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Objective

Solving constraint over finite domains

exhaustive search vs. filtering algorithms

recap about constraint propagation

incomplete solvers and local consistency notion

node consistency (NC algorithm)

arc consistency (algorithms : AC-1, AC-3, AC-4)

bound consistency
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Intuitive approach to local consistencies
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Finite domains

each set isomorphic to a finite part of N

1. Set of natural integer that can be represented by a machine

2. Booleans : {false, true} (or {0, 1})

3. Letters : A,B,C, . . .

4. Set of the members of a team

5. . . .

: FD = very important to model numerous industrial problems
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CSP (reminder)
A constraint satisfaction problem (CSP) is defined by :

a sequence of variables X = x1, . . . , xn with domains
D1, . . . , Dn (associated to the variables)

a set of constraints C1, . . . , Cl, each Ci on a sub-sequence
Yi of X

implicitely, the CSP represents the constraint :

C1 ∧ . . . ∧ Cn ∧ x1 ∈ D1 ∧ · · · ∧ xn ∈ Dn

A solution of the CSP is a n-tuple d = (a1, . . . , an) such that :

d ∈ D1 × · · · ×Dn

and for each i, d[Yi] ∈ Ci

(d[Yi] satisfies C, or C(ai1, . . . , ail) is true)
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Solving CSPs (1)

Look back : variables are instanciated, and “instanciated”
constraints are tested

non-incremental version : generate and test

incremental version : backtracking

© complete and correct

§ inefficient and costly

clever alternatives : backjumping, backmarking
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Problem of the look back

A ∈ {1, 2}, B ∈ {1, 2}, C ∈ {1, 2}, D ∈ {1, 2}

A > D ∧B = C ∧ A = C

1 2

1 2

1 2

1 2

1 2

1 2 1 2
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1 2

A

B
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D

redundant tests of constraints

late detection of conflicts

thrashing (forget reasons for a conflict)
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Solving CSPs (2)

basic idea : from a given CSP, find an equivalent CSP with
smaller domains (smaller search space)

consider each atomic constraint separately

filter domains of variables and eliminate inconsistent values

© active use of the constraints. Many values vialoting
constraints are removed

§ incomplete (complete with split and search)
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Constraint solving framework

solve(CSP) :
while not finished do

pre-process
constraint propagation
if happy

then finished=true
else split

part-of search
endif

endwhile

where part-of search consists in calls to the solve function

Remark : part-of search is one of the mechanisms defining
search
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Constraint propagation

replace a CSP by a CSP which is :

equivalent (same set of solutions)
“smaller” (domains are reduced)
“simpler” (constraints are reduced)

constraint propagation mechanism :
repeatedly reduce domains or constraints

can be seen as a fixed point of application of reduction
functions

reduction function to reduce domains or constraints
can be seen as an abstraction of the constraints by
reduction functions
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Constraint propagation : reducing domains

Generally :

reduce domains using constraint and domains
→ reduce the search space

generic domain reduction :

Given a constraint C over x1, . . . , xn with domains
D1, . . . , Dn

select a variable xi to be reduced
delete from Di all values for xi that do not participate in a
solution of C
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Local consistency

a criterion to stop propagation

a way to characterize a CSP or a constraint

why local ?

generally, unable to obtain global consistency
(incomplete solvers without split and search)

thus, local means on a sub-set of a CSP
→ usually, local to ONE constraint
this sub-set is used to reduce domains
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Local consistency (1)

at the beginning : for unary and binary constraints

unary constraints : node consistency

for constraints such as : even(x), y > 5, . . .

binary constraints : arc consistency

for constraints such as : x > y + 4, x 6= y, . . .
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Local consistency (2)

then : for n-ary constraints and higher/stronger consistencies

n-ary constraints : hyper-arc consistency

for constraints such as : 3.x + y = z, and(x, y, z), . . .

(m-)path consistency :

using several constraints at a time

k-consistency :

every (k − 1)-consistent instanciation can be extended to
a k-consistent instanciation (k variables)
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Local consistency (3)
then : consistency on bounds of domains
(when domains are too big to consider each value)

bound consistency (finite domains) :

for constraints such as : 3.x + y = z with domains
x ∈ [−10000..9000], y ∈ [−5000..9000], z ∈ [100..19000], . . .

2b consistency (real interval, “primitive” constraints)

for constraints such as : 3.23 ∗ x ∗ y = z with domains
x ∈ [−100.1547..9000.0], y ∈ [−5.12..9.0], z ∈ [0.99..1.01]

box consistency (real interval)

for constraints such as : 3.23 ∗ x + y ∗ x = z2 + exp(x) with
domains
x ∈ [−10.147..90.0], y ∈ [−5.1..9.0], z ∈ [0.99..1.01]
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Local consistency : intuitive (1)

{B > 1, A < C,A = B,B > C − 2; A,B,C ∈ {1, 2, 3}}

the CSP can be represented by the graph :

A

C

B

A<C

A=B

B>1

B>C−2

how to reduce domains ?

Idea : follow arcs of the graph
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Local consistency : intuitive (2)

using A < C, A and/or C may be reduced

B>C−2

B>1

A

C

B

A<C

A=B

A and C reduced to A ∈ {1, 2}, C ∈ {2, 3}

now, reduce B using A = B or B > C − 2
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Local consistency : intuitive (3)

{B > 1, A < C,A = B,B > C − 2; A ∈ {1, 2}, B ∈ {1, 2, 3}, C ∈ {2, 3}}

using A = B, A and/or B may be reduced

B>C−2

A=B

B>1

A

C

B

A<C

B reduced to B ∈ {1, 2}

A not reduced, so useless to use A < C

now, reduce C and/or B using B > C − 2, or reduce B using
B > 1
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Local consistency : intuitive (4)

{B > 1, A < C,A = B,B > C − 2; A ∈ {1, 2}, B ∈ {1, 2}, C ∈ {2, 3}}

using B > C − 2, B and/or C may be reduced

B>C−2

A<C

A=B

B>1

A

C

B

B, C not reduced

B > 1 can be used,
and so on until no domain can be reduced anymore
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Local consistencies : definition
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Node consistency : definition

Definition : an atomic unary constraint C over the variable x

with the domain Dx is node consistent iff :
∀a ∈ Dx : a ∈ C (or C(a))

Remarks :
a non unary constraint is always considered as node consistent

a CSP is node consistent if all its constraints are node consistent

Examples :

x ∈ {4, 6}, even(x) is node consistent

x ∈ [2..12], x > 5 is not node consistent
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Node consistency : algorithm

node_consistency(C,D)
begin

let C ≡ C1, · · · , Cn

for i← 1 to n do
D← revise_node(Ci,D)

endfor
return(D)

end

revise_node(C,D)
begin

if (|var(C)| == 1) then
{x} ← var(C)
Dx ← {d ∈ Dx | d ∈ C}

endif
return(D)

end
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Arc Consistency : definition

Definition : an atomic binary constraint C over the variables x

and y with domains Dx and Dy is arc consistent iff :
∀a ∈ Dx∃b ∈ Dy s.t. (a, b) ∈ C

∀b ∈ Dy∃a ∈ Dx s.t. (a, b) ∈ C

Remarks :
a non binary constraint is arc consistent

a CSP is arc consistent iff all its constraints are arc consistent

Examples :
x ∈ {1, 3}, y ∈ {2, 4}, x + y = 5 is arc consistent

x ∈ {1, 2}, y ∈ {1, 7}, x = y is not arc consistent
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Arc Consistency : intuition

solution space

Dx

reduced search space initial search space

D’x

D’y
Dy
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Arc consistency : AC-1 algorithm

AC-1(C,D)
begin

let C ≡ C1, · · · , Cn

repeat
D

′ ← D

for i← 1 to n do
D← revise_arc(Ci,D)

endfor
until(D′ = D)
return(D)

end

revise_arc(C,D)
begin

if (|var(C)| == 2) then
{x, y} ← var(C)
Dx ← {a ∈ Dx |

∃b ∈ Dy : (a, b) ∈ C}
Dy ← {b ∈ Dy |

∃a ∈ Dx : (a, b) ∈ C}
endif
return(D)

end
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Local consistency : example

Consider the CSP
{X < Y, Y < Z,Z 6 2; DX , DY , DZ ∈ {1, 2, 3}}

Computation of node consistency
: 3 removed from Dz

Computation for arc consistency
: inconsistent

Generally : incompleness. Algorithm returns some domains for
the variables. All kept values are not necessarily solution !
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Arc consistency 6= consistency

Consider the CSP
{x = y, x 6= y,Dx ∈ {a, b}, Dy ∈ {a, b}

the CSP is arc consistency
: a and b cannot be reduced using x = y or x 6= y

However, the CSP is not consistent
: no solution
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Problems of AC-1

inefficient

wake-up constraints when useless

no modification of variable domains

no early detectection of failed CSP

two loops with failed CSP
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Idea of AC-3

Idea : wake up constraints when variables have effectively
been modified

Mechanism :

manage a set of constraints to use

update this set after each reduction attemp

add constraints with at least one modified variable

stop

when no more constraint to consider

failed CSP

stop as soon as one domain is empty
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Local consistency : AC-3 algorithm

AC-3(C ≡ C1, · · · , Cn,D)
begin
S ← {C1, · · · , Cn}

while (S 6= ∅)
choose and extract C from S
D

′ ← revise_arc(C,D)
if (D′ = ∅) then return(∅) endif
S ← S ∪ {Ci | ∃x ∈ var(Ci) s.t. D

′

x 6= Dx}

D← D
′

endwhile
return(D)

end

Revise_arc unchanged
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Local consistency : AC-4 algorithm

Possible speed-up for AC-3 : to keep in memory for each binary
constraints c(x, y) support relations between values of Dx and Dy :

how many values of Dy support each value of Dx

what are the values of Dx supported by a particular value of Dy

and vice-versa.

© when a value is removed, we know precisely the changes that are
induced, and which constraints to wake-up

§ memory space
AC-4 : best theoretical complexity. . . often the worst in pratice
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Hyper-arc consistency (1)

what about n-ary constraints for n > 2 ?

hyper-arc consistency : a constraint C over the variables
x1, . . . , xn with domains D1, . . . , Dn is hyper-arc consistent w.r.t.
xi (i ∈ {1, . . . , n}) iff :

∀a ∈ Di, ∃d ∈ D1 × . . .×Dn s.t. d ∈ C and a = d[xi]
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Hyper-arc consistency (2)

a constraint C over x1, . . . , xn with domains D1, . . . , Dn is
hyper-arc consistent iff c is hyper-arc consistent w.r.t. xi for
all i ∈ {1, . . . , n}.

a CSP is hyper-arc consistent iff all its constraints are
hyper-arc consistent
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Hyper-arc consistency (3)

Examples : constraints

x ∈ {3, 5, 7}, y ∈ {1, 4}, z ∈ {4, 6, 14}

x + 2 ∗ y = z + 1 is hyper-arc consistent

x ∈ {1, 2, 4}, y ∈ {3, 5}, z ∈ {4, 5}

x + y − z = 0 is not hyper-arc consistent
(not hyper-arc consistent w.r.t. x, e.g., value 4)

Examples : CSP

{ and(x,y,z), or(x,y,1) ; x ∈ {1}, y ∈ {0, 1}, z ∈ {0, 1}}

the CSP is hyper-arc consistent

{ and(x,y,z), or(x,y,1) ; x ∈ {0, 1}, y ∈ {0, 1}, z ∈ {1}}

the CSP is not hyper-arc consistent
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Directional arc consistency (1)

Idea : directional propagation

consider an ordering < on variables :

directional arc consistency : a constraint C over the variables
x, y with domains Dx, Dy is directionally arc consistent w.r.t. <

iff :

if x < y :
∀a ∈ Dx∃b ∈ Dy (a, b) ∈ C

if y < x :
∀b ∈ Dy∃a ∈ Dx (a, b) ∈ C

a CSP is directionally arc consistent w.r.t. < iff all its constraints are
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Directional arc consistency (2)

example :
{x < y; x ∈ [2..7], y ∈ [3..7]}

the CSP is not arc consistent

the CSP is directionally arc consistent w.r.t. y < x

the CSP is not directionally arc consistent w.r.t. x < y
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Limitations of arc/hyper-arc consistency (1)

Problem : determining arc/hyper-arc consistency can be too
costly

Example :
{x = y + z, 2.x = 4.y; x, y, z ∈ {1, 2, 8, 12, 34, . . . , 110000}}

domain reduction : each value must be tested ! ! !

Idea : to relax consistency :test only bounds
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Limitations of arc/hyper-arc consistency (2)
Example : {x < y, y < z, z < x; x, y, z ∈ [1..10000]}

domain reduction :

using the first constraint :
{x < y, y < z, z < x; x ∈ [1..9999], y ∈ [2..10000], z ∈ [1..10000]}

using the second constraint :
{x < y, y < z, z < x; x ∈ [1..9999], y ∈ [2..9999], z ∈ [3..10000]}

using the third constraint :
{x < y, y < z, z < x; x ∈ [4..9999], y ∈ [2..9999], z ∈ [3..9998]}

. . . until a domain is empty

Idea 1 : testing bounds does not change the cost
Idea 2 : symbolic computation→ direct proof (transitivity of <)
Idea 3 : using two constraints at a time→ path consistency
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Arc consistency : intuition (recap)

solution space

Dx

reduced search space initial search space

D’x

D’y
Dy
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Bound consistency : intuition

D’x
Dx

reduced search space initial search space

D’y
Dy

solution space
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Bound consistency (1)

Idea : domains are represented by intervals

bound consistency : a constraint C over the variables
x1, . . . , xn with domains D1, . . . , Dn is bound consistent w.r.t. xi

with domain Di = [l, r] (i ∈ {1, . . . , n}) iff :

∃d ∈ D1 × . . .×Dn s.t. d[xi] = l and d ∈ C

and
∃d ∈ D1 × . . .×Dn s.t. d[xi] = r and d ∈ C
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Bound consistency (2)

a constraint c is bound consistent iff it is w.r.t. xi for all
i ∈ {1, . . . , n}.

a CSP is bound consistent iff all its constraints are bound
consistent

Examples :

x ∈ [3..6], y ∈ [2, 3], z ∈ [5, 9], x + y = z

is bound consistent

x ∈ [2..3], y ∈ [3..6], z ∈ [1..19], 3 ∗ x = y + z

is not bound consistent
(not bound consistent w.r.t. z, e.g., value 19)

Constraint Programming: Local Consistencies – p. 42



Bound consistency (3)

computing bound consistency for “primitive” constraints :
reasonning only on bounds
: easy, less complexe

Examples :

x + y = z with Dx = [a..b], Dy = [c..d], Dz = [e, f ]

x 6 y with Dx = [a..b], Dy = [c..d]
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Bound consistency : x 6 y

constraint :

x 6 y

to get bound consistency :

x 6 maxDy

y > min Dx
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Bound consistency : x 6 y

% x 6 y

revise_leq(Dx = [a..b], Dy = [c..d])
begin

Dx ← [a..min{b, d}]

Dy ← [max{a, c}..d]

return(Dx, Dy)
end
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Bound consistency : x + y = z

constraint :

x + y = z ≡ x = z − y ≡ y = z − x

to get bound consistency :

z > minDx + min Dy z 6 maxDx + maxDy

x > min Dz −maxDy x 6 maxDz −min Dy

y > min Dz −maxDx y 6 maxDz −minDx
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Bound consistency : x + y = z

% x+y=z

revise_addition(Dx = [a..b], Dy = [c..d], Dz = [e..f ])
begin

Dx ← Dx ∩ [e− d..c− f ]

Dy ← Dy ∩ [e− b..f − a]

Dz ← Dz ∩ [a + c..b + d]

return(Dx, Dy, Dz)
end
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Combination BT/AC

solvers using only local consistency : incomplete
realizing a complete solver : combination with backtracking

Look ahead : instanciation of some variables with filtering of
domains
: forward checking, partial look-ahead, full look-ahead

© no exploration of branches trivialy without solution

§ more work after each instanciation
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