
Constraint Programming:

Solving CSP’s
Eric MONFROY

IRIN, Université de Nantes

Constraint Programming: Solving CSP’s – p. 1

Objectives

intuitive notion of CSP solving

some more definitions about CSP’s

constraint programming basic framework

the different steps in constraint solving

Constraint Programming: Solving CSP’s – p. 2

Intuitive constraint solving

Constraint Programming: Solving CSP’s – p. 3

Constraint solving

Given a constraint c, the following problems can be studied :

satisfaction : is the constraint c satisfiable ?
(Is there a valuation of variables of c such that c is true ?)

solution : if c is satisfiable, produce one, several, all solutions

optimization : produce the/an optimal solution (concept to be
defined)

simplification : transform c into an equivalent constraint (i.e., with
the same solution space)

We focus on the first two problems

Constraint Programming: Solving CSP’s – p. 4

Solver properties

a solver is complete if it can always answer by yes or no for
a CSP

a solver is correct if it computes only solutions

a solver is reliable (or validated) if it computes all the
solutions of a problem

over real numbers : difficult to get completeness and correctness

Constraint Programming: Solving CSP’s – p. 5

Solving CSP

Theoretic : trivial, systematic exploration of the search space (look back) ! ! !

Generate and test : generate an instantiation for all variables, and then
test wheter constraints are satisfied or not

Backtracking : incremental generation of instantiations.

Test satisfiability of constraints whose variables are instanciated.

In case of success : instanciate new variables.

In case of failure : undo the most recent instanciation, and make a new
instanciation.

thrashing : repeated failures caused by the same reasons

conflicting values are not memorized during backtracking

local consistency : values that do not satisfy all constraints are removed
from domain variables

Constraint Programming: Solving CSP’s – p. 6

Solving CSPs : look-back

Look back : variables are instanciated, and “instanciated”
constraints are tested

non-incremental version : generate and test

incremental version : backtracking

© Complete and correct

§ Inefficient and costly

clever alternatives : backjumping, backmarking

Constraint Programming: Solving CSP’s – p. 7

Problem of the look back

A ∈ {1, 2}, B ∈ {1, 2}, C ∈ {1, 2}, D ∈ {1, 2}

A > D ∧ B = C ∧ A = C

1 2

1 2

1 2

1 2

1 2

1 2 1 2

1

1 2

A

B

C

D

redundant tests of constraints

late detection of conflicts

thrashing (forget reasons for a conflict)

Constraint Programming: Solving CSP’s – p. 8

Solving CSPs : CSP reduction

basic idea : from a given CSP, find an equivalent CSP with
smaller domains (smaller search space, same solution space)

consider each atomic constraint separately

filter domains of variables and eliminate inconsistent values

© active use of the constraints. Many values vialoting
constraints are removed

§ Incomplete

→ constraint propagation : replace a CSP by an equivalent
and simpler one ; proceed by repeated reductions of
domains/constraints

Constraint Programming: Solving CSP’s – p. 9

Solving CSPs : example of CSP reduction

{and(x, y, z), or(t, u, x);

x ∈ [0, 1], y ∈ [0, 1], z ∈ [1], t ∈ [0, 1], u ∈ [0, 1]}

≡

{and(x, y, z), or(t, u, x);

x ∈ [1], y ∈ [1], z ∈ [1], t ∈ [0, 1], u ∈ [0, 1]}

reduction of x and y domains using the constraint and(x, y, z)

and the initial domains of x, y, and z

Constraint Programming: Solving CSP’s – p. 10

Solving CSPs : propagation and split

split : cut a CSP into sub-CSP’s (and thus smaller)

basic idea : interleave propagation and split of CSP’s

why ? from a smaller CSP, propagation can act again

1. constraint propagation

2. split

3. goto 1

© active use of the constraints

© complete

Constraint Programming: Solving CSP’s – p. 11

Solving CSPs : example
{and(x, y, z), or(t, u, x); x ∈ [0, 1], y ∈ [0, 1], z ∈ [1], t ∈ [0, 1], u ∈ [0, 1]}

≡ (propagation : and)

{and(x, y, z), or(t, u, x); x ∈ [1], y ∈ [1], z ∈ [1], t ∈ [0, 1], u ∈ [0, 1]}

≡ (split t)

{. . . ; x, y, z ∈ [1], t ∈ [0], u ∈ [0, 1]} or {. . . ; x, y, z ∈ [1], t ∈ [1], u ∈ [0, 1]}

≡ (propagation : or) ≡ (no propagation)

{. . . ; x, y, z ∈ [1], t ∈ [0], u ∈ [1]} or {. . . ; x, y, z ∈ [1], t ∈ [1], u ∈ [0, 1]}

≡ (split u)

{and(x, y, z), or(t, u, x);

x, y, z, t ∈ [1], u ∈ [1]}
or

{and(x, y, z), or(t, u, x);

x, y, z, t ∈ [1], u ∈ [0]}

Constraint Programming: Solving CSP’s – p. 12

Constraint solving

Constraint Programming: Solving CSP’s – p. 13

Projections

Given a sequence of variables X = x1, . . . , xn with respective
domains D1, . . . , Dn

Consider :

an element d = (d1, . . . , dn) ∈ D1 × . . . × Dn

and a sub-sequence Y = xi1 , . . . , xil of X

Let denote di1 , . . . , dil by d[Y].

d[Y] is called the projection of d on Y

(note that d[xl] = dl)

Constraint Programming: Solving CSP’s – p. 14

Solution

Consider a CSP P = {C1, . . . , Cl; x1 ∈ D1, . . . , xn ∈ Dn}.

d1, . . . , dn ∈ D1 × . . . × Dn is a solution of P if and only if :
for each Cl of P on Y (a sub-sequence of x1, . . . , xn)

d[Y] ∈ Cl

Constraint Programming: Solving CSP’s – p. 15

Equivalence of CSP’s

two CSP’s P1 and P2 are equivalent if they have the same
solution space

two CSP’s P1 and P2 are equivalent w.r.t. the sequence of
variables X iff :

{d[X] | d is a solution to P1} = {d[X] | d is a solution to P2}

a csp P is equivalent w.r.t. a sequence of variables X to a
union of CSP’s P1, . . . ,Pn if :

{d[X] | d is a solution to P} =
n⋃

i=1

{d[X] | d is a solution to Pi}

Constraint Programming: Solving CSP’s – p. 16

Solved and failed CSP’s

a constraint C on y1, . . . , yl with domains D1, . . . , Dn is
solved if C = D1 × . . . × Dn

a CSP {C1, . . . , Cl; x1 ∈ D1, . . . , xn ∈ Dn is solved if each Ci

(i ∈ [1..l]) is solved and none of the Dj (j ∈ [1..n]) is empty

a csp {C1, . . . , Cl; x1 ∈ D1, . . . , xn ∈ Dn is failed if one of the
Ci is the false constraint (generaly noted ⊥) or one of the Dj

is empty.

Constraint Programming: Solving CSP’s – p. 17

Constraint solving framework

solve(CSP) :
while not finished do

pre-process
constraint propagation
if happy

then finished=true
else split

part-of search
endif

endwhile

where part-of search consists in calls to the solve function

Remark : part-of search is one of the mechanisms defining
search

Constraint Programming: Solving CSP’s – p. 18

Pre-process

transform constraints into a desired form :

from which reductions (constraint propagation) can be
performed (e.g., primitive constraints)

from which reductions are stronger (e.g., dependency
problem for reals)

on which the solver is more efficient (redundancies,
symetries, order of constraints, graph representation, . . .)

Constraint Programming: Solving CSP’s – p. 19

Pre-process example : decomposition

decomposing complexe constraints into primitive constraints (for
which reductions can be performed) :

Example :
3 ∗ x + y + z ∗ t = 6

becomes
3 ∗ x = α1 ∧ α1 + y = α2 ∧ z ∗ t = α3 ∧ α2 + α3 = 6

© more easy to implement (no heavy symbolic manipulations)
§ less reduction capacity (cf. alldiff and its decomposition)

Constraint Programming: Solving CSP’s – p. 20

Happy

Depends on the type of the desired solving :

find a solution

find all solutions

find the optimal solution (global optimum)

find a good solution (local optimum)

find that there is no solution (insatisfiable CSP)

find a “good” simplification (normal form to generate
solutions, good approximation of solution)

Constraint Programming: Solving CSP’s – p. 21

Split

split a CSP into smaller CSP’s s.t.
the union of smaller CSP’s is equivalent to the initial one

why ? propagation can act again on smaller CSP’s

to obtain a complete solver

two types of split :

split a domain (most common)

split a constraint

Constraint Programming: Solving CSP’s – p. 22

Constraint spliting

replace a constraint by “smaller” constraints

example : disjunction

replace {C1, . . . , Ci,1 ∨ Ci,2, . . . , Cl; x1 ∈ D1, . . . , xn ∈ Dn}

by the two CSP’s (union of CSP’s)
{C1, . . . , Ci,1, . . . , Cl; x1 ∈ D1, . . . , xn ∈ Dn},
{C1, . . . , Ci,2, . . . , Cl; x1 ∈ D1, . . . , xn ∈ Dn}

Constraint Programming: Solving CSP’s – p. 23

Domain spliting
replace a domain by a union of “smaller” domains

general form : (bisection : 2 CSP’s, split in the middle)

replace {C; . . . , xi ∈ Di, . . .}

by the CSP’s (union of CSP’s)
{C; . . . , xi ∈ Di1 , . . .}, . . . , {C; . . . , xi ∈ Dim , . . .}

with
⋃m

j=1
Dij = Di

(better if pairwise disjoint Dij ∩ Dik = ∅ for all j and k)

examples : labeling (enumeration)

replace {C; . . . , xi ∈ Di, . . .}

by the two CSP’s (union of CSP’s)
{C; . . . , xi ∈ {di}, . . .}, {C; . . . , xi ∈ Di \ {di}, . . .}

Constraint Programming: Solving CSP’s – p. 24

Spliting strategies

theory : not important

practice : very important for efficiency

strategies based on :

the variable to be split
where to split (e.g., bisection)
which value for labeling
the constraint to be split

examples :

most constrained variable (that appears the most often)
largest domain first (variable with the largest domain)
largest/smallest/middle value of a domain

Constraint Programming: Solving CSP’s – p. 25

Part-of search

part of the search mechanism
(according with propagation and split)
→ exploration of the search space

practice : very important for efficiency

manage sub-CSP’s

select the CSP’s to explore w.r.t. the desired type of solving
(one, all, optim, . . .)

Constraint Programming: Solving CSP’s – p. 26

Part-of search

Numerous techniques :

bactracking

intelligent backtracking

backjumping
backmarking

branch and bound (optimization)

branch and infer

when combined with constraint propagation

forward checking
partial look ahead
full look ahead

Constraint Programming: Solving CSP’s – p. 27

Backtracking

if no propagation : bactracking a la Prolog

with propagation :
depending on the propagation, can lead to :

forward checking
partial look ahead
full look ahead

in all cases, give a search tree s.t.

nodes are dynamically generated (split)
a node = a CSP
leaves are failed or solved CSP’s

Constraint Programming: Solving CSP’s – p. 28

Constraint propagation

replace a CSP by a CSP which is :

equivalent (same set of solutions)
“smaller” (domains are reduced)
“simpler” (constraints are reduced)

constraint propagation mechanism :
repeatedly reduce domains or constraints

can be seen as a fixed point of application of reduction
functions

reduction function to reduce domains or constraints
can be seen as an abstraction of the constraints by
reduction functions

Constraint Programming: Solving CSP’s – p. 29

Constraint propagation : reducing constraints

Generally :

adding new (redundant) constraints
simplifying constraints (e.g., arithmetic simplification)

example : transitivity
Reduction function :

x < y, y < z → x < y, y < z, x < z

the CSP {. . . , x < y, . . . , y < z, . . . ; D}

can be reduced to
the CSP {. . . , x < y, . . . , y < z, . . . , x<z; D}

Constraint Programming: Solving CSP’s – p. 30

Constraint propagation : reducing domains (1)

Generally :

reduce domains using constraint and domains
→ reduce the search space

generic domain reduction :

Given a constraint C over x1, . . . , xn with domains
D1, . . . , Dn

select a variable xi to be reduced
delete from Di all values for xi that do not participate in a
solution of C

Constraint Programming: Solving CSP’s – p. 31

Constraint propagation : reducing domains (2)

example : linear equalities on integer

reduction function :

x < y, x ∈ [lx..rx], y ∈ [ly..ry]

→

x < y, x ∈ [lx..min(rx, ry − 1)], y ∈ [max(ly, lx + 1)..ry]

example of use

the CSP
{. . . , x < y, . . . ; . . . , x ∈ [10..20], . . . , y ∈ [0..15]}

can be reduced to the CSP
{. . . , x < y, . . . ; . . . , x ∈ [10..14], . . . , y ∈ [11..15]}

Constraint Programming: Solving CSP’s – p. 32

Constraint propagation mechanism

repeated application of reductions

try to apply only useful reductions

stop

when a local consistency notion is reached
(e.g., arc, node, hyper-arc consitency)

or when reduction becomes inefficient
(e.g., cycling weak reductions)

or when a domain is empty (failed CSP)

Constraint Programming: Solving CSP’s – p. 33

	Objectives
	Intuitive constraint solving
	Constraint solving
	Solver properties
	Solving CSP
	Solving CSPs: look-back
	Problem of the emph {look back}
	Solving CSPs: CSP reduction
	Solving CSPs: example of CSP reduction
	Solving CSPs: propagation and split
	Solving CSPs: example
	Constraint solving
	Projections
	Solution
	Equivalence of CSP's
	Solved and failed CSP's
	Constraint solving framework
	Pre-process
	Pre-process example: decomposition
	Happy
	Split
	Constraint spliting
	Domain spliting
	Spliting strategies
	Part-of search
	Part-of search
	Backtracking
	Constraint propagation
	Constraint propagation: reducing constraints
	Constraint propagation: reducing domains (1)
	Constraint propagation: reducing domains (2)
	Constraint propagation mechanism

