
Constraint Programming:

Global Constraints and Reified Constraints

Université de Nantes

Constraint Programming: Global Constraints and Reified Constraints – p.1

Objectives

reified constraints

why are they useful ?

important modelling and solving efficiency

some well-known examples

global constraints :

why are they useful ?

important modelling and solving efficiency

some well-known examples

Constraint Programming: Global Constraints and Reified Constraints – p.2

Reified constraints

Constraint Programming: Global Constraints and Reified Constraints – p.3

Reified constraints (1)

form of the constraint :

��� � ���

where

� � and

��� are two constraints.

Semantics : the constraint

� � is equivalent to the constraint

� � ,
i.e.,

� � and

��� have the same truth value

��� is violated iff

� � is violated

��� is satisfiable iff
� � is

otherwise,

� � � ��� is suspended and woken-up when one
of the variables of

� � or

��� is modified.

Constraint Programming: Global Constraints and Reified Constraints – p.4

Reified constraints (2)

implementation : difficult

must be able to test whether a constraint is “implied” by the
store of constraints� notion of entailment

in practice :
reification limited to some “primitives” constraints

also exists as :

� � � ���

Constraint Programming: Global Constraints and Reified Constraints – p.5

Reified constraints (ECLiPSe)

constraint of the form :

��� ��� 	
 ���

where

� � and

��� are two arithmetic constraints.

semantics :

��� is violated iff

� � is

��� is satisfiable iff

� � is

otherwise,

� � ��� 	
 ��� is suspended and woken-up as
soons as the domain of one of the variables of

� � or

��� is
modified.

Constraint Programming: Global Constraints and Reified Constraints – p.6

reified constraints (GNU Prolog)

constraint of the form :

� ��� 	
 �

where

�

is a Boolean variable (domain

��� � �
) and

�

is a
constraint

semantics : verified if the equivalence is verified (the constraint�

can be violated)

�

is

iff

�

is false

�

is

�

iff

�

is true

if

�

is unknown,
��� � �� � �

Constraint Programming: Global Constraints and Reified Constraints – p.7

Reified constraints : example

Example of use : either

1% C1 true or C2 true, but not both
2either(C1,C2):-
3 B1 #<=> C1,
4 B2 #<=> C2,
5 B1 + B2 #=1.

Constraint Programming: Global Constraints and Reified Constraints – p.8

Reified constraints : example

Example of use : absolute value

1% AbsT is either +T or -T
2abs(T,AbsT):-
3 T #>= 0 #<=> AbsT #= T,
4 T #< 0 #<=> AbsT #= -T.

Constraint Programming: Global Constraints and Reified Constraints – p.9

Reified constraints : example

Example of use : absolute value 2

1% AbsT is either +T or -T
2abs(T,AbsT):-
3 T #>= 0 #<=> B,
4 AbsT #= 2*B*T -T.

Constraint Programming: Global Constraints and Reified Constraints – p.10

Global constraints

Constraint Programming: Global Constraints and Reified Constraints – p.11

Global constraints

Motivations :

reduce the gap between constraints issued from modelling,
and constraints available in the language

to ease formulating complexe global conditions that are not
easily formulated with the structures of the language

to increase domain reduction capacity
(stronger consistency, problem of (n,k)-consistencies)

Constraint Programming: Global Constraints and Reified Constraints – p.12

Global constraints

Setting up :

constraints that appear often in practice
(all_diff, cycle, . . .)

constraints that are the key-point of a type of application
(specific flow constraint, max-flow, . . .)

need specific algorithm for domain reduction

� efficiency, and thus usefulness depending on the
algorithm

Constraint Programming: Global Constraints and Reified Constraints – p.13

alldiff/2 : example (1)

sequencing problem :

speaker beginning end

John 3 6
Mary 3 4
Gregory 2 5
Suzan 2 4
Paul 3 4
Helen 1 6

a single room

each talk last one hour

� sequencing of presentations ?

Constraint Programming: Global Constraints and Reified Constraints – p.14

alldiff/2 : example (2)

Modelling

a variable = the “hour” of a speach

no overlapping of speaches = not 2 talks at the same time

�� ���� � �� �� ���� � �� �� ���� � ���� ���� � �� �� ���� � �� � � �� � ��
alldiff

! � �� �� �� �� �� �"

Constraint Programming: Global Constraints and Reified Constraints – p.15

alldiff/2

formulation by conjunction of disequations :

costly (

$ #% � &� constraints)

inefficient

' � � � �� � �� ' � � � �� � �� ')(� � �� � �� alldiff
! � ' �� ' �� ')(�"

enforcing arc consistency : generally, no reduction

in the previous example :

arc consistency (binary) : no reduction

bound consistency (n-ary) : not consistent� 	 �

and

� 	 � (or vice-versa),

�

must be deleted from

�

: reduction

Constraint Programming: Global Constraints and Reified Constraints – p.16

alldiff/2 : Hall

let

*

be a set of variables, and

+ * +

the cardinamity of

*

. Consider :

dom

, * -/.
01 2 3

465

Theorem[from Hall, 1935] the constraint alldiff

,879;: < < <: 7>= -
over the

variables 79 : < < <: 7?= with domains

49@: < < <: 4= has a solution iff there does not
exists a sub-set

*A B 79 : < < <: 7>= C

s.t. :

+ * +ED +

dom
, * - +

Idea : if there exists a set

*

s.t.

+ * + . +
dom

, * - +

, we know that the variables
of

*

will use all the values from dom

, * -

: these values can be removed from variables not in

*

Examples (previous example) :

*. BF : G: H C

and

*. BF : H C

Constraint Programming: Global Constraints and Reified Constraints – p.17

alldiff/2 : Hall interval

Hall interval Given the variables ' ��I I I � ' # with domainsJ ��I I I � J # and an interval

K

, let vars

! K" 	 � ')L M JL N K �
.

The interval

K

is a Hall interval iff

M K M 	 M

vars
! K" M

.

Proposition the constraint alldiff

! ' ��I I I � ' #" is bound
consistent w.r.t.

J ��I I I � J # iff
for each interval

K

,

M

vars

! K" MPO M K M
,

and if for each Hall interval
�

and each variable ' L , we have :
either

JL N �

, or

�RQ SUT JL� Q VW JL �)X � 	 Y

Constraint Programming: Global Constraints and Reified Constraints – p.18

alldiff/2 : mechanism

Process in 2 phases : update of left bounds and update of right bounds

ordering of variables : increasing ordering on right bounds

determining Hall intervals

modification of right bounds

Helen

1 2 3 4 5 6

Mary
Suzan

Paul
Gregory

John

Constraint Programming: Global Constraints and Reified Constraints – p.19

alldiff/2 : algorithm (based on Hall)

1 update_min(x=x_1...x_n)
2 begin
3 sort(x)
4 for i=1 to n do
5 min[i]=min(x[i])
6 max[i]=max(x[i])
7 done
8 for i=1 to n do
9 Insert(i)
10 done
11 end
12
13 IncrMin(a,b,i)
14 % [a,b] Intervalle de Hall
15 begin
16 for j=i+1 to n do
17 if min[j] >= a then
18 x[j] #>= b+1
19 fi
20 done
21 end

1 Insert(i)
2 begin
3 u[i]=min[i]
4 for j=1 to i-1 do
5 if min[j]<min[i] then
6 u[j]++
7 if u[j]>max[i] then Fail
8 if u[j]=max[i] then
9 IncrMin(min[j],max[j],i)

10 fi
11 else
12 u[i]++
13 fi
14 done
15 if u[i]>max[i] then Fail
16 if u[i]=max[i] then
17 IncrMin(min[i],max[i],i)
18 fi
19 end

primitive algorithm in

Z $ # [& . a refined version in

Z $ # \E] ^ # &

Constraint Programming: Global Constraints and Reified Constraints – p.20

alldiff/2 : graph

possibility to enforce a stronger consistency (hyper-arc
consistency) by searching a maximum coupling in the graph of
the values of the problem

6

John Mary Gregory Suzan Paul Helen

1 2 3 4 5

complexity :

_ !R` ab "
, ` the number of arcs in the graph

Constraint Programming: Global Constraints and Reified Constraints – p.21

alldiff/2 : idea of algorithm (graph)

graph : bipartite (values, variables)

coupling : not two arcs on the same node

maximum : the coupling cannot be extended

if a variable is not connected : insatisfiable constraint

if a value is not connected : several solutions

Constraint Programming: Global Constraints and Reified Constraints – p.22

Other global constraints

element

!c � �Rd ��I I I � d # �� '" .
the variable ' must be equal to dfe

atmost(N,List,V)
at most N variables of List must be equal to the value V

gcc

! � ' ��I I I � ' # �� �Rg ��I I I � g e �� �Rh ��I I I � hfe �"

the number of variables from
� ' ��I I I � ' # � that have the valueg L must be equal to h L

(generalization of alldiff)

Constraint Programming: Global Constraints and Reified Constraints – p.23

cycle/2

cycle

! b � �Ri ��I I I � ikj �"

.
the list

�Ri ��I I I � ikj �

must be a permutation of
� ��I I I � ` �

constituting b distinct cycles :

lm � � �� ` �on �O i L O `

i L p 	 i)q lm p 	 r

let

�L be a set of integers defined by :

m � �L

if

r � �L then i q � �L
(so, b distinct sets are defined)

Constraint Programming: Global Constraints and Reified Constraints – p.24

cycle/2

Example : cycle(3,[1,3,4,2,6,5]).
4 in 3rd position, thus an arc from 3 to 4, . . .

1 2 3

45 6

Constraint Programming: Global Constraints and Reified Constraints – p.25

Example (1)

Travelling salesman problem :

b sites must be visited exactly once

there are

c

travelling salesmen

distances d Lq between sites

m

and
r

are known

� find the round of each salesman which minimizes the total
covered distance

Constraint Programming: Global Constraints and Reified Constraints – p.26

Example (1)

Modelling : 'L is the site to visit after the site

m

, sL the cost
(distance) from

m

.

Q SUT #Lut � sL

iI vI 'L � � ��I I I � b �� for

m � � ��I I I � b �

sL � � d L ��I I I � d L # �� for

m � � ��I I I � b �

element

! 'L� �Rd L ��I I I � d L # �� sL "� for

m � � ��I I I � b �

cycle

!c � � ' ��I I I � ' # �"

Constraint Programming: Global Constraints and Reified Constraints – p.27

Exemple (2)

wyx L �{z| | | z x L # }

: cost from city

~

to the � other cities

�

: number of cycles needed (number of travelling salesmen)

� ��z| | | z � # : set of cities

element

� �Lz �x L � z| | | z x L # �z �L �

: the cost from city

~

to city �L (i.e., �L)
is an element of the list of costs from city

~

to another city

cycle

� �z � � � z| | | z � # � � : all cities must be visited in

�

distinct cycles

� �{� � #Lut � �L : money, money ! ! ! the total cost to visit all cities must
be minimized

Constraint Programming: Global Constraints and Reified Constraints – p.28

cumulative/4

cumulative

! �� ��I I I � � j �� � J ��I I I � Jj �� �� ��I I I � � j �� �"
the constraint is verified iff

lm � �n
q ��>� �L ��>� � �� % �

� q O �

interprétation : allocation of a single resource

�� ��I I I � � j �

: starting date of the ` tasks

� J ��I I I � Jj �

: duration of the ` tasks

�� ��I I I � � j �

: number of resource units required for each
task

�

: total number of resource units available at each moment

Constraint Programming: Global Constraints and Reified Constraints – p.29

Example

there are 13 resource units available at each moment

we have the following tasks :

task

v � v � v(v�� v�� v�� v��

duration 16 6 13 7 5 18 4
resource units 2 9 3 7 10 1 11

Question : for all the tasks, find starting and ending dates that
minimize the total time of resource utilization

Constraint Programming: Global Constraints and Reified Constraints – p.30

Program (GNU Prolog)

1 schedule(LO,End):-
2 LO = [O1,O2,O3,O4,
3 O5,O6,O7],
4 LD = [16,6,13,7,
5 5,18,4],
6 LR = [2,9,3,7,10,
7 1,11],
8 LE = [E1,E2,E3,E4,
9 E5,E6,E7],
10 End in 1..30,
11 domain(LO,1,30),
12 domain(LE,1,30),
13 O1 + 16 #= E1,
14 O2 + 6 #= E2,
15 O3 + 13 #= E3,

1 O4 + 7 #= E4,
2 O5 + 5 #= E5,
3 O6 + 18 #= E6,
4 O7 + 4 #= E7,
5 maximum(End,LE),
6 cumulative(LO,LD,LR,13),
7 minimize(labeling(LO),End).

Constraint Programming: Global Constraints and Reified Constraints – p.31

Program (ECL

�

PS

�

) (1)
1 :-lib(fd),lib(fd_global),lib(cumulative).
2

3 schedule(LO,End):-
4 % starting time
5 LO = [O1,O2,O3,O4,O5,O6,O7],
6

7 %duration of tasks
8 LD = [16,6,13,7,5,18,4],
9

10 % resources needed by each task
11 LR = [2,9,3,7,10,1,11],
12

13 % ending times
14 LE = [E1,E2,E3,E4,E5,E6,E7],
15

16 % time allowed
17 End:: [1..30],
18 LO:: [1..30],
19 LE:: [1..30],

Constraint Programming: Global Constraints and Reified Constraints – p.32

Program (ECL

�

PS

�

) (2)

1 % ending time is starting time + duration
2 O1 + 16 #= E1,
3 O2 + 6 #= E2,
4 O3 + 13 #= E3,
5 O4 + 7 #= E4,
6 O5 + 5 #= E5,
7 O6 + 18 #= E6,
8 O7 + 4 #= E7,
9

10 % constraint End to be the maximum element in the list LE (fd_global)
11 maxlist(LE,End),
12

13 % start, duration, resource units, resource limits
14 cumulative(LO,LD,LR,13),
15

16 % find the values that minize LO
17 minimize(labeling(LO),End).

Constraint Programming: Global Constraints and Reified Constraints – p.33

Solution

1 [eclipse 22]: schedule(LO,E).
2 Found a solution with cost 28
3 Found a solution with cost 27
4 Found a solution with cost 23
5

6 LO = [1, 17, 10, 10, 5, 5, 1]
7 E = 23
8 Yes (0.07s cpu)

Constraint Programming: Global Constraints and Reified Constraints – p.34

	Objectives
	Reified constraints
	Reified constraints (1)
	Reified constraints (2)
	Reified constraints (ECLiPSe)
	reified constraints (GNU Prolog)
	Reified constraints: example
	Reified constraints: example
	Reified constraints: example
	Global constraints
	Global constraints
	Global constraints
	code {alldiff/2}: example (1)
	code {alldiff/2}: example (2)
	code {alldiff/2}
	code {alldiff/2}: Hall
	code {alldiff/2}: Hall interval
	code {alldiff/2}: mechanism
	code {alldiff/2}: algorithm (based on Hall)
	code {alldiff/2}: graph
	code {alldiff/2}: idea of algorithm (graph)
	Other global constraints
	code {cycle/2}
	code {cycle/2}
	Example (1)
	Example (1)
	Exemple (2)
	code {cumulative/4}
	Example
	Program (GNU Prolog)
	Program (eclipse {})
(1)
	Program (eclipse {})
(2)
	Solution

