
Constraint Programming:

Local Consistencies
Eric MONFROY

IRIN, University of Nantes

Constraint Programming: Local Consistencies – p. 1

Objective

Solving constraint over finite domains

exhaustive search vs. filtering algorithms

recap about constraint propagation

incomplete solvers and local consistency notion

node consistency (NC algorithm)

arc consistency (algorithms : AC-1, AC-3, AC-4)

bound consistency

Constraint Programming: Local Consistencies – p. 2

Intuitive approach to local consistencies

Constraint Programming: Local Consistencies – p. 3

Finite domains

each set isomorphic to a finite part of N

1. Set of natural integer that can be represented by a machine

2. Booleans : {false, true} (or {0, 1})

3. Letters : A,B,C, . . .

4. Set of the members of a team

5. . . .

: FD = very important to model numerous industrial problems

Constraint Programming: Local Consistencies – p. 4

CSP (reminder)
A constraint satisfaction problem (CSP) is defined by :

a sequence of variables X = x1, . . . , xn with domains
D1, . . . , Dn (associated to the variables)

a set of constraints C1, . . . , Cl, each Ci on a sub-sequence
Yi of X

implicitely, the CSP represents the constraint :

C1 ∧ . . . ∧ Cn ∧ x1 ∈ D1 ∧ · · · ∧ xn ∈ Dn

A solution of the CSP is a n-tuple d = (a1, . . . , an) such that :

d ∈ D1 × · · · ×Dn

and for each i, d[Yi] ∈ Ci

(d[Yi] satisfies C, or C(ai1, . . . , ail) is true)
Constraint Programming: Local Consistencies – p. 5

Solving CSPs (1)

Look back : variables are instanciated, and “instanciated”
constraints are tested

non-incremental version : generate and test

incremental version : backtracking

© complete and correct

§ inefficient and costly

clever alternatives : backjumping, backmarking

Constraint Programming: Local Consistencies – p. 6

Problem of the look back

A ∈ {1, 2}, B ∈ {1, 2}, C ∈ {1, 2}, D ∈ {1, 2}

A > D ∧B = C ∧ A = C

1 2

1 2

1 2

1 2

1 2

1 2 1 2

1

1 2

A

B

C

D

redundant tests of constraints

late detection of conflicts

thrashing (forget reasons for a conflict)

Constraint Programming: Local Consistencies – p. 7

Solving CSPs (2)

basic idea : from a given CSP, find an equivalent CSP with
smaller domains (smaller search space)

consider each atomic constraint separately

filter domains of variables and eliminate inconsistent values

© active use of the constraints. Many values vialoting
constraints are removed

§ incomplete (complete with split and search)

Constraint Programming: Local Consistencies – p. 8

Constraint solving framework

solve(CSP) :
while not finished do

pre-process
constraint propagation
if happy

then finished=true
else split

part-of search
endif

endwhile

where part-of search consists in calls to the solve function

Remark : part-of search is one of the mechanisms defining
search

Constraint Programming: Local Consistencies – p. 9

Constraint propagation

replace a CSP by a CSP which is :

equivalent (same set of solutions)
“smaller” (domains are reduced)
“simpler” (constraints are reduced)

constraint propagation mechanism :
repeatedly reduce domains or constraints

can be seen as a fixed point of application of reduction
functions

reduction function to reduce domains or constraints
can be seen as an abstraction of the constraints by
reduction functions

Constraint Programming: Local Consistencies – p. 10

Constraint propagation : reducing domains

Generally :

reduce domains using constraint and domains
→ reduce the search space

generic domain reduction :

Given a constraint C over x1, . . . , xn with domains
D1, . . . , Dn

select a variable xi to be reduced
delete from Di all values for xi that do not participate in a
solution of C

Constraint Programming: Local Consistencies – p. 11

Local consistency

a criterion to stop propagation

a way to characterize a CSP or a constraint

why local ?

generally, unable to obtain global consistency
(incomplete solvers without split and search)

thus, local means on a sub-set of a CSP
→ usually, local to ONE constraint
this sub-set is used to reduce domains

Constraint Programming: Local Consistencies – p. 12

Local consistency (1)

at the beginning : for unary and binary constraints

unary constraints : node consistency

for constraints such as : even(x), y > 5, . . .

binary constraints : arc consistency

for constraints such as : x > y + 4, x 6= y, . . .

Constraint Programming: Local Consistencies – p. 13

Local consistency (2)

then : for n-ary constraints and higher/stronger consistencies

n-ary constraints : hyper-arc consistency

for constraints such as : 3.x + y = z, and(x, y, z), . . .

(m-)path consistency :

using several constraints at a time

k-consistency :

every (k − 1)-consistent instanciation can be extended to
a k-consistent instanciation (k variables)

Constraint Programming: Local Consistencies – p. 14

Local consistency (3)
then : consistency on bounds of domains
(when domains are too big to consider each value)

bound consistency (finite domains) :

for constraints such as : 3.x + y = z with domains
x ∈ [−10000..9000], y ∈ [−5000..9000], z ∈ [100..19000], . . .

2b consistency (real interval, “primitive” constraints)

for constraints such as : 3.23 ∗ x ∗ y = z with domains
x ∈ [−100.1547..9000.0], y ∈ [−5.12..9.0], z ∈ [0.99..1.01]

box consistency (real interval)

for constraints such as : 3.23 ∗ x + y ∗ x = z2 + exp(x) with
domains
x ∈ [−10.147..90.0], y ∈ [−5.1..9.0], z ∈ [0.99..1.01]

Constraint Programming: Local Consistencies – p. 15

Local consistency : intuitive (1)

{B > 1, A < C,A = B,B > C − 2; A,B,C ∈ {1, 2, 3}}

the CSP can be represented by the graph :

A

C

B

A<C

A=B

B>1

B>C−2

how to reduce domains ?

Idea : follow arcs of the graph

Constraint Programming: Local Consistencies – p. 16

Local consistency : intuitive (2)

using A < C, A and/or C may be reduced

B>C−2

B>1

A

C

B

A<C

A=B

A and C reduced to A ∈ {1, 2}, C ∈ {2, 3}

now, reduce B using A = B or B > C − 2

Constraint Programming: Local Consistencies – p. 17

Local consistency : intuitive (3)

{B > 1, A < C,A = B,B > C − 2; A ∈ {1, 2}, B ∈ {1, 2, 3}, C ∈ {2, 3}}

using A = B, A and/or B may be reduced

B>C−2

A=B

B>1

A

C

B

A<C

B reduced to B ∈ {1, 2}

A not reduced, so useless to use A < C

now, reduce C and/or B using B > C − 2, or reduce B using
B > 1

Constraint Programming: Local Consistencies – p. 18

Local consistency : intuitive (4)

{B > 1, A < C,A = B,B > C − 2; A ∈ {1, 2}, B ∈ {1, 2}, C ∈ {2, 3}}

using B > C − 2, B and/or C may be reduced

B>C−2

A<C

A=B

B>1

A

C

B

B, C not reduced

B > 1 can be used,
and so on until no domain can be reduced anymore

Constraint Programming: Local Consistencies – p. 19

Local consistencies : definition

Constraint Programming: Local Consistencies – p. 20

Node consistency : definition

Definition : an atomic unary constraint C over the variable x

with the domain Dx is node consistent iff :
∀a ∈ Dx : a ∈ C (or C(a))

Remarks :
a non unary constraint is always considered as node consistent

a CSP is node consistent if all its constraints are node consistent

Examples :

x ∈ {4, 6}, even(x) is node consistent

x ∈ [2..12], x > 5 is not node consistent

Constraint Programming: Local Consistencies – p. 21

Node consistency : algorithm

node_consistency(C,D)
begin

let C ≡ C1, · · · , Cn

for i← 1 to n do
D← revise_node(Ci,D)

endfor
return(D)

end

revise_node(C,D)
begin

if (|var(C)| == 1) then
{x} ← var(C)
Dx ← {d ∈ Dx | d ∈ C}

endif
return(D)

end

Constraint Programming: Local Consistencies – p. 22

Arc Consistency : definition

Definition : an atomic binary constraint C over the variables x

and y with domains Dx and Dy is arc consistent iff :
∀a ∈ Dx∃b ∈ Dy s.t. (a, b) ∈ C

∀b ∈ Dy∃a ∈ Dx s.t. (a, b) ∈ C

Remarks :
a non binary constraint is arc consistent

a CSP is arc consistent iff all its constraints are arc consistent

Examples :
x ∈ {1, 3}, y ∈ {2, 4}, x + y = 5 is arc consistent

x ∈ {1, 2}, y ∈ {1, 7}, x = y is not arc consistent

Constraint Programming: Local Consistencies – p. 23

Arc Consistency : intuition

solution space

Dx

reduced search space initial search space

D’x

D’y
Dy

Constraint Programming: Local Consistencies – p. 24

Arc consistency : AC-1 algorithm

AC-1(C,D)
begin

let C ≡ C1, · · · , Cn

repeat
D

′ ← D

for i← 1 to n do
D← revise_arc(Ci,D)

endfor
until(D′ = D)
return(D)

end

revise_arc(C,D)
begin

if (|var(C)| == 2) then
{x, y} ← var(C)
Dx ← {a ∈ Dx |

∃b ∈ Dy : (a, b) ∈ C}
Dy ← {b ∈ Dy |

∃a ∈ Dx : (a, b) ∈ C}
endif
return(D)

end

Constraint Programming: Local Consistencies – p. 25

Local consistency : example

Consider the CSP
{X < Y, Y < Z,Z 6 2; DX , DY , DZ ∈ {1, 2, 3}}

Computation of node consistency
: 3 removed from Dz

Computation for arc consistency
: inconsistent

Generally : incompleness. Algorithm returns some domains for
the variables. All kept values are not necessarily solution !

Constraint Programming: Local Consistencies – p. 26

Arc consistency 6= consistency

Consider the CSP
{x = y, x 6= y,Dx ∈ {a, b}, Dy ∈ {a, b}

the CSP is arc consistency
: a and b cannot be reduced using x = y or x 6= y

However, the CSP is not consistent
: no solution

Constraint Programming: Local Consistencies – p. 27

Problems of AC-1

inefficient

wake-up constraints when useless

no modification of variable domains

no early detectection of failed CSP

two loops with failed CSP

Constraint Programming: Local Consistencies – p. 28

Idea of AC-3

Idea : wake up constraints when variables have effectively
been modified

Mechanism :

manage a set of constraints to use

update this set after each reduction attemp

add constraints with at least one modified variable

stop

when no more constraint to consider

failed CSP

stop as soon as one domain is empty

Constraint Programming: Local Consistencies – p. 29

Local consistency : AC-3 algorithm

AC-3(C ≡ C1, · · · , Cn,D)
begin
S ← {C1, · · · , Cn}

while (S 6= ∅)
choose and extract C from S
D

′ ← revise_arc(C,D)
if (D′ = ∅) then return(∅) endif
S ← S ∪ {Ci | ∃x ∈ var(Ci) s.t. D

′

x 6= Dx}

D← D
′

endwhile
return(D)

end

Revise_arc unchanged

Constraint Programming: Local Consistencies – p. 30

Local consistency : AC-4 algorithm

Possible speed-up for AC-3 : to keep in memory for each binary
constraints c(x, y) support relations between values of Dx and Dy :

how many values of Dy support each value of Dx

what are the values of Dx supported by a particular value of Dy

and vice-versa.

© when a value is removed, we know precisely the changes that are
induced, and which constraints to wake-up

§ memory space
AC-4 : best theoretical complexity. . . often the worst in pratice

Constraint Programming: Local Consistencies – p. 31

Hyper-arc consistency (1)

what about n-ary constraints for n > 2 ?

hyper-arc consistency : a constraint C over the variables
x1, . . . , xn with domains D1, . . . , Dn is hyper-arc consistent w.r.t.
xi (i ∈ {1, . . . , n}) iff :

∀a ∈ Di, ∃d ∈ D1 × . . .×Dn s.t. d ∈ C and a = d[xi]

Constraint Programming: Local Consistencies – p. 32

Hyper-arc consistency (2)

a constraint C over x1, . . . , xn with domains D1, . . . , Dn is
hyper-arc consistent iff c is hyper-arc consistent w.r.t. xi for
all i ∈ {1, . . . , n}.

a CSP is hyper-arc consistent iff all its constraints are
hyper-arc consistent

Constraint Programming: Local Consistencies – p. 33

Hyper-arc consistency (3)

Examples : constraints

x ∈ {3, 5, 7}, y ∈ {1, 4}, z ∈ {4, 6, 14}

x + 2 ∗ y = z + 1 is hyper-arc consistent

x ∈ {1, 2, 4}, y ∈ {3, 5}, z ∈ {4, 5}

x + y − z = 0 is not hyper-arc consistent
(not hyper-arc consistent w.r.t. x, e.g., value 4)

Examples : CSP

{ and(x,y,z), or(x,y,1) ; x ∈ {1}, y ∈ {0, 1}, z ∈ {0, 1}}

the CSP is hyper-arc consistent

{ and(x,y,z), or(x,y,1) ; x ∈ {0, 1}, y ∈ {0, 1}, z ∈ {1}}

the CSP is not hyper-arc consistent
Constraint Programming: Local Consistencies – p. 34

Directional arc consistency (1)

Idea : directional propagation

consider an ordering < on variables :

directional arc consistency : a constraint C over the variables
x, y with domains Dx, Dy is directionally arc consistent w.r.t. <

iff :

if x < y :
∀a ∈ Dx∃b ∈ Dy (a, b) ∈ C

if y < x :
∀b ∈ Dy∃a ∈ Dx (a, b) ∈ C

a CSP is directionally arc consistent w.r.t. < iff all its constraints are

Constraint Programming: Local Consistencies – p. 35

Directional arc consistency (2)

example :
{x < y; x ∈ [2..7], y ∈ [3..7]}

the CSP is not arc consistent

the CSP is directionally arc consistent w.r.t. y < x

the CSP is not directionally arc consistent w.r.t. x < y

Constraint Programming: Local Consistencies – p. 36

Limitations of arc/hyper-arc consistency (1)

Problem : determining arc/hyper-arc consistency can be too
costly

Example :
{x = y + z, 2.x = 4.y; x, y, z ∈ {1, 2, 8, 12, 34, . . . , 110000}}

domain reduction : each value must be tested ! ! !

Idea : to relax consistency :test only bounds

Constraint Programming: Local Consistencies – p. 37

Limitations of arc/hyper-arc consistency (2)
Example : {x < y, y < z, z < x; x, y, z ∈ [1..10000]}

domain reduction :

using the first constraint :
{x < y, y < z, z < x; x ∈ [1..9999], y ∈ [2..10000], z ∈ [1..10000]}

using the second constraint :
{x < y, y < z, z < x; x ∈ [1..9999], y ∈ [2..9999], z ∈ [3..10000]}

using the third constraint :
{x < y, y < z, z < x; x ∈ [4..9999], y ∈ [2..9999], z ∈ [3..9998]}

. . . until a domain is empty

Idea 1 : testing bounds does not change the cost
Idea 2 : symbolic computation→ direct proof (transitivity of <)
Idea 3 : using two constraints at a time→ path consistency

Constraint Programming: Local Consistencies – p. 38

Arc consistency : intuition (recap)

solution space

Dx

reduced search space initial search space

D’x

D’y
Dy

Constraint Programming: Local Consistencies – p. 39

Bound consistency : intuition

D’x
Dx

reduced search space initial search space

D’y
Dy

solution space

Constraint Programming: Local Consistencies – p. 40

Bound consistency (1)

Idea : domains are represented by intervals

bound consistency : a constraint C over the variables
x1, . . . , xn with domains D1, . . . , Dn is bound consistent w.r.t. xi

with domain Di = [l, r] (i ∈ {1, . . . , n}) iff :

∃d ∈ D1 × . . .×Dn s.t. d[xi] = l and d ∈ C

and
∃d ∈ D1 × . . .×Dn s.t. d[xi] = r and d ∈ C

Constraint Programming: Local Consistencies – p. 41

Bound consistency (2)

a constraint c is bound consistent iff it is w.r.t. xi for all
i ∈ {1, . . . , n}.

a CSP is bound consistent iff all its constraints are bound
consistent

Examples :

x ∈ [3..6], y ∈ [2, 3], z ∈ [5, 9], x + y = z

is bound consistent

x ∈ [2..3], y ∈ [3..6], z ∈ [1..19], 3 ∗ x = y + z

is not bound consistent
(not bound consistent w.r.t. z, e.g., value 19)

Constraint Programming: Local Consistencies – p. 42

Bound consistency (3)

computing bound consistency for “primitive” constraints :
reasonning only on bounds
: easy, less complexe

Examples :

x + y = z with Dx = [a..b], Dy = [c..d], Dz = [e, f]

x 6 y with Dx = [a..b], Dy = [c..d]

Constraint Programming: Local Consistencies – p. 43

Bound consistency : x 6 y

constraint :

x 6 y

to get bound consistency :

x 6 maxDy

y > min Dx

Constraint Programming: Local Consistencies – p. 44

Bound consistency : x 6 y

% x 6 y

revise_leq(Dx = [a..b], Dy = [c..d])
begin

Dx ← [a..min{b, d}]

Dy ← [max{a, c}..d]

return(Dx, Dy)
end

Constraint Programming: Local Consistencies – p. 45

Bound consistency : x + y = z

constraint :

x + y = z ≡ x = z − y ≡ y = z − x

to get bound consistency :

z > minDx + min Dy z 6 maxDx + maxDy

x > min Dz −maxDy x 6 maxDz −min Dy

y > min Dz −maxDx y 6 maxDz −minDx

Constraint Programming: Local Consistencies – p. 46

Bound consistency : x + y = z

% x+y=z

revise_addition(Dx = [a..b], Dy = [c..d], Dz = [e..f])
begin

Dx ← Dx ∩ [e− d..c− f]

Dy ← Dy ∩ [e− b..f − a]

Dz ← Dz ∩ [a + c..b + d]

return(Dx, Dy, Dz)
end

Constraint Programming: Local Consistencies – p. 47

Combination BT/AC

solvers using only local consistency : incomplete
realizing a complete solver : combination with backtracking

Look ahead : instanciation of some variables with filtering of
domains
: forward checking, partial look-ahead, full look-ahead

© no exploration of branches trivialy without solution

§ more work after each instanciation

Constraint Programming: Local Consistencies – p. 48

	Objective
	Intuitive approach to local consistencies
	Finite domains
	CSP (reminder)
	Solving CSPs (1)
	Problem of the emph {look back}
	Solving CSPs (2)
	Constraint solving framework
	Constraint propagation
	Constraint propagation: reducing domains
	Local consistency
	Local consistency (1)
	Local consistency (2)
	Local consistency (3)
	Local consistency: intuitive (1)
	Local consistency: intuitive (2)
	Local consistency: intuitive (3)
	Local consistency: intuitive (4)
	Local consistencies: definition
	Node consistency: definition
	Node consistency: algorithm
	Arc Consistency: definition
	Arc Consistency: intuition
	Arc consistency: AC-1 algorithm
	Local consistency: example
	Arc consistency $
ot =$ consistency
	Problems of AC-1
	Idea of AC-3
	Local consistency: AC-3 algorithm
	Local consistency: AC-4 algorithm
	Hyper-arc consistency (1)
	Hyper-arc consistency (2)
	Hyper-arc consistency (3)
	Directional arc consistency (1)
	Directional arc consistency (2)
	Limitations of arc/hyper-arc consistency (1)
	Limitations of arc/hyper-arc consistency (2)
	Arc consistency: intuition (recap)
	Bound consistency: intuition
	Bound consistency (1)
	Bound consistency (2)
	Bound consistency (3)
	Bound consistency: $xleq y$
	Bound consistency: $x leq y$
	Bound consistency: $x+y=z$
	Bound consistency: $x+y=z$
	Combination BT/AC

