
The XPath Language

Pierre Genevès
CNRS

M2R – University of Grenoble, 2009–2010

1 / 26

Why XPath?

Search, selection and extraction of information from XML documents are
essential for any kind of XML processing.

→ XPath is the W3C standard language for expressing traversal and
navigation in XML trees.

2 / 26

XPath Introduction

• A common syntax and semantics for many web languages

• A W3C recommendation (www.w3.org/TR/xpath)

• Compact syntax, not in XML, for use within XML attributes

• A language for expressing paths

• XPath operates on the logical (tree) structure of XML documents, not on
their syntax

3 / 26

XPath Expressions

• XPath provides a powerful mechanism for navigating in XML trees: the
location path

• A location path is a sequence of location steps separated by ’/’:

child :: chapter| {z }
location step

/

axisz }| {
descendant ::

nodetestz }| {
section| {z }

location step

/ child :: para| {z }
location step

4 / 26

http://www.w3.org/TR/xpath

Evaluating a location path

• Starting from a context node, a location path returns a node-set

• Each node of this node-set becomes in turn the context node for
evaluating the next step

5 / 26

Evaluation Context

• Every XPath expression is evaluated with respect to a context that
includes:

• the context node
• 2 integers > 0 obtained from the evaluation of the last step:

• context size: the number of nodes in the node-set
• context position: the index of the context node in the node-set

• a set of variable bindings (the bindings are expressed in the host
language)

• Navigation “propagates” the context: evaluation of astep yields a new
context state

• Remark: a location path starting with ’/’ indicates that the initial context
is set to the root of the document, such a location path is called
“absolute”

6 / 26

Zoom on location steps

• A each navigation step, nodes can be filtered using qualifiers

• General syntax of a location step:

axis::nodetest[qualifier][qualifier]

• A location step is composed of 3 parts:

1. an axis: specify the relation between the context node and returned
nodes

2. a nodetest: type and name of returned nodes
3. optional qualifiers that further filter nodes

• Qualifiers are applied one after the other, once the selection is performed
by the axis and nodetest

• A qualifier returns a node-set that is filtered by the next qualifier

• Exemple :

• child::section[child::para]

7 / 26

Axes
• Indicates where in the tree (with respect to the context node) selected

nodes must be searched

• XPath defines 13 axes allowing navigation, including:

self
ancestor

descendant
pr

ec
ed

ing

following

following-sibling

preceding-sibling

child

parent

• 5 axes define a partition of tree nodes

8 / 26

Axes

• Each axis has a direction: forward or backward (w.r.t document ordering)

• Other axes:

• ancestor-or-self, descendant-or-self
• attribute: selects attributes of the context node (element)
• namespace: selects namespace nodes of the context node

9 / 26

Nodetest

• The nodetest of a location step indicates which nodes must be chosen on
the considered axis

• A nodetest filters nodes based on kind and name

Kind Test Semantics

node() let any node pass

text() preserve text nodes only

comment() preserve comment nodes only

processing-instruction() preserve processing instructions

10 / 26

Name test

• A nodetest can be a name test, preserving only nodes with given name

Name Test Semantics

name preserve element nodes with tag name only

(for attribute axis: preserve attributes)

* preserve element nodes with arbitrary tag names

(for attribute axis: preserve attributes)

• Remarks:

• path/axis ::* ⊆ path/axis ::node()
• path/attribute::node() 6⊆ path/child::node()

11 / 26

Qualifier

• A qualifier filters a node-set depending on the axis and returns a
newnode-set

• A qualifier is a boolean expression evaluated depending on the context:

• context node
• context size: number of nodes in the node-set
• context position: index of the context node in the node-set, in the

order of the document (or in reverse document order for backward
axes)

• Each node of a node-set is kept only if the evaluation of the qualifier for
this node returns true

• Examples:

• following-sibling::para[position()=last()]
• child::para[position() mod 2 = 1]

12 / 26

Value Comparisons

• Qualifiers may include comparisons:

path[path1 eq path2] eq ∈ {=, ! =, <, >, <=, >=}

• Existential semantics:

node-set1 eq node-set2
iff

∃n1 ∈ node-set1,∃n2 ∈ node-set2 | string-value(n1) eq string-value(n2)

• string-value(n): concatenation of all descendant text nodes in
document order

• Example: descendant::chapter[child::section="Conclusion"]

→ all “chapter” nodes whose at least one “section” child has string-value
"Conclusion".

• Comparisons may involve (implicit) type casting (ex: a[b>7])

13 / 26

General XPath Expressions

• A general XPath expression is a location path, or a union of
location paths separated by ’|’

• Qualifiers may include boolean expressions:
path[(path eq path) or (qualifier and not(qualifier))]

• An XPath expression may include variables (notation: $x)

• variables are bound by the host language (i.e. they are constants ,)
• they are part of the evaluation context

14 / 26

Observation on Data Value Comparisons

• Assume variable $x is bound to a node-set

• What do you think of the following XPath expressions e1 and e2?

$x="foo"| {z }
e1

not($x!="foo")| {z }
e2

• e1 is different from e2:

→ e1 is true iff there exists a node in $x which has string-value foo;

→ e2 is true iff all nodes in $x have string string-value foo.

• Owing to negation and comparison defined by existential quantification,
we can formulate universal quantification...

• “chapter” nodes whose all children “section” are empty1?
→ descendant::chapter[not(child::section!="")]

1have an empty string-value
15 / 26

Basic Functions

• Node-sets are not the only types of XPath expressions: there are boolean,
numerical and string expressions too

• Every XPath implementation must provide at least a list of basic functions
called Core Function Library (c.f. appendix)

• Examples:

• last(): a number, the context size
• position(): a number, the context position
• count(node-set): number of nodes in the node-set
• concat(string, string, string*): concatenate several strings
• contains(str1, str2): boolean, true if str1 contains str2
• ...

• Any XPath expression can be used within a qualifier, for instance:

descendant::recipe[count(descendant::ingredients)<5 and
contains(child::title, "cake")]

16 / 26

Abbreviated Syntax

• child:: is the default axis, it can be omitted

• @ is a shorthand for attribute::

• // is a shorthand for /descendant-or-self::node()/

• . is a shorthand for self::node()

• .. is a shorthand for parent::node()

• [4] is a shorthand for [position()=4]

Example Expanded Form
book/section child::book/child::section
p[@id="bla"] child::p[attribute::id="bla"]
.//p self::node()/descendant-or-self::node()/child::p
../title parent::node()/child::title
p[3] child::p[position()=3]

17 / 26

Question...

What do you think of the following XPath expressions e1 et e2?

self::title| {z }
e1

parent::node()/child::title| {z }
e2

18 / 26

Question...

Can we rewrite the XPath expression following::p without the axis
following?

self
ancestor

descendant

pr
ec

ed
ing

following

following-sibling

preceding-sibling

child

parent

19 / 26

XPath: A Core Component for XML Technologies

• XPath is used in:

• XSLT: selection of document parts to be transformed
• XPointer: identification of XML fragments
• XLink: definition of hypertext links
• XQuery: XPath is the (main) subset of the query language
• XML Schema: expressing the tree region in which unicity is

guaranteed
• XForms: expressing dependencies (data bindings)
• ...

• Often, it is even the essential component

20 / 26

Appendix

XPath Core Function Library

21 / 26

Functions over node-sets

• last(): a number, the context size

• position(): a number, the context position

• count(node-set): number of nodes in the node-set

• id(object): selects elements by their unique ID

• local-name(node-set): returns the local part of the expanded-name of
the node in the argument node-set that is first in document order.

• namespace-uri(node-set): returns the namespace URI of the
expanded-name of the node in the argument node-set that is first in
document order

• name(node-set): returns a string containing the whole name of the node
in the argument node-set that is first in document order

22 / 26

String Functions

• string(object): convert object to a string

• concat(string, string, string*): concatenate several strings

• start-with(string1, string2) : boolean, true if string1 starts with
string2

• contains(str1, str2) : boolean, true if str1 contains str2

• substring-before(string1, string2): the substring of string1
before the first occurrence of string2

• substring-after(string1, string2): the substring of string1 after
the first occurence of string2

• substring(string, number1, number2): the substring of string that
starts at position number1 and whose length is number2

• string-length(string): number of characters in string

• normalize-space(string): remove beginning, ending and double spaces

• translate(s1, s2, s3): replace in s1 each char of s2 by the char of
same position in s3
example : translate("bar","abc","ABC") returns BAr

23 / 26

Boolean Functions

• boolean(object): convert object into boolean, returns true if non zero
number, non empty node-set, string with non zero length

• not(boolean): negation of boolean

• true()

• false()

• lang(string): the language (attribute xml:lang) of context node is the
same or a sublanguage of string

24 / 26

Arithmetic Functions

• number(object): convert object into a number

• sum(node-set): sum of the (type casted) number representation of each
node in the node-set

• floor(number): greatest integer less or equal to number

• ceiling(number): smallest integer greater than or equal to number

• round(number): the closest integer of number

25 / 26

Operator Precedence

1. <=, <, >=, >

2. =, !=

3. and

4. or

26 / 26

	Motivations for XPath
	XPath Expressions
	Evaluation Principle
	Evaluation Context
	Steps
	Axes
	Node Tests
	Qualifiers
	Value Comparisons
	General XPath Expressions
	Basic Functions
	Abbreviated Syntax
	XPath: A Core Component

	Appendix
	Nodeset Functions
	String Functions
	Boolean Functions
	Arithmetic Functions
	Operator Precedence

