Constraint Programming:

Local Consistencies

Eric MONFROY

IRIN, University of Nantes

Solving constraint over finite domains

N

N

N

exhaustive search vs. filtering algorithms

recap about constraint propagation

iIncomplete solvers and local consistency notion
node consistency (NC algorithm)

arc consistency (algorithms : AC-1, AC-3, AC-4)

bound consistency

Intuitive approach to local consistencies

each set isomorphic to a finite part of N
1. Set of natural integer that can be represented by a machine
2. Booleans : {false,true} (or {0,1})
3. Letters: A, B, C, ...
4. Set of the members of a team

5. ...

- FD = very important to model numerous industrial problems

A constraint satisfaction problem (CSP) is defined by :

» asequence of variables X = z4, ..., z, with domains
Dy, ..., D, (associated to the variables)

» a set of constraints (1, ..., (), each C; on a sub-sequence
Y. of X

implicitely, the CSP represents the constraint :
Cl/\.../\Cn/\Zlil EDl/\'“/\CUnGDn

A solution of the CSP is a n-tuple d = (a4, . ..,a,) such that :
s de Dy x---xD,
» and for each i, d|Y;] € C;

(d|Y;] satisfies C, or C(a;,, ..., a;) IS true)
L constant ogamming: LocalCorisencies .5

Look back : variables are instanciated, and “instanciated”
constraints are tested

» non-incremental version : generate and test
» incremental version : backtracking

© complete and correct

© inefficient and costly

clever alternatives : backjumping, backmarking

Ae{l,2},Be{l1,2},C e{1,2},D €{1,2}
A>DANB=CNA=C

A
B 2
C 2
D 1
‘~ . ' . “ .
‘. thrashing (forget reasons for a conflict) redundant tests of constraints

~
~
~
~
~

late detection of conflicts

basic idea : from a given CSP, find an equivalent CSP with
smaller domains (smaller search space)

» consider each atomic constraint separately

» filter domains of variables and eliminate inconsistent values

© active use of the constraints. Many values vialoting
constraints are removed

© incomplete (complete with split and search)

solve(CSP) :
while not finished do
pre-process
constraint propagation
If happy
then finished=true
else split
part-of search
endif
endwhile

where part-of search consists in calls to the solve function

Remark : part-of search is one of the mechanisms defining

search
. ConstaintProgamming Local Consistorcies—p.9

» replace a CSP by a CSP which is :

s equivalent (same set of solutions)
s “smaller” (domains are reduced)
s “simpler” (constraints are reduced)

» constraint propagation mechanism :
repeatedly reduce domains or constraints

» can be seen as a fixed point of application of reduction
functions

s reduction function to reduce domains or constraints
s Can be seen as an abstraction of the constraints by
reduction functions

» Generally :

s reduce domains using constraint and domains
» — reduce the search space

» generic domain reduction :
s Given a constraint C' over x4, ..., x, with domains
Dy,....D,
s Select a variable z; to be reduced

» delete from D; all values for z; that do not participate in a
solution of C

» a criterion to stop propagation
» a way to characterize a CSP or a constraint

» why local ?

» generally, unable to obtain global consistency
(incomplete solvers without split and search)

» thus, local means on a sub-set of a CSP
— usually, local to ONE constraint
this sub-set is used to reduce domains

at the beginning : for unary and binary constraints

» unary constraints : node consistency
» for constraints such as : even(z), y > 5, ...

» binary constraints : arc consistency

s forconstraintssuchas:z>y+4,x#y,...

then : for n-ary constraints and higher/stronger consistencies

» n-ary constraints : hyper-arc consistency
s for constraints such as : 3.2 + y = z, and(z,y, 2), ...

» (m-)path consistency :
s using several constraints at a time

» k-consistency :

s every (k — 1)-consistent instanciation can be extended to
a k-consistent instanciation (k& variables)

then : consistency on bounds of domains
(when domains are too big to consider each value)
» bound consistency (finite domains) :

s for constraints such as : 3.z + y = z with domains
x € [—10000..9000], y € [—5000..9000], z € [100..19000], ...

» 2b consistency (real interval, “primitive” constraints)

s for constraints such as : 3.23 x x x y = z with domains
r € |—100.1547..9000.0],y € |—5.12..9.0], z € [0.99..1.01]

» box consistency (real interval)

s for constraints such as : 3.23 x z + y * v = 2 + exp(z) with
domains

r € [—10.147..90.0],y € [5.1..9.0], z € [0.99..1.01]
S Consfaint Programming: Local Consistencies —p. 15

{B>1,A<C,A=B,B>C-2; A,B,C €{1,2,3}}
the CSP can be represented by the graph :

B>1

how to reduce domains ?

Idea : follow arcs of the graph

using A < C', A and/or C' may be reduced

B>1

Aand Creducedto A € {1,2}, C € {2,3}

now, reduce Busing A=BorB >(C —2

{B>1,A<C,A=B,B>C-2; Ac{1,2},Be{1,2,3},C € {2,3}}
using A = B, A and/or B may be reduced

B reduced to B € {1,2}
A not reduced, so uselesstouse A < C

now, reduce C' and/or B using B > C' — 2, or reduce B using
B>1

{B>1,A<C,A=B,B>C-2; A {1,2},B € {1,2},C € {2,3}}
using B > C' — 2, B and/or C' may be reduced

B, C' not reduced

B > 1 can be used,
and so on until no domain can be reduced anymore

L.ocal consistencies : definition

Definition : an atomic unary constraint C' over the variable x
with the domain D, is node consistent iff :
Va € D,:aeC (orCla))
Remarks
a non unary constraint is always considered as node consistent

» a CSP is node consistent if all its constraints are node consistent

Examples :
s r €{4,6}, even(x)is node consistent

» x € |2.12],x > 5is not node consistent

node_consistency(C, D)
begin
letC=Cq,---,Cy
for 2 < 1 ton do
D < revise_node(C;, D)
endfor
return(D)
end

revise_node(C, D)
begin
if (jvar(C')] == 1) then
{z} « var(C)
D, —{deD,|deC}
endif
return(D)
end

Definition : an atomic binary constraint C' over the variables x
and y with domains D, and D, is arc consistent iff :

s Yae D, Abe D, st (a,b) €C
s Ybe D,3a € D, st (a,b) €C

Remarks :
a non binary constraint is arc consistent

a CSP is arc consistent iff all its constraints are arc consistent

Examples :
s xe{1,3},ye{2,4},x+y = 5is arc consistent

s xe{l,2},y € {1,7},x =y is not arc consistent

v

Dx

/

/

solution space

/

reduced search space

T~

initial search space

AC-1(C, D) revise_arc(C, D)
begin begin
letC=Cy,---,C, if ([var(C')| == 2) then
repeat {z,y} « var(C)
D' —D D, —{aeD, |
for i < 1 ton do db € Dy (a,b) € C}
D « revise_arc(C;, D) D, —{beD,|
endfor da € D;: (a,b) € C}
until(D’ = D) endif
return(D) return(D)
end end

Consider the CSP
{X < Y7Y < Z,Z < 27 DXaDYaDZ S {17273}}

Computation of node consistency
> 3 removed from D,

Computation for arc consistency
- Inconsistent

Generally : incompleness. Algorithm returns some domains for
the variables. All kept values are not necessarily solution!

Consider the CSP
{r =y, v #vy,D, € {a,b}, D, € {a,b}

the CSP is arc consistency
- a and b cannot be reduced using z = y or x # y

However, the CSP is not consistent
- no solution

» Inefficient

» wake-up constraints when useless
» No modification of variable domains

» no early detectection of failed CSP
s two loops with failed CSP

Idea : wake up constraints when variables have effectively
been modified

Mechanism :

» Mmanage a set of constraints to use
» update this set after each reduction attemp

» add constraints with at least one modified variable
» Siop

s When no more constraint to consider

» failed CSP
s Stop as soon as one domain is empty

AC-3(C =C,,---,C,,D)

begin
S—{Cy,---,C,)
while (S # @)
choose and extract C' from S
D’ — revise_arc(C', D)
if (D’ =) then return() endif
S — SU{C; |z evar(C;) s.t. D!, #£ D, }
D« D
endwhile
return(D)
end

Revise_arc unchanged

Possible speed-up for AC-3 : to keep in memory for each binary
constraints c(x,y) support relations between values of D, and D, :

» how many values of D, support each value of D,
» what are the values of D, supported by a particular value of D,

and vice-versa.

© when a value is removed, we know precisely the changes that are
induced, and which constraints to wake-up

S memory space
AC-4 : best theoretical complexity. .. often the worst in pratice

what about n-ary constraints for n > 2 ?

hyper-arc consistency : a constraint C' over the variables
x1,...,r, With domains D+, ..., D, is hyper-arc consistent w.r.t.
x; (1€ {1,... n})iff:

Vae D;, dde Dy x...x D, st deC and a=d|z

aconstraint C over z4, ..., x, with domains Dy, ..., D,, is
hyper-arc consistent iff ¢ is hyper-arc consistent w.r.t. x; for
alli e {1,...,n}.

» a CSP is hyper-arc consistent iff all its constraints are
hyper-arc consistent

Examples : constraints

s x€{3,5,7},ye{l,4},2€{4,6,14}
r + 2*xy = z+ 1Is hyper-arc consistent

o ve{l,2,4},ye {35} z€{45}
x + y — z = 0 Is not hyper-arc consistent
(not hyper-arc consistent w.r.t. z, e.g., value 4)

Examples : CSP

s { and(X,y,Z), Or(X,y,1) , X S {1}7y S {07 1}7 S {07 1}}
the CSP is hyper-arc consistent

s {and(xy,z), or(x,y,1); =z € {0,1},y € {0,1},z € {1}}
the CSP is not hyper-arc consistent

Idea : directional propagation
consider an ordering < on variables :

directional arc consistency : a constraint C' over the variables
z,y wWith domains D,, D, is directionally arc consistent w.r.t. <
iff :

s fx<y:
VYa € D,3b € D, (a,b) € C

s fy<ua:

Vbe D,3a € D, (a,b) € C

a CSP is directionally arc consistent w.r.t. < iff all its constraints are

example :

s 1
s 1

s 1

ne CS
ne CS

ne CS

{r <y, ze€[2.7,y €[3..7]}

P |s not arc consistent

P |s directionally arc consistent w.r.t. y < z

P is not directionally arc consistent w.r.t. z < y

Problem : determining arc/hyper-arc consistency can be too
costly

Example :
{fr=y+22x=4y, x,y,z € {1,2,8,12,34,...,110000}}

domain reduction : each value must be tested ! ! !

Idea : to relax consistency ->test only bounds

Example : {z <y,y < z,z < x; x,y,2z € [1..10000] }

domain reduction :

using the first constraint :
{r<y,y<zz<z xze|l.9999],y € [2..10000], z € [1..10000]}

using the second constraint :
{r<y,y<zz<z ze[l.9999],y € [2..9999], z € [3..10000] }

using the third constraint :
{r<yy<zz<z xecl[4.9999],y € [2..9999], z € [3..9998]}

...until a domain is empty

Idea 1 : testing bounds does not change the cost

Idea 2 : symbolic computation — direct proof (transitivity of <)

Idea 3 : using two constraints at a time — path consistency
o Constraint Programming: Local Consistencies ~p. 38

Dx

v

/

/

solution space

/

reduced search space

T~

initial search space

v

reduced search space

/

solution space

/

T~

initial search space

Idea : domains are represented by intervals

bound consistency : a constraint C' over the variables
x1,...,x, With domains D4, ..., D,, is bound consistent w.r.t. z;

with domain D; = [I,7] (i € {1,...,n})iff:

dde Dy x...x D, st dz]=10and deC
and
dde Dy x...x D, st dz]=r and deC

a constraint ¢ is bound consistent iff it is w.r.t. x; for all
ied{l,...,n}.

» a CSP is bound consistent iff all its constraints are bound
consistent

Examples :

2 x€[3.6l,ye(2,3,z€ 5,9, r4+y==2
IS bound consistent

s 2c[2.3],yc[3.6,z€[1.19,3%xz=y+ 2
IS not bound consistent
(not bound consistent w.r.t. z, e.g., value 19)

computing bound consistency for “primitive” constraints :
reasonning only on bounds
- easy, less complexe

Examples :
s v+y=zwith D, =[a..b], D, = [c..d], D, = |e, f]
s x < ywith D, =la..b], D, = |c..d]

constraint :

to get bound consistency :

max Dy

T <
y = min D,

% XKy
revise_leq(D, = [a..b], D, = |c..d])
begin
D, <« |a..min{b, d}|
D, «— |max{a,c}..d|
return(D,, D,)
end

constraint :

r+y=2z = x=z-—1Y Yy=z2—x

to get bound consistency :

z > min D, +min D, z < max Dy, + max D,
r > min D, — max D, r < maxlD, —min D,
y 2> min D, —max D, y <maxD, —minD,

% X+y=2
revise_addition(D, = |a..b|, D, = |c..d|, D, = |e..f])
begin
D,— D,Nle—d.c— f]
D,—D,Nle—b.f—a
D,— D,N|a+c..b+d
return(D,, D, D.)
end

solvers using only local consistency : incomplete
realizing a complete solver » combination with backtracking

Look ahead : instanciation of some variables with filtering of
domains
- forward checking, partial look-ahead, full look-ahead

© no exploration of branches trivialy without solution

© more work after each instanciation

	Objective
	Intuitive approach to local consistencies
	Finite domains
	CSP (reminder)
	Solving CSPs (1)
	Problem of the emph {look back}
	Solving CSPs (2)
	Constraint solving framework
	Constraint propagation
	Constraint propagation: reducing domains
	Local consistency
	Local consistency (1)
	Local consistency (2)
	Local consistency (3)
	Local consistency: intuitive (1)
	Local consistency: intuitive (2)
	Local consistency: intuitive (3)
	Local consistency: intuitive (4)
	Local consistencies: definition
	Node consistency: definition
	Node consistency: algorithm
	Arc Consistency: definition
	Arc Consistency: intuition
	Arc consistency: AC-1 algorithm
	Local consistency: example
	Arc consistency $
ot =$ consistency
	Problems of AC-1
	Idea of AC-3
	Local consistency: AC-3 algorithm
	Local consistency: AC-4 algorithm
	Hyper-arc consistency (1)
	Hyper-arc consistency (2)
	Hyper-arc consistency (3)
	Directional arc consistency (1)
	Directional arc consistency (2)
	Limitations of arc/hyper-arc consistency (1)
	Limitations of arc/hyper-arc consistency (2)
	Arc consistency: intuition (recap)
	Bound consistency: intuition
	Bound consistency (1)
	Bound consistency (2)
	Bound consistency (3)
	Bound consistency: $xleq y$
	Bound consistency: $x leq y$
	Bound consistency: $x+y=z$
	Bound consistency: $x+y=z$
	Combination BT/AC

