Constraint Programming: Examples

Eric MONFROY

IRIN, Université de Nantes

Constraint Programming: Examples - p. 1

- to illustrate constraints by examples
- to give an intuitive taste of several types of constraint
- to illustrate **constrained problems** by examples
- to give an intuitive taste of modelling
- to give an intuitive notion of CSP

Examples of constraints

Constraints : intuitively

- a relation between objects (represented by variables)
- a constraint can specify :
 - partial, incomplete information
 « the captain is at least 40 year old »
 - fuzzy information
 - « the captain is about 40 year old »
- a constraint is declarative (independant from the operationnal process)
- a constraint is not oriented (relation) :

x + y = z: if x and y are known, we determine z; if x and z are known we determine y, \ldots

 the order to set constraints does not influence the semantics (but generally solving efficiency) Atomic constraints :

$$x^2 = 2 \tag{1}$$

 \Rightarrow computation domains of variables must be known :

- x rationnal number : no solution to (1)
- x real numbers : two solutions $\{-\sqrt{2}, \sqrt{2}\}$

More generally :

$$x^2 - y = 0 \land x^2 + y^2 = 1$$

Conjunctions, disjunctions, negations of atomic constraints

Constraints over trees

 $\Rightarrow X = f(b) \text{ and } Y = 45$

The equality relation is not oriented

Boolean constraints

- variables are true or false
 (or often 0 or 1)
- constraints represent Boolean operators (as relations, thus, the result is a variable)
 - Z = X wedge Y is represented by the constraint :
 - $Z \iff X \wedge Y$
 - Or and(X,Y,Z)

Symbolic constraints

World of blocs :

 $blue(X) \wedge on(X, Y)$

 $\Rightarrow X = \text{triangle and } Y = \text{rectangle}$

Qualitative temporal reasonning

Allen temporal logic :

- allen(AoverlapB, BbeforeC, R_AC)
- ∧ allen(BbeforeC,CoverlapD, R_BD)
- ∧ allen(R_AC, CoverlapD, R_AD)

- $atmost(2, [X_1, X_2, X_3, X_4, X_5], 1)$ at most two variables among $\{X_1, X_2, X_3, X_4, X_5\}$ are equal to 1
- all different $([X_1, X_2, X_3, X_4, X_5])$ the variables $\{X_1, X_2, X_3, X_4, X_5\}$ are pair-wise distinct

Examples of problems

Constraint Satisfaction Problems (CSP)

Given :

- some type of variables to represent objects
- domains over which variables can range
- some types constraints to set relation between objects

Formulate your problem as a CSP :

- a set of variables together with their initial domains
- a set of constraints linking your variables (objects)

DONALD + GERALD = ROBERT (1/3)

- cryparithmetic problem over integers
- replace each letter by a different digit such that

is a correct sum

DONALD + GERALD = ROBERT (2/3)

First modelling :

- variables : D, O, N, A, L, G, E, R, B, T
- integer domains :

 [1..9] for *D* and *G* [0..9] for *O*, *N*, *A*, *L*, *E*, *R*, *B*, *T*
- constraint :

100000.D + 10000.O + 1000.N + 100.A + 10.L + D+ 100000.G + 10000.E + 1000.R + 100.A + 10.L + D= 100000.R + 10000.O + 1000.B + 100.E + 10.R + T

DONALD + GERALD = ROBERT (3/3)

Second modelling : use of carry variables

- variables : $D, O, N, A, L, G, E, R, B, T, C_1, C_2, C_3, C_4, C_5$
- integer domains :

[1..9] for D and G[0..9] for O, N, A, L, E, R, B, T[0..1] for C_1, C_2, C_3, C_4, C_5

constraint :

 $2.D = 10.C_1 + T$ $2.L + C_1 = 10.C_2 + R$ $2.A + C_2 = 10.C_3 + E$ $N + R + C_3 = 10.C_4 + B$ $O + E + C_4 = 10.C_5 + O$ $D + G + C_5 = R$

- 1 A small street is composed of 5 colored houses.
- 2 Five men of different nationalities live in these five houses.
- 3 Each man has a different profession.
- 4 Each man likes a different drink.
- 5 Each man has a different pet animal.

Zebra puzzle (2/10)

- 6 The Englishman lives in the red house.
- 7 The Spaniard has a dog.
- 8 The Japanese is a painter.
- 9 The Italian drinks tea.
- 10 The Norwegian lives in the first house on the left.
- 11 The owner of the green house drinks coffee.
- 12 The green house is on the right of the white house.
- 13 The sculptor breeds snails.
- 14 The diplomat lives in the yellow house.
- 15 They drink milk in the middle house.
- 16 The Norwegian lives next door to the blue house.
- 17 The violonist drinks fruit juice.
- 18 The fox is in the house next to the doctor's.
- 19 The horse is in the house next to the diplomat's.

Who has the zebra and who drinks water?

- 1 A small street is composed of 5 colored houses.
- 2 Five men of different nationalities live in these five houses.
- 3 Each man has a different profession.
- 4 Each man likes a different drink.
- 5 Each man has a different pet animal.

Zebra puzzle (4/10)

- Idea 1 : men numbered from 1 to 5
 - \Rightarrow english=3 means the 3rd man is english
 - ⇒ what to do with the constraint :"The green house is on the right of the white house."
- Idea 2 : houses numbered from 1 to 5
 - ⇒ englishman=3 means the Englishman lives in the 3rd house
 - \Rightarrow yellow=2 means the 2nd house is yellow
 - "The green house is on the right of the white house." \Rightarrow green = white + 1
 - \Rightarrow all constraints of the puzzle can be used

Zebra puzzle : variables (5/10)

Determining variables :

- 6 The Englishman lives in the red house.
- 7 The Spaniard has a dog.
- 8 The Japanese is a painter.
- 9 The Italian drinks tea.
- 10 The Norwegian lives in the first house on the left.
- 11 The owner of the green house drinks coffee.
- 12 The green house is on the right of the white house.
- 13 The sculptor breeds snails.
- 14 The diplomat lives in the yellow house.
- 15 They drink milk in the middle house.
- 16 The Norwegian lives next door to the blue house.
- 17 The violonist drinks fruit juice.
- 18 The fox is in the house next to the doctor's.
- 19 The horse is in the house next to the diplomat's.

Variables : 25 (5x5)

- men : englishman, spaniard, japanese, italian, norwegian
- profession : painter, sculptor, diplomat, violonist, doctor
- drink : tea, coffee, milk, juice, ???
- pet animal : dog, snail, fox, horse, ???
- colour : red, green, white, yellow, blue

two variables are missing ???

There is some more information in the query : Who has the zebra and who drinks water?

Variables : 25 (5x5)

- men : englishman, spaniard, japanese, italian, norwegian
- profession : painter, sculptor, diplomat, violonist, doctor
- drink : tea, coffee, milk, juice, water
- pet animal : dog, snail, fox, horse, zebra
- colour : red, green, white, yellow, blue

Domains : [1..5] (5 houses)

Zebra puzzle : constraints (8/10)

- 1 A small street is composed of 5 colored houses
 all_different(red, green, white, yellow, blue)
- 2 Five men of different nationalities live in these five houses. all_different(englishman, spaniard, japanese, italian, norwegian)
- 3 Each man has a different profession.
 all_different(painter, sculptor, diplomat, violonist, doctor)
- 4 Each man likes a different drink.
 all_different(tea, coffee, milk, juice, water)
- 5 Each man has a different pet animal.
 all_different(dog, snail, fox, horse, zebra)

Domains : [1..5]

Zebra puzzle : constraints (ctd) (9/10)

6	The Englishman lives in the red house.	englishman=red
7	The Spaniard has a dog.	spaniard=dog
8	The Japanese is a painter.	japanese=painter
9	The Italian drinks tea.	italian=tea
10	The Norwegian lives in the first house on the left.	norwegian=1
11	The owner of the green house drinks coffee.	green=coffee
12	The green house is on the right of the white house	. green=white+1
13	The sculptor breeds snails.	sculptor=snail
14	The diplomat lives in the yellow house.	diplomat=yellow
15	They drink milk in the middle house.	milk=3
16	The Norwegian lives next door to the blue house.	norwegian - blue = 1
17	The violonist drinks fruit juice.	violonist = juice
18	The fox is in the house next to the doctor's.	fox - doctor =1
19	The horse is in the house next to the diplomat's.	horse - diplomat =1

Zebra puzzle : solution (10/10)

Solution :

- Englishman=3, Spaniard=4, Japanese=5, Italian=2, Norwegian=1
- Tea=2, Coffee=5, Milk=3, Juice=4, Water=1
- Red=3, Green=5, White=4, Yellow=1, Blue=2
- Painter=5, Sculptor=3, Diplomat=1, Violonist=4, Doctor=2
- Dog=4, Snail=3, Fox=1, Horse=2, Zebra=5

Thus,

- the Japanese has the zebra,
- and the Norwegian drinks water.

Full-adder (1)

Full-adder :

Full-adder (2)

Modelling :

- Variables : inputs/outputs of gate
- **Domains** : [0,1]
- Boolean constraints :
 - $(I1 \iff X \land Y), (I2 \iff X \oplus Y), (I3 \iff I2 \land CI)$ $(O \iff I2 \oplus CI), (CO \iff I1 \lor I3)$

• or

and(X, Y, I1), xor(X, Y, I2), and(I1, CI, I3)xor(I2, CI, O), or(I1, I3, CO) Place n queens on a $n \times n$ board so that they do not attack each other Modelling :

• Variables : c_1, \ldots, c_n

one per column : the value of c_i represents the line where the queen is in the column

- **Domains** : [1..*n*]
- Constraints : for $i \in [1..n-1]$ and $j \in [i+1..n]$
 - not two queens on the same line : $c_i \neq c_j$
 - not 2 queens on the same SW-NE diagonal : $c_i \neq c_j + j i$
 - not 2 queens on the same NW-SE diagonal : $c_i \neq c_j + i j$