Constraint Programming: Solving CSP's

Eric MONFROY

IRIN, Université de Nantes

Objectives

- intuitive notion of CSP solving
- some more definitions about CSP's
- constraint programming basic framework
- the different steps in constraint solving

Intuitive constraint solving

Constraint solving

Given a constraint *c*, the following problems can be studied :

- satisfaction : is the constraint c satisfiable ?
 (Is there a valuation of variables of c such that c is true ?)
- *solution* : if *c* is satisfiable, produce one, several, all solutions
- optimization : produce the/an optimal solution (concept to be defined)
- simplification : transform c into an equivalent constraint (i.e., with the same solution space)

We focus on the first two problems

- a solver is *complete* if it can always answer by yes or no for a CSP
- a solver is *correct* if it computes only solutions
- a solver is *reliable* (or *validated*) if it computes all the solutions of a problem

over real numbers : difficult to get completeness and correctness

Theoretic : trivial, systematic exploration of the search space (look back) !!!

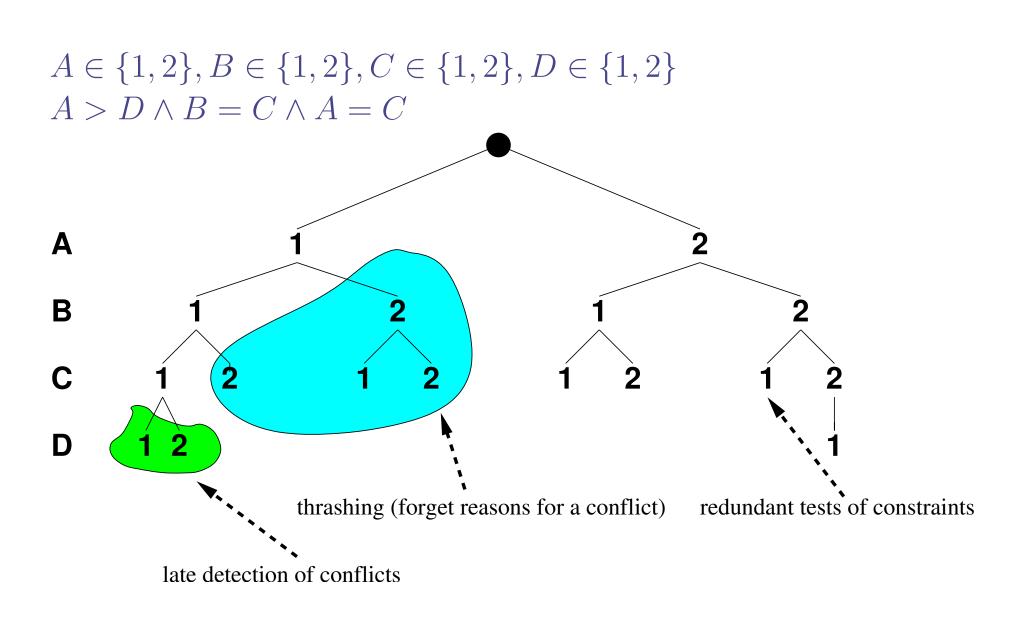
- Generate and test : generate an instantiation for all variables, and then test wheter constraints are satisfied or not
- Backtracking : incremental generation of instantiations.
 Test satisfiability of constraints whose variables are instanciated.
 In case of success : instanciate new variables.
 In case of failure : undo the most recent instanciation, and make a new instanciation.
 - thrashing : repeated failures caused by the same reasons
 - conflicting values are not memorized during backtracking
- Iocal consistency : values that do not satisfy all constraints are removed from domain variables

Look back : variables are instanciated, and "instanciated" constraints are tested

- non-incremental version : generate and test
- incremental version : backtracking
- ⁽ⁱ⁾ Complete and correct
- inefficient and costly

clever alternatives : backjumping, backmarking

Problem of the *look back*



Solving CSPs : CSP reduction

basic idea : from a given CSP, find an *equivalent* CSP with smaller domains (smaller search space, same solution space)

- consider each atomic constraint separately
- filter domains of variables and eliminate *inconsistent* values

active use of the constraints. Many values vialoting constraints are removed

 \rightarrow constraint propagation : replace a CSP by an equivalent and simpler one ; proceed by repeated reductions of domains/constraints

Solving CSPs : example of CSP reduction

 $\{and(x, y, z), or(t, u, x); \\ x \in [0, 1], y \in [0, 1], z \in [1], t \in [0, 1], u \in [0, 1]\} \\ \equiv \\ \{and(x, y, z), or(t, u, x); \\ x \in [1], y \in [1], z \in [1], t \in [0, 1], u \in [0, 1]\}$

reduction of x and y domains using the constraint and(x, y, z)and the initial domains of x, y, and z

Solving CSPs : propagation and split

split : cut a CSP into sub-CSP's (and thus smaller)basic idea : interleave propagation and split of CSP'swhy? from a smaller CSP, propagation can act again

- 1. constraint propagation
- 2. split
- 3. goto 1

active use of the constraints
 complete

Solving CSPs : example

 $\{and(x,y,z), or(t,u,x); \ x \in [0,1], y \in [0,1], z \in [1], t \in [0,1], u \in [0,1]\}$

\equiv (propagation : and)

 $\{and(x, y, z), or(t, u, x); \ x \in [1], y \in [1], z \in [1], t \in [0, 1], u \in [0, 1]\}$

 \equiv (split t)

 $\{\dots; x, y, z \in [1], t \in [0], u \in [0, 1]\} \text{ or } \{\dots; x, y, z \in [1], t \in [1], u \in [0, 1]\} \\ \equiv \text{(propagation : Or)} \qquad \equiv \text{(no propagation)} \\ \{\dots; x, y, z \in [1], t \in [0], u \in [1]\} \text{ or } \{\dots; x, y, z \in [1], t \in [1], u \in [0, 1]\} \\ \equiv \text{(split } \mathbf{u}) \\ \{and(x, y, z), or(t, u, x); \\ x, y, z, t \in [1], u \in [1]\} \text{ or } \{and(x, y, z), or(t, u, x); \\ x, y, z, t \in [1], u \in [1]\} \text{ or } \{and(x, y, z), or(t, u, x); \\ x, y, z, t \in [1], u \in [1]\} \end{bmatrix}$

Constraint solving

Given a sequence of variables $X = x_1, \ldots, x_n$ with respective domains D_1, \ldots, D_n

Consider :

- an element $d = (d_1, \ldots, d_n) \in D_1 \times \ldots \times D_n$
- and a sub-sequence $Y = x_{i_1}, \ldots, x_{i_l}$ of X

Let denote d_{i_1}, \ldots, d_{i_l} by d[Y].

d[Y] is called the *projection* of d on Y

(note that $d[x_l] = d_l$)

Solution

Consider a CSP $\mathcal{P} = \{C_1, ..., C_l; x_1 \in D_1, ..., x_n \in D_n\}.$

 $d_1, \ldots, d_n \in D_1 \times \ldots \times D_n$ is a *solution* of \mathcal{P} if and only if : for each C_l of \mathcal{P} on Y (a sub-sequence of x_1, \ldots, x_n)

 $d[Y] \in C_l$

- two CSP's \mathcal{P}_1 and \mathcal{P}_2 are *equivalent* if they have the same solution space
- two CSP's P₁ and P₂ are equivalent w.r.t. the sequence of variables X iff :

 $\{d[X] \mid d \text{ is a solution to } \mathcal{P}_1\} = \{d[X] \mid d \text{ is a solution to } \mathcal{P}_2\}$

• a csp \mathcal{P} is equivalent w.r.t. a sequence of variables X to a *union* of CSP's $\mathcal{P}_1, \ldots, \mathcal{P}_n$ if :

$$\{d[X] \mid d \text{ is a solution to } \mathcal{P}\} = \bigcup_{i=1}^n \{d[X] \mid d \text{ is a solution to } \mathcal{P}_i\}$$

- a constraint C on y_1, \ldots, y_l with domains D_1, \ldots, D_n is *solved* if $C = D_1 \times \ldots \times D_n$
- a CSP { C_1, \ldots, C_l ; $x_1 \in D_1, \ldots, x_n \in D_n$ is *solved* if each C_i ($i \in [1..l]$) is solved and none of the D_j ($j \in [1..n]$) is empty
- a csp $\{C_1, \ldots, C_l; x_1 \in D_1, \ldots, x_n \in D_n \text{ is failed if one of the } C_i \text{ is the false constraint (generaly noted } \bot) or one of the <math>D_j$ is empty.

Constraint solving framework

solve(CSP) : while not finished do pre-process constraint propagation if happy then finished=true else split part-of search endif endwhile

where part-of search consists in calls to the solve function

Remark : part-of search is one of the mechanisms defining search

transform constraints into a desired form :

- from which reductions (constraint propagation) can be performed (e.g., primitive constraints)
- from which reductions are stronger (e.g., dependency problem for reals)
- on which the solver is more efficient (redundancies, symetries, order of constraints, graph representation, ...)

decomposing complexe constraints into primitive constraints (for which reductions can be performed) :

Example :

 $3 \ast x + y + z \ast t = 6$

becomes

 $3 * x = \alpha_1 \land \alpha_1 + y = \alpha_2 \land z * t = \alpha_3 \land \alpha_2 + \alpha_3 = 6$

more easy to implement (no heavy symbolic manipulations)
 less reduction capacity (cf. alldiff and its decomposition)

Happy

Depends on the type of the desired solving :

- find a solution
- find all solutions
- find the optimal solution (global optimum)
- find a good solution (local optimum)
- find that there is no solution (insatisfiable CSP)
- find a "good" simplification (normal form to generate solutions, good approximation of solution)

- split a CSP into smaller CSP's s.t.
 the union of smaller CSP's is equivalent to the initial one
- why ? propagation can act again on smaller CSP's
- to obtain a complete solver
- two types of split :
 - split a domain (most common)
 - split a constraint

replace a constraint by "smaller" constraints

example : disjunction

replace $\{C_1, ..., C_{i,1} \lor C_{i,2}, ..., C_l; x_1 \in D_1, ..., x_n \in D_n\}$ by the two CSP's (union of CSP's) $\{C_1, ..., C_{i,1}, ..., C_l; x_1 \in D_1, ..., x_n \in D_n\},$ $\{C_1, ..., C_{i,2}, ..., C_l; x_1 \in D_1, ..., x_n \in D_n\}$

Domain spliting

- replace a domain by a union of "smaller" domains
- general form : (bisection : 2 CSP's, split in the middle)

replace
$$\{\mathcal{C}; \ldots, x_i \in D_i, \ldots\}$$

by the CSP's (union of CSP's) $\{C; \ldots, x_i \in D_{i_1}, \ldots\}, \ldots, \{C; \ldots, x_i \in D_{i_m}, \ldots\}$ with $\bigcup_{j=1}^m D_{i_j} = D_i$ (better if pairwise disjoint $D_{i_j} \cap D_{i_k} = \emptyset$ for all j and k)

examples : labeling (enumeration)

```
replace \{\mathcal{C}; \ldots, x_i \in D_i, \ldots\}
```

by the two CSP's (union of CSP's)

 $\{\mathcal{C}; \ldots, x_i \in \{d_i\}, \ldots\}, \{\mathcal{C}; \ldots, x_i \in D_i \setminus \{d_i\}, \ldots\}$

Spliting strategies

- theory : not important
- practice : very important for efficiency
- strategies based on :
 - the variable to be split
 - where to split (e.g., bisection)
 - which value for labeling
 - the constraint to be split
- examples :
 - most constrained variable (that appears the most often)
 - largest domain first (variable with the largest domain)
 - largest/smallest/middle value of a domain

- part of the search mechanism
 (according with propagation and split)
 → exploration of the search space
- practice : very important for efficiency
- manage sub-CSP's
- select the CSP's to explore w.r.t. the desired type of solving (one, all, optim, ...)

Part-of search

Numerous techniques :

- bactracking
- intelligent backtracking
 - backjumping
 - backmarking
- branch and bound (optimization)
- branch and infer
- when combined with constraint propagation
 - forward checking
 - partial look ahead
 - full look ahead

Backtracking

- if no propagation : bactracking a la Prolog
- with propagation :

depending on the propagation, can lead to :

- forward checking
- partial look ahead
- full look ahead
- in all cases, give a search tree s.t.
 - nodes are dynamically generated (split)
 - a node = a CSP
 - leaves are failed or solved CSP's

Constraint propagation

- replace a CSP by a CSP which is :
 - equivalent (same set of solutions)
 - "smaller" (domains are reduced)
 - "simpler" (constraints are reduced)
- constraint propagation mechanism : repeatedly reduce domains or constraints
- can be seen as a fixed point of application of reduction functions
 - reduction function to reduce domains or constraints
 - can be seen as an abstraction of the constraints by reduction functions

Constraint propagation : reducing constraints

- Generally :
 - adding new (redundant) constraints
 - simplifying constraints (e.g., arithmetic simplification)
- example : transitivityReduction function :

$$x < y, y < z \rightarrow x < y, y < z, x < z$$

the CSP {..., x < y, ..., y < z, ...; D} can be reduced to the CSP {..., x < y, ..., y < z, ..., x < z; D}

Constraint propagation : reducing domains (1

• Generally :

- reduce domains using constraint and domains
- ${\scriptstyle \bullet} \rightarrow$ reduce the search space
- generic domain reduction :
 - Given a constraint C over x_1, \ldots, x_n with domains D_1, \ldots, D_n
 - select a variable x_i to be reduced
 - delete from D_i all values for x_i that do not participate in a solution of C

Constraint propagation : reducing domains (2

- example : linear equalities on integer
 - reduction function :

$$x < y, x \in [l_x ... r_x], y \in [l_y ... r_y]$$

$$\rightarrow$$

$$x < y, x \in [l_x ... min(r_x, r_y - 1)], y \in [max(l_y, l_x + 1)... r_y]$$

example of use

the CSP $\{\dots, x < y, \dots; \dots, x \in [10..20], \dots, y \in [0..15]\}$ • can be reduced to the CSP $\{\dots, x < y, \dots; \dots, x \in [10..14], \dots, y \in [11..15]\}$

Constraint propagation mechanism

- repeated application of reductions
- try to apply only useful reductions
- stop
 - when a *local consistency* notion is reached (e.g., arc, node, hyper-arc consitency)
 - or when reduction becomes inefficient (e.g., cycling weak reductions)
 - or when a domain is empty (failed CSP)