Constraint Programming: Formal Presentation

Eric Monfroy

IRIN, Université de Nantes

Objectives

- formal definition of constraint and CSP
- equivalence of CSP's

Formal Presentation

Constraint: definition

Consider

- some variables x_1, \ldots, x_k
- some domains D_1, \ldots, D_k associated to x_1, \ldots, x_k respectively

a *constraint* C on x_1, \ldots, x_k is a subset of $D_1 \times \ldots \times D_k$

domain D_i represents the possible values the variable x_i can take

Constraint: example

Consider variables x, y, z of domain [0, 1]

Consider the *constraint* and on x, y, z represents the Boolean and relation.

Then, and on x,y,z is a subset of $\{0,1\}\times\{0,1\}\times\{0,1\}$ defined by :

$$\{(0,0,0),(0,1,0),(1,0,0),(1,1,1)\}$$

Constraint Satisfaction Problem: definition

Consider

- some variables x_1, \ldots, x_n
- some domains D_1, \ldots, D_n associated to x_1, \ldots, x_n

intuitively: a $CSP \mathcal{P}$ is given by a set of constraints together with variables appearing in these constraints and their domains

formally: CSP

$$\mathcal{P} = \{C_1, \dots, C_m; \ x_1 \in D_1, \dots, x_n \in D_n\}$$

with each C_i on a subset of x_1, \ldots, x_n

 (d_1, \ldots, d_n) is a *solution* to \mathcal{P} if for each constraint C_j on $x_{i_1}, \ldots, x_{i_{m_l}}$ $(i \in [1..l])$

$$(d_{i_1},\ldots,d_{i_{m_I}})\in C_j$$

CSP example: full-adder

$$\mathcal{P} = \{and(X, Y, I1), xor(X, Y, I2), and(I2, CI, I3), \\ xor(I2, CI, O), or(I1, I3, CO); \\ X \in [0, 1], Y \in [0, 1], CI \in [0, 1], I1 \in [0, 1], \\ I2 \in [0, 1], I3 \in [0, 1], CO \in [0, 1], O \in [0, 1]\}$$

solutions:

 $\{(0,0,0,0,0,0,0),(0,0,1,0,0,0,0,1),(0,1,0,0,1,0,0,1),(0,1,1,0,1,1,1,0),(1,0,0,0,1,0,0,1),(1,0,1,0,1,1,1,0),(1,1,0,1,0,1,0,1,1,1,0),(1,1,0,0,1,0,1,1,1,0,0,1,1)\}$