43
Top-Down Tree Automata: Example
gL Vv A g1
A do VaL Va1 A gL
09 1a1 191 09o 0G 11 141 191
acc acc acc acc acc acc acc acc
Principle
e starting from the root, guess Transitions
correct values oS (g, q) 9> (go,q1)
A \
o check at leaves qo — (go,q1) g1 — (g1, qo)
N \
o 3 states: qo, g1,acc Go (g1,90) a1 7 (g1, q1)
e initial state at the root: ¢; o T (90, 30) qo 7 (90, o)
— q1 — acc Go — acc
e accepting if all leaves labeled
acc
28 /43

Top-Down Tree Automata

A top-down tree automaton A consists in:

Alphabet(A): finite alphabet of symbols
States(A): finite set of states
Rules(A): finite set of transition rules
Initial(A): finite set of initial states (C States(A))

ou :

k)
Rules(A) are of the form g — (qu, ..., qk)

Top-down tree automata also recognize all regular tree languages

20 /43

Can We Make Top-Down Automata Deterministic?

Maybe !
Deterministic top-down tree automata do not recognize all regular tree

languages

Example

Initial(A) = qo
a
q0 — (g, 9)
g2
Cc
q—e
reconnait aussi...

31/43

Top-down Determinism

Deterministic Top-Down Tree Automaton

e for each g € States(A) et a € Alphabet(A) there is at most one rule

a(k)
q — (qu sty Qk)

e there is at most one initial state

Can We Make Top-Down Automata Deterministic?

(a) Yes (b) No (c) Maybe...

30/43

Expressive Power of Tree Automata: Summary

Theorem
The following properties are equivalent for a tree language L:

(a) L is recognized by a bottom-up non-deterministic tree automaton
(b) Lis recognized by a bottom-up deterministic tree automaton
(c) L is recognized by a top-down non-deterministic tree automaton

(d) L is generated by a regular tree grammar

Proof Idea

(a) = (b): determinisation (see [Comon et al., 1997])
(a) © (c): same thing seen from 2 different ways

(d) < (a) : ? (horizontal recursion a*7)

32/43

Unranked Trees

Strin
& Ranked Tree Unranked Tree
as Tree))
a
| l‘) b— e ¢ {/ :L \\\c d
b
| /N \ |
c [¢ b a a
| /\ VRN ARN
a a [b a C C a e
‘T /N /\ VAN /\
b ab ¢ e b c b e
b
Unranked Tree Automata?
1. either we adapt ranked tree automata
2. or we encode unranked trees are ranked trees...
33 /43

Second Option

Can we encode unranked trees as ranked trees?

//:\\-\d

e C d C
| |
a a ?
b//-y\c c/e‘)\e .
VRN /\
e b C b e

35 /43

Unranked Tree Automata

Ranked Trees

q o

Transitions can be described by finite sets: / \
8(o,q) = {(a1, a2), (g3, Ga), ...} o1 o2
qi g2

Unranked Trees

o1 /02/ \ o
[@ e 0] ed(o,q)?

e For unranked trees, (o, q) is a regular tree language

e §(o0, q) may be specified by a regular expression or by a finite word
automaton [Murata, 1999]

34 /43
Encoding Unranked Trees As Binary Trees

\\ 0\\
777777777777777777777 \ 1 \ O \
0 o \ \ \
77777777777 /l’\777 . 2\\'/(\\\\
1 o o oo AN
,,,,,,,7(1x5777;777: N 3\\‘\\. N .
. P G A O AN e
390 0o o o P A

H H \\ . ® \\ \
o
\:,O\ .
o
¥
Bijective Encoding
e “first child; next sibling” encoding
e Allows to focus on binary trees without loss of generality
e Results for ranked trees hold for unranked trees as well
36 /43

Tree Automata: Summary

Definition
A tree language is regular iff it is recognized by a non-deterministic tree
automaton

Advantages

e Closure, decidable operations

e General tool (theoretical and algorithmic)

Limitations

e a"p"

37 /43

Application for XSLT Type-Checking

<xsl:stylesheet>...
<xsl:template>

<xsl:value-of
select="a/b" />

VAN . VAN
PN < /xsl:template> s b
AN ;/xsl:stylesheet> "
/

Approach

o Compute Tins = {f(t)|t € Tin}
e Check whether Tin¢ € Tout holds
® In case Tinf C Toue holds, then we know that for any t € Tin, f(t) € Tout

30 /43

Application for Type-Checking

The XSLT Type-Checking Problem
Given a type Tin, an XSLT stylesheet f and a type Tout, does f(t) € Tout for
all t € Tin?

Limitation of the Approach

Tins may not be regular:

c c
Transform) /a/ ™\) into R %/ \» b
—

Problem
e Approximation is required, e.g.: a"b" approximated by a*b*
e Approximation is not contained in Tou (whereas the real type is)
e There is no “good” approximation...

e Consequence: this approach yields static type-checkers which are not
complete: some correct transformations might be rejected.

38 /43

40 /43

Backward Type Inference for XSLT

Modified Approach

e Compute Tins = {f1(t)|t € Tou)
e Check whether Tin C Tins holds

Theorem and Research Prototype

Static type-checking is decidable for an XSLT fragment: “XSLTOQ"
[Tozawa, 2001]

e Inference of the input tree automaton (PTIME)
e Containment of tree automata (EXPTIME)

Limitation

e Only basic transformations are supported (no real XPath)

41/43
< [session>
A few pointers for the curious who want to learn more...
e Sheaves automata [Dal-Zilio and Lugiez, 2003]
(how to model efficiently unordered content, e.g. XML attributes, or
interleaving/shuffle operator)
e Visibly pushdown automata [Alur and Madhusudan, 2004]
(beyond regular tree languages)
e A powerful and efficient modal tree logic [Genevés et al., 2007]
(how to support regular tree languages and XPath too)
Questions / discussions...?
43 /43

Concluding Remarks

e Tree automata are part of the theoretical tools that provide the underlying
guiding principles for XML (like the relational algebra provide the
underlying principles for relational databases)

o Still a lot of research ongoing on the topic, important challenges remain

XML languages Known theoretical models

.

Fragment New model

42/a3

@ Alur, R. and Madhusudan, P. (2004).
Visibly pushdown languages.

In STOC '04: Proceedings of the thirty-sixth annual ACM symposium on
Theory of computing, pages 202-211, New York, NY, USA. ACM.

@ Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison,
S., and Tommasi, M. (1997).

Tree automata techniques and applications.
Available on: http://www.grappa.univ-lille3.fr/tata.
release October, 1st 2002.

[{ Dal-Zilio, S. and Lugiez, D. (2003).
XML schema, tree logic and sheaves automata.

In Nieuwenhuis, R., editor, RTA'03: Proceedings of the 14th International
Conference on Rewriting Techniques and Applications, volume 2706 of
Lecture Notes in Computer Science, pages 246—-263. Springer.

[Doner, J. (1970).
Tree acceptors and some of their applications.
Journal of Computer and System Sciences, 4:406—451.

@ Genevés, P., Layaida, N., and Schmitt, A. (2007).
Efficient static analysis of XML paths and types.

43 /43

In PLDI '07: Proceedings of the 2007 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 342-351, New
York, NY, USA. ACM Press.

Murata, M. (1999).
Hedge automata: a formal model for XML schemata.
http://www.xml.gr.jp/relax/hedge nice.html.

Seidl, H. (1990).
Deciding equivalence of finite tree automata.
SIAM J. Comput., 19(3):424-437.

Thatcher, J. W. and Wright, J. B. (1968).

Generalized finite automata theory with an application to a decision
problem of second-order logic.

Mathematical Systems Theory, 2(1):57-81.

Tozawa, A. (2001).
Towards static type checking for XSLT.

In DocEng '01: Proceedings of the 2001 ACM Symposium on Document
Engineering, pages 18-27, New York, NY, USA. ACM Press.

43/43

