Constraint Programming:
Solving CSP’s

Eric MONFROY

IRIN, Université de Nantes

» intuitive notion of CSP solving
» some more definitions about CSP’s
» constraint programming basic framework

» the different steps in constraint solving

Intuitive constraint solving

Given a constraint ¢, the following problems can be studied :

» satisfaction : is the constraint ¢ satisfiable ?
(Is there a valuation of variables of ¢ such that c is true ?)

solution : if ¢ is satisfiable, produce one, several, all solutions

optimization : produce the/an optimal solution (concept to be
defined)

» simplification : transform c into an equivalent constraint (i.e., with
the same solution space)

We focus on the first two problems

» a solver is complete if it can always answer by yes or no for
a CSP

» asolveris correct if it computes only solutions

» asolver is reliable (or validated) if it computes all the
solutions of a problem

over real numbers : difficult to get completeness and correctness

Theoretic : trivial, systematic exploration of the search space (look back) !!!

» (enerate and test : generate an instantiation for all variables, and then
test wheter constraints are satisfied or not

® Backtracking : incremental generation of instantiations.
Test satisfiability of constraints whose variables are instanciated.
In case of success : instanciate new variables.

In case of failure : undo the most recent instanciation, and make a new
instanciation.

s thrashing : repeated failures caused by the same reasons
s conflicting values are not memorized during backtracking

® Jocal consistency : values that do not satisfy all constraints are removed
from domain variables

Look back : variables are instanciated, and “instanciated”
constraints are tested

» non-incremental version : generate and test
» incremental version : backtracking

© Complete and correct

© Inefficient and costly

clever alternatives : backjumping, backmarking

Ae{l,2},Be{l1,2},C e{1,2},D €{1,2}
A>DANB=CNA=C

A
B 2
C 2
D 1
‘~ . ' . “ .
‘. thrashing (forget reasons for a conflict) redundant tests of constraints

~
~
~
~
~

late detection of conflicts

basic idea : from a given CSP, find an equivalent CSP with
smaller domains (smaller search space, same solution space)

» consider each atomic constraint separately

» filter domains of variables and eliminate inconsistent values

© active use of the constraints. Many values vialoting
constraints are removed

© Incomplete

— constraint propagation : replace a CSP by an equivalent
and simpler one ; proceed by repeated reductions of
domains/constraints

{and(x,y, z),or(t,u, x);
re 0,1,y € 0,1],z € [1],t € 0,1],u € |0,1]}

{and(x,y, z),or(t,u, x);
v e[l],yell],ze[l],t €10,1],u € [0,1]}

reduction of z and y domains using the constraint and(x, y, z)
and the initial domains of z, y, and z

split : cut a CSP into sub-CSP’s (and thus smaller)
basic idea : interleave propagation and split of CSP’s

why ? from a smaller CSP, propagation can act again

1. constraint propagation
2. split
3. goto 1

© active use of the constraints

© complete

{fand(x,y, z),or(t,u,x); = € [0,1],y € [0,1],z € [1],t € [0,1],u € [0,1]}

= (propagation : and)
{and(x,y, z),or(t,u,x); x € [1],y € [1],z € [1],t € [0,1],u € [0, 1]}
= (split t)
{...;x,y,z€[1],t € [0],u€e[0,1]} or {...;z,y,z€][l],t€[l],ue]0,1]}
= (propagation : Or) = (no propagation)
{...;x,y,z€[l,t € 0,uel]} or {...;z,y,z€ll],te[l],ue]0,1]}
= (split U)

tand(z,y, z), or(t, u, x); land(z, y, z), or(t, u, v);
or

x,y,z,t € [1],u € [1]} x,y,z,t € [1],u € [0]}
. CortaniPogemming SoMmgOSPS-p12

Constraint solving

Given a sequence of variables X = z4, ..., x, with respective
domains Dy, ..., D,
Consider :

» anelementd = (dy,...,d,) € Dy x...x D,

» and a sub-sequence Y =uz;,,...,z; of X

Let denote d;,, ..., d;, by d[Y].
d|Y'] is called the projection of donY

(note that d|x;| = d))

Considera CSP P ={C4,...,C;; x1 € Dy, ...,x, € D, }.

di,...,d, € Dy x...x D, is a solution of P if and only if :
for each C; of P on Y (a sub-sequence of =1, ..., x,)
d[Y] e (]

» two CSP’s P; and P, are equivalent if they have the same
solution space

» two CSP’s P; and P, are equivalent w.r.t. the sequence of
variables X iff :

{d[X] | dis asolution to P1} = {d[X] | dis a solution to P5 }

» acsp P is equivalent w.r.t. a sequence of variables X to a
union of CSP’s Py, ... P, if:

{d|X] | dis asolutionto P} = U{d | | dis a solution to P; }

1=1

» aconstraint C on yy,...,y; with domains Dy, ..., D, is
solvedifC' =D, x...x D,

» aCSP{C,,...,C); x1 € Dy,...,z, € D, is solved if each C;
(i € [1..1]) is solved and none of the D; (j € [1..n]) is empty

s acsp{Cy,...,C;; 1 € Dy,...,x, € D, is failed if one of the
C; I1s the false constraint (generaly noted _L) or one of the D;
IS empty.

solve(CSP) :
while not finished do
pre-process
constraint propagation
If happy
then finished=true
else split
part-of search
endif
endwhile

where part-of search consists in calls to the solve function

Remark : part-of search is one of the mechanisms defining

search
. ConstantProgamming SohingGSPs—p.18

transform constraints into a desired form :
» from which reductions (constraint propagation) can be
performed (e.g., primitive constraints)

» from which reductions are stronger (e.g., dependency
problem for reals)

» on which the solver is more efficient (redundancies,
symetries, order of constraints, graph representation, ...)

decomposing complexe constraints into primitive constraints (for
which reductions can be performed) :

Example :
3xxr+y+z2xt =06

becomes

3xrx=a1 N1 +y=as ANz*xt=a3Nas+a3=~0

© more easy to implement (no heavy symbolic manipulations)
© less reduction capacity (cf. alldiff and its decomposition)

Depends on the type of the desired solving :

» find a solution

» find all solutions

» find the optimal solution (global optimum)

» find a good solution (local optimum)

» find that there is no solution (insatisfiable CSP)

» find a “good” simplification (normal form to generate
solutions, good approximation of solution)

» split a CSP into smaller CSP’s s.i.
the union of smaller CSP’s is equivalent to the initial one

» why ? propagation can act again on smaller CSP’s
» to obtain a complete solver

» two types of split :
s Split a domain (most common)

» Split a constraint

» replace a constraint by “smaller” constraints
» example : disjunction
replace {Cl, Ce Cz',l V Ci’Q, ., Ch €Dy, ..., x, € Dn}

by the two CSP’s (union of CSP’s)
{C’l,...,C’i,l,...,C’l; $1€D1,...,$n€Dn},
{C’l,...,C’i,Q,...,Cl; $1€D1,...,$n€Dn}

» replace a domain by a union of “smaller” domains
» general form : (bisection : 2 CSP’s, split in the middle)
replace {C; ..., x; € D;,...}

by the CSP’s (union of CSP’s)
{C;,...,0;€D;,,...},....4C; ...,x; €D; ,...}

with U7, D;, = D;

(better if pairwise disjoint D;, N D;, = 0 for all j and k)

» examples : labeling (enumeration)
replace {C; ...,xz; € D;,...}

by the two CSP’s (union of CSP’s)

{C; ...z, ed{d;},.. . }1,{C; ...,y € D\ {d;},...}
L constraint Programming: SoNiNg CSPS —p 24

» theory : not important
» practice : very important for efficiency

» strategies based on :

s the variable to be split

s Where to split (e.g., bisection)
s Which value for labeling

» the constraint to be split

» examples:

» Most constrained variable (that appears the most often)
s largest domain first (variable with the largest domain)
s largest/smallest/middle value of a domain

» part of the search mechanism
(according with propagation and split)
— exploration of the search space

» practice : very important for efficiency
» manage sub-CSP’s

» select the CSP’s to explore w.r.t. the desired type of solving
(one, all, optim, ...)

Numerous techniques :
» bactracking

» intelligent backtracking
s backjumping
s backmarking
» branch and bound (optimization)

» branch and infer

» when combined with constraint propagation

» forward checking
» partial look ahead
s full look ahead

» if no propagation : bactracking a la Prolog

» with propagation :
depending on the propagation, can lead to :
» forward checking

» partial look ahead
» full look ahead

» in all cases, give a search tree s.t.

s nodes are dynamically generated (split)
s anode =aCSP
» leaves are failed or solved CSP’s

» replace a CSP by a CSP which is :

s equivalent (same set of solutions)
s “smaller” (domains are reduced)
s “simpler” (constraints are reduced)

» constraint propagation mechanism :
repeatedly reduce domains or constraints

» can be seen as a fixed point of application of reduction
functions

s reduction function to reduce domains or constraints
s Can be seen as an abstraction of the constraints by
reduction functions

» Generally :

s adding new (redundant) constraints
s simplifying constraints (e.g., arithmetic simplification)

» example : transitivity
Reduction function :

r<yy<z — r<yy<z,r<z

the CSP{... ;o <y,...,y<z,...; D}
can be reduced to
the CSP{... .z <y,...,y < z,...,X<2z; D}

» Generally :

s reduce domains using constraint and domains
» — reduce the search space

» generic domain reduction :
s Given a constraint C' over x4, ..., x, with domains
Dy,....D,
s Select a variable z; to be reduced

» delete from D; all values for z; that do not participate in a
solution of C

» example : linear equalities on integer

» reduction function :

r<Y,Tec [la:--rx]ay S [ly"ry]

—

r<y,x € |l.min(ry,r, — 1),y € |max(l,,l, +1)..r,]

» example of use

the CSP

{...,x<y,...; ...,z €[10..20],...,y € [0..15]}
s can be reduced to the CSP

{...,x<y,...; ...,z €[10.14], ...,y € [11..15]}

» repeated application of reductions
» try to apply only useful reductions

» Siop

s When a local consistency notion is reached
(e.g., arc, node, hyper-arc consitency)

s or when reduction becomes inefficient
(e.g., cycling weak reductions)

s or when a domain is empty (failed CSP)

	Objectives
	Intuitive constraint solving
	Constraint solving
	Solver properties
	Solving CSP
	Solving CSPs: look-back
	Problem of the emph {look back}
	Solving CSPs: CSP reduction
	Solving CSPs: example of CSP reduction
	Solving CSPs: propagation and split
	Solving CSPs: example
	Constraint solving
	Projections
	Solution
	Equivalence of CSP's
	Solved and failed CSP's
	Constraint solving framework
	Pre-process
	Pre-process example: decomposition
	Happy
	Split
	Constraint spliting
	Domain spliting
	Spliting strategies
	Part-of search
	Part-of search
	Backtracking
	Constraint propagation
	Constraint propagation: reducing constraints
	Constraint propagation: reducing domains (1)
	Constraint propagation: reducing domains (2)
	Constraint propagation mechanism

