Constraint Programming: Local Consistencies

Eric MONFROY

IRIN, University of Nantes

Objective

Solving constraint over finite domains

- exhaustive search vs. filtering algorithms
- recap about constraint propagation
- incomplete solvers and local consistency notion
- node consistency (NC algorithm)
- arc consistency (algorithms : AC-1, AC-3, AC-4)
- bound consistency

Intuitive approach to local consistencies

each set isomorphic to a *finite* part of \mathbb{N}

- 1. Set of natural integer that can be represented by a machine
- 2. Booleans : {false, true} (or $\{0, 1\}$)
- **3.** Letters : A, B, C, ...
- 4. Set of the members of a team

5. ...

 \rightarrow FD = very important to model numerous industrial problems

CSP (reminder)

A constraint satisfaction problem (CSP) is defined by :

- a sequence of variables $X = x_1, \ldots, x_n$ with *domains* D_1, \ldots, D_n (associated to the variables)
- a set of constraints C_1, \ldots, C_l , each C_i on a sub-sequence Y_i of X

implicitely, the CSP represents the constraint :

 $C_1 \wedge \ldots \wedge C_n \wedge x_1 \in D_1 \wedge \cdots \wedge x_n \in D_n$

A solution of the CSP is a *n*-tuple $d = (a_1, \ldots, a_n)$ such that :

- $d \in D_1 \times \cdots \times D_n$
- and for each $i, d[Y_i] \in C_i$

 $(d[Y_i] \text{ satisfies } C, \text{ or } C(a_{i_1}, \ldots, a_{i_l}) \text{ is true})$

Look back : variables are instanciated, and "instanciated" constraints are tested

- non-incremental version : generate and test
- incremental version : backtracking
- [☉] complete and correct
- inefficient and costly

clever alternatives : backjumping, backmarking

Problem of the *look back*

basic idea : from a given CSP, find an *equivalent* CSP with smaller domains (smaller search space)

- consider each atomic constraint separately
- filter domains of variables and eliminate *inconsistent* values

active use of the constraints. Many values vialoting constraints are removed

incomplete (complete with split and search)

Constraint solving framework

solve(CSP) : while not finished do pre-process constraint propagation if happy then finished=true else split part-of search endif endwhile

where part-of search consists in calls to the solve function

Remark : part-of search is one of the mechanisms defining search

Constraint propagation

- replace a CSP by a CSP which is :
 - equivalent (same set of solutions)
 - "smaller" (domains are reduced)
 - "simpler" (constraints are reduced)
- constraint propagation mechanism : repeatedly reduce domains or constraints
- can be seen as a fixed point of application of reduction functions
 - reduction function to reduce domains or constraints
 - can be seen as an abstraction of the constraints by reduction functions

Constraint propagation : reducing domains

• Generally :

- reduce domains using constraint and domains
- ${\scriptstyle \bullet} \rightarrow$ reduce the search space
- generic domain reduction :
 - Given a constraint C over x_1, \ldots, x_n with domains D_1, \ldots, D_n
 - select a variable x_i to be reduced
 - delete from D_i all values for x_i that do not participate in a solution of C

Local consistency

- a criterion to stop propagation
- a way to characterize a CSP or a constraint
- why local ?
 - generally, unable to obtain global consistency (incomplete solvers without split and search)
 - thus, local means on a sub-set of a CSP

 → usually, local to ONE constraint
 this sub-set is used to reduce domains

at the beginning : for unary and binary constraints

- unary constraints : node consistency
 - for constraints such as : even(x), y > 5, ...
- binary constraints : arc consistency
 - for constraints such as : x > y + 4, $x \neq y$, ...

then : for *n*-ary constraints and higher/stronger consistencies

- *n*-ary constraints : *hyper-arc consistency*
 - for constraints such as : 3.x + y = z, and(x, y, z), ...
- (*m*-)path consistency :
 - using several constraints at a time
- *k*-consistency :
 - every (k 1)-consistent instanciation can be extended to a k-consistent instanciation (k variables)

Local consistency (3)

then : consistency on bounds of domains (when domains are too big to consider each value)

- bound consistency (finite domains) :
 - for constraints such as : 3.x + y = z with domains $x \in [-10000..9000], y \in [-5000..9000], z \in [100..19000], \ldots$
- 2b consistency (real interval, "primitive" constraints)
 - for constraints such as : 3.23 * x * y = z with domains $x \in [-100.1547..9000.0], y \in [-5.12..9.0], z \in [0.99..1.01]$
- box consistency (real interval)
 - for constraints such as : $3.23 * x + y * x = z^2 + exp(x)$ with domains $x \in [-10.147..90.0], y \in [-5.1..9.0], z \in [0.99..1.01]$

Local consistency : intuitive (1)

 $\{B > 1, A < C, A = B, B > C - 2; A, B, C \in \{1, 2, 3\}\}$

the CSP can be represented by the graph :

how to reduce domains?

Idea : follow arcs of the graph

Local consistency : intuitive (2)

using A < C, A and/or C may be reduced

A and C reduced to $A \in \{1, 2\}, C \in \{2, 3\}$ now, reduce B using A = B or B > C - 2

Local consistency : intuitive (3)

 $\{B > 1, A < C, A = B, B > C - 2; A \in \{1, 2\}, B \in \{1, 2, 3\}, C \in \{2, 3\}\}$ using A = B, A and/or B may be reduced

B reduced to $B \in \{1, 2\}$

A not reduced, so useless to use A < C

now, reduce C and/or B using B>C-2, or reduce B using B>1

Local consistency : intuitive (4)

 $\{B > 1, A < C, A = B, B > C - 2; A \in \{1, 2\}, B \in \{1, 2\}, C \in \{2, 3\}\}$ using B > C - 2, B and/or C may be reduced

B, C not reduced

B > 1 can be used, and so on until no domain can be reduced anymore

Local consistencies : definition

Definition : an atomic unary constraint *C* over the variable *x* with the domain D_x is node consistent iff :

$$\forall a \in D_x \colon a \in C \ (\text{or } C(a))$$

Remarks :

- a non unary constraint is always considered as node consistent
- a CSP is node consistent if all its constraints are node consistent

Examples :

- $x \in \{4, 6\}$, even(x) is node consistent
- $x \in [2..12], x > 5$ is not node consistent

Node consistency : algorithm

```
node_consistency(C, D)
begin
     let C \equiv C_1, \cdots, C_n
     for i \leftarrow 1 to n do
           \mathbf{D} \leftarrow \text{revise node}(C_i, \mathbf{D})
     endfor
     return(D)
end
revise node(C, \mathbf{D})
begin
     if (|var(C)| = 1) then
           \{x\} \leftarrow \mathsf{var}(C)
           \mathbf{D}_x \leftarrow \{ d \in \mathbf{D}_x \mid d \in C \}
     endif
     return(D)
end
```

Arc Consistency : definition

Definition : an atomic binary constraint *C* over the variables x and y with domains D_x and D_y is arc consistent iff :

- $\forall a \in D_x \exists b \in D_y \text{ s.t. } (a, b) \in C$
- $\forall b \in D_y \exists a \in D_x \text{ s.t. } (a, b) \in C$

Remarks :

- a non binary constraint is arc consistent
- a CSP is arc consistent iff all its constraints are arc consistent

Examples :

- $x \in \{1,3\}, y \in \{2,4\}, x + y = 5$ is arc consistent
- $x \in \{1, 2\}, y \in \{1, 7\}, x = y$ is not arc consistent

Arc Consistency : intuition

Arc consistency : AC-1 algorithm

```
AC-1(C, D)

begin

let C \equiv C_1, \dots, C_n

repeat

D' \leftarrow D

for i \leftarrow 1 to n do

D \leftarrow revise_arc(C_i, D)

endfor

until(D' = D)

return(D)

end
```

```
revise_arc(C, \mathbf{D})

begin

if (|var(C)| == 2) then

\{x, y\} \leftarrow var(C)

\mathbf{D}_x \leftarrow \{a \in \mathbf{D}_x \mid \\ \exists b \in \mathbf{D}_y : (a, b) \in C\}

\mathbf{D}_y \leftarrow \{b \in \mathbf{D}_y \mid \\ \exists a \in \mathbf{D}_x : (a, b) \in C\}

endif

return(\mathbf{D})

end
```

Local consistency : example

Consider the CSP

 $\{X < Y, Y < Z, Z \leq 2; D_X, D_Y, D_Z \in \{1, 2, 3\}\}$

Computation of node consistency

 \rightarrow 3 removed from D_z

Computation for arc consistency → inconsistent

Generally : incompleness. Algorithm returns some domains for the variables. All kept values are not necessarily solution !

Arc consistency \neq consistency

Consider the CSP

$$\{x = y, x \neq y, D_x \in \{a, b\}, D_y \in \{a, b\}$$

the CSP is arc consistency

 \rightarrow a and b cannot be reduced using x = y or $x \neq y$

However, the CSP is not consistent → no solution

- inefficient
- wake-up constraints when useless
 - no modification of variable domains
- no early detectection of failed CSP
 - two loops with failed CSP

Idea of AC-3

Idea : wake up constraints when variables have effectively been modified

Mechanism :

- manage a set of constraints to use
- update this set after each reduction attemp
 - add constraints with at least one modified variable
- stop
 - when no more constraint to consider
- failed CSP
 - stop as soon as one domain is empty

Local consistency : AC-3 algorithm

```
AC-3(C \equiv C_1, \cdots, C_n, D)
begin
      \mathcal{S} \leftarrow \{C_1, \cdots, C_n\}
      while (\mathcal{S} \neq \emptyset)
              choose and extract C from S
             D' \leftarrow revise arc(C, D)
              if (D' = \emptyset) then return(\emptyset) endif
             \mathcal{S} \leftarrow \mathcal{S} \cup \{C_i \mid \exists x \in \mathsf{var}(C_i) \text{ s.t. } \mathbf{D}'_x \neq \mathbf{D}_x\}
              \mathbf{D} \leftarrow \mathbf{D}'
       endwhile
       return(D)
end
Revise_arc unchanged
```

Local consistency : AC-4 algorithm

Possible speed-up for AC-3 : to keep in memory for each binary constraints c(x, y) support relations between values of D_x and D_y :

- how many values of D_y support each value of D_x
- what are the values of D_x supported by a particular value of D_y and vice-versa.

 \bigcirc when a value is removed, we know precisely the changes that are induced, and which constraints to wake-up

🔆 memory space

AC-4 : best theoretical complexity... often the worst in pratice

what about *n*-ary constraints for n > 2?

hyper-arc consistency : a constraint *C* over the variables x_1, \ldots, x_n with domains D_1, \ldots, D_n is hyper-arc consistent w.r.t. x_i ($i \in \{1, \ldots, n\}$) iff :

 $\forall a \in D_i, \exists d \in D_1 \times \ldots \times D_n \text{ s.t. } d \in C \text{ and } a = d[x_i]$

- a constraint *C* over x_1, \ldots, x_n with domains D_1, \ldots, D_n is hyper-arc consistent iff *c* is hyper-arc consistent w.r.t. x_i for all $i \in \{1, \ldots, n\}$.
- a CSP is hyper-arc consistent iff all its constraints are hyper-arc consistent

Examples : constraints

- $x \in \{3, 5, 7\}, y \in \{1, 4\}, z \in \{4, 6, 14\}$ x + 2 * y = z + 1 is hyper-arc consistent
- $x \in \{1, 2, 4\}, y \in \{3, 5\}, z \in \{4, 5\}$ x + y - z = 0 is not hyper-arc consistent (not hyper-arc consistent w.r.t. x, e.g., value 4)

Examples : CSP

- { and(x,y,z), or(x,y,1) ; $x \in \{1\}, y \in \{0,1\}, z \in \{0,1\}$ } the CSP is hyper-arc consistent
- { and(x,y,z), or(x,y,1) ; $x \in \{0,1\}, y \in \{0,1\}, z \in \{1\}$ } the CSP is not hyper-arc consistent

Directional arc consistency (1)

Idea : directional propagation

consider an ordering < on variables :

directional arc consistency : a constraint *C* over the variables x, y with domains D_x, D_y is directionally arc consistent w.r.t. < iff :

• if
$$x < y$$
 :

$$\forall a \in D_x \exists b \in D_y \ (a, b) \in C$$

• if y < x :

```
\forall b \in D_y \exists a \in D_x \ (a, b) \in C
```

a CSP is directionally arc consistent w.r.t. < iff all its constraints are

example :

$\{x < y; x \in [2..7], y \in [3..7]\}$

the CSP is not arc consistent

- the CSP is directionally arc consistent w.r.t. y < x
- the CSP is not directionally arc consistent w.r.t. x < y

Limitations of arc/hyper-arc consistency (1)

Problem : determining arc/hyper-arc consistency can be too costly

Example :

 ${x = y + z, 2.x = 4.y; x, y, z \in \{1, 2, 8, 12, 34, \dots, 110000\}}$ domain reduction : each value must be tested !!!

Idea : to relax consistency →test only *bounds*

Limitations of arc/hyper-arc consistency (2)

Example : $\{x < y, y < z, z < x; x, y, z \in [1..10000]\}$

domain reduction :

using the first constraint :

 $\{x < y, y < z, z < x; \ x \in [1..9999], y \in [2..10000], z \in [1..10000]\}$

- using the second constraint : $\{x < y, y < z, z < x; \ x \in [1..9999], y \in [2..9999], z \in [3..10000]\}$
- using the third constraint :

 $\{x < y, y < z, z < x; \ x \in [4..9999], y \in [2..9999], z \in [3..9998]\}$

- ... until a domain is empty
- Idea 1 : testing bounds does not change the cost
- **Idea 2** : symbolic computation \rightarrow direct proof (transitivity of <)
- **Idea 3** : using two constraints at a time \rightarrow *path consistency*

Arc consistency : intuition (recap)

Bound consistency : intuition

Idea : domains are represented by intervals

bound consistency : a constraint *C* over the variables x_1, \ldots, x_n with domains D_1, \ldots, D_n is bound consistent w.r.t. x_i with domain $D_i = [l, r]$ ($i \in \{1, \ldots, n\}$) iff :

 $\exists d \in D_1 \times \ldots \times D_n$ s.t. $d[x_i] = l$ and $d \in C$ and $\exists d \in D_1 \times \ldots \times D_n$ s.t. $d[x_i] = r$ and $d \in C$

Bound consistency (2)

- a constraint c is bound consistent iff it is w.r.t. x_i for all $i \in \{1, \ldots, n\}$.
- a CSP is bound consistent iff all its constraints are bound consistent

Examples :

- $x \in [3..6], y \in [2,3], z \in [5,9], x + y = z$ is bound consistent
- *x* ∈ [2..3], *y* ∈ [3..6], *z* ∈ [1..19], 3 * *x* = *y* + *z* is not bound consistent
 (not bound consistent w.r.t. *z*, e.g., value 19)

computing bound consistency for "primitive" constraints : reasonning only on bounds

→ easy, less complexe

Examples :

- x + y = z with $D_x = [a..b], D_y = [c..d], D_z = [e, f]$
- $x \leq y$ with $D_x = [a..b], D_y = [c..d]$

Bound consistency : $x \leq y$

constraint :

$$x \leqslant y$$

to get bound consistency :

 $x \leqslant \max D_y$ $y \geqslant \min D_x$

Bound consistency : $x \leq y$

% $x \leq y$ revise_leq $(D_x = [a..b], D_y = [c..d])$ begin $D_x \leftarrow [a.. \min\{b, d\}]$ $D_y \leftarrow [\max\{a, c\}..d]$ return (D_x, D_y) end

constraint :

 $x + y = z \equiv x = z - y \equiv y = z - x$

to get bound consistency :

 $z \ge \min D_x + \min D_y$ $x \ge \min D_z - \max D_y$ $y \ge \min D_z - \max D_x$

 $z \leqslant \max D_x + \max D_y$ $x \leqslant \max D_z - \min D_y$ $y \leqslant \max D_z - \min D_x$

Bound consistency : x + y = z

% x+y=z revise_addition($D_x = [a..b], D_y = [c..d], D_z = [e..f]$) begin

$$D_x \leftarrow D_x \cap [e - d..c - f]$$
$$D_y \leftarrow D_y \cap [e - b..f - a]$$
$$D_z \leftarrow D_z \cap [a + c..b + d]$$
$$return(D_x, D_y, D_z)$$

end

solvers using only local consistency : incomplete realizing a complete solver \rightarrow combination with backtracking

Look ahead : instanciation of some variables with filtering of domains

→ forward checking, partial look-ahead, full look-ahead

no exploration of branches trivialy without solution
 more work after each instanciation