
Foundations of XML Types: Tree Grammars

Pierre Genevès
CNRS

M2R – University of Grenoble, 2009–2010

1 / 13

Which Data Model for XML?

Trees: a natural answer
• They cannot model all XML structures (limitation: IDREFs)

• Nevertheless, throughout this session, we will focus on trees which are:

• finite,
• ordered (limitation: attributes),
• labeled from a finite alphabet of symbols (limitation: values),
• of unbounded depth and arity.

2 / 13

Tree Languages

A Tree Language
• is a set of trees

• can be specified by a tree grammar

Example
Person = person[Name, Gender, Children?]
Name = name[String]
Gender = gender[Male | Female]
Male = male[]
Female = female[]
Children = children[Person+]

Terminology
• Person is a type variable (non-terminal) and person is a terminal

• A tree grammar defines a set of trees

3 / 13

Tree Grammars: a Syntactic Definition
Given
• An alphabet Σ

• A set of type variables ranged by X

Definition
• A tree grammar is a pair (E , X)

• E is a set of definitions of the form {X1 = T1; ...; Xn = Tn}
• X is the starting type variable

• Each T is a tree type expression:

T ::=
l[T] l ∈ Σ with content model T

| () empty sequence
| T1, T2 concatenation
| T1 | T2 choice
| X reference

• Usual operators (?, +, *) are syntactic sugars

4 / 13

Recursion and Computability Frontier

A Syntactic Restriction
• Every recursive use of a type variable X which is

not guarded (behind a label) must be in tail

• Examples (shortcut: a stands for a[()]) :

× {X = a, X , b}
× {X = a, Y , b; Y = X}
X {X = a, c[X], b}
X {X = a, Y ; Y = b, X | ()}

regular grammars

context-free grammars

anbnc∗

WIth the restriction: regular tree grammars
• Decidable operations (e.g.: inclusion)

• A robust and well characterized class

Without the restriction: context-free tree grammars
• Inclusion is undecidable [?]

• Checking whether a context-free grammar is regular is undecidable

5 / 13

Classes of Tree Grammars

3 sub-classes of particular interest

• Defined by additional restrictions

• Increasing expressive power

• Correspond to XML type languages

1. Local tree grammars: DTD

2. Single-type tree grammars: XML Schema

3. Regular tree grammars

local

single-type

regular

context-free

6 / 13

Local Tree Grammars: DTDs

Restriction
• Recall: each element name is associated with a regular expression

• For each a[T1] and a[T2] occuring in E , content models are identical:
T1 = T2

Construction of Validators
• Simple principle: a word automata is associated with each terminal

• Validation (matching) in linear time

• You know how to construct a word automata from a regular expression...

• Actually, DTD requires regular expressions to be deterministic:

× a (bc | bb) (matched reg. exp. part cannot be determined
without look ahead of the next symbol)

X ab (c | b)

• For any deterministic expression, we can build a deterministic automaton
in linear time [?] (see Glushkov automata)

• Alternatively (and equivalently), we can use a derivative operator with a
stack and even implement streaming DTD validation... Remember!

7 / 13

Weaknesses of DTDs

• An element name cannot have different content models in different
contexts

• Example: a DTD cannot recognize only:

dealer

used

car

model year

new

car

model

• Corollary: union of two DTDs may not be a DTD

• Class is not closed under composition (e.g. : union, complementation)

8 / 13

Single-Type Tree Grammars: XML Schemas... to the
Rescue!

Restriction
• For each a[T1] and a[T2] occuring under the same parent in E , content

models are identical: T1 = T2

Ldtd ⊂ Lxmlschema

• Ldtd: content model depends on the label of the parent

• Lxmlschema: may depend on the label of any ancestor

• Strict inclusion, example of a single-type (and not local) grammar:

dealer

used

car

model year

new

car

model

Dealer = dealer[Used, New]
Used = used[UsedCar]
New = new[NewCar]
UsedCar = car[Model, Year]
NewCar = car[Model]
...

9 / 13

XML Schemas also have Weaknesses

• “At least one car has a discount” is not single-type:

dealer

used

car

model year

new

car

model

car

model discount

• Corollary: the class still not closed under union (although XML Schema
specification is quite long)...

10 / 13

Regular Tree Grammars

No additional restriction
• A simple and powerful class

• In the XML world, it corresponds to Relax NG (see relaxng.org)

Lxmlschema ⊂ Lr

• Lxmlschema: content model may depend on the label of any ancestor

• Lr: content model may also depend on ancestor’s siblings for instance

• Strict inclusion:

dealer

used

car

model year

new

car

model

car

model discount

Dealer = dealer[Used, New]
Used = used[UsedCar]
New = new[NewCar,DNewCar]
NewCar = car[Model]
DNewCar = car[Model, Discount]
...

11 / 13

What do you think of this Tree Grammar?

Person = MPerson | FPerson
MPerson = personperson[Name,gender[Male], FSpouse?, Children?]
FPerson = personperson[Name,gender[Female],MSpouse?, Children?]
Male = male[]
Female = female[]
FSpouse = spouse[Name, gender[Female]]
MSpouse = spouse[Name, gender[Male]]
Children= children[Person+Person+]

1. Is it local (DTD-definable) ? No
2. Single-type (XML-Schema definable)? No: two elements of the

same name person with different content models under the same
parent children

3. Regular? Yes! (all recursive uses of type variables are guarded)

12 / 13

Tree Grammars: Conclusion

Sample Questions
• Are valid documents against type X also valid against type X’? (type

inclusion, backward compability)

• Does a type X defines a non-empty set of trees? (consistency)

• Can I build the union, intersection, difference... of types X and Y and
express the result with my favorite XML type language?

If we can answer for regular grammars then we can for local/single-type too!

Regular Tree Grammars
• A simply defined class

• High expressive power

• Robust (closed under set-theoretic operations)

• and well-characterized (e.g. tree automata...)

local

single-type

regular

13 / 13

