Constraint Programming: Global Constraints and Reified Constraints

Université de Nantes

Constraint Programming: Global Constraints and Reified Constraints - p.1

Objectives

- reified constraints
 - why are they useful ?
 - important modelling and solving efficiency
 - some well-known examples
- global constraints :
 - why are they useful ?
 - important modelling and solving efficiency
 - some well-known examples

Reified constraints

Reified constraints (1)

form of the constraint :

 $C_1 \leftrightarrow C_2$

where C_1 and C_2 are two constraints.

Semantics : the constraint C_1 is equivalent to the constraint C_2 , i.e., C_1 and C_2 have the same truth value

- C_1 is violated iff C_2 is violated
- C_1 is satisfiable iff C_2 is
- otherwise, $C_1 \leftrightarrow C_2$ is suspended and woken-up when one of the variables of C_1 or C_2 is modified.

Reified constraints (2)

- implementation : difficult
- must be able to test whether a constraint is "implied" by the store of constraints
 → notion of entailment
- in practice : reification limited to some "primitives" constraints
- also exists as : $C_1 \rightarrow C_2$

Reified constraints (ECLiPSe)

constraint of the form :

$$C_1 \# <=> C_2$$

where C_1 and C_2 are two arithmetic constraints.

semantics :

- C_1 is violated iff C_2 is
- C_1 is satisfiable iff C_2 is
- otherwise, $C_1 \# \langle = \rangle C_2$ is suspended and woken-up as soons as the domain of one of the variables of C_1 or C_2 is modified.

reified constraints (GNU Prolog)

constraint of the form :

 $B \ \# <=> \ C$

where B is a Boolean variable (domain [0, 1]) and C is a constraint

semantics : verified if the *equivalence* is verified (the constraint *C* can be violated)

- B is 0 iff C is false
- B is 1 iff C is true
- if C is unknown, $B \in \{0, 1\}$

Reified constraints : example

Example of use : either

1% C1 true or C2 true, but not both 2either(C1,C2):-

- B1 #<=> C1,
- 4 B2 #<=> C2,
- 5 B1 + B2 #=1.

Example of use : absolute value

Reified constraints : example

Example of use : absolute value 2

```
1% AbsT is either +T or -T
2abs(T,AbsT):-
```

3 T #>= 0 #<=> B,

```
4 AbsT #= 2*B*T -T.
```

Global constraints

Motivations :

- reduce the gap between constraints issued from modelling, and constraints available in the language
- to ease formulating complexe global conditions that are not easily formulated with the structures of the language
- to increase domain reduction capacity (stronger consistency, problem of (n,k)-consistencies)

Setting up :

- constraints that appear often in practice (all_diff, cycle, ...)
- constraints that are the key-point of a type of application (specific flow constraint, max-flow, ...)
- need specific algorithm for domain reduction
 → efficiency, and thus usefulness depending on the algorithm

alldiff/2:example(1)

sequencing problem :

speaker	beginning	end		
John	3	6		
Mary	3	4		
Gregory	2	5		
Suzan	2	4		
Paul	3	4		
Helen	1	6		

- a single room
- each talk last one hour
- $\rightarrow\,$ sequencing of presentations ?

alldiff/2 : example (2)

Modelling

- a variable = the "hour" of a speach
- no overlapping of speaches = not 2 talks at the same time

•
$$J \in [3, 6], M \in [3, 4], G \in [2, 5],$$

 $S \in [2, 4], P \in [3, 4], H \in [1, 6],$
alldiff $([J, M, G, S, P, H])$

alldiff/2

formulation by conjunction of disequations :

- costly ($\frac{n(n-1)}{2}$ constraints)
- inefficient

 $x_1 \in \{1, 2\}, x_2 \in \{1, 2\}, x_3 \in \{1, 2\}, \text{alldiff}([x_1, x_2, x_3])$

enforcing arc consistency \rightarrow generally, no reduction in the previous example :

- arc consistency (binary) : no reduction
- bound consistency (n-ary) : not consistent

M = 4 and P = 3 (or vice-versa), 3 must be deleted from J

→ reduction

alldiff/2 : Hall

let K be a set of variables, and |K| the cardinamity of K. Consider :

$$\mathsf{dom}(K) = \bigcup_{x_i \in K} D_i$$

Theorem[from Hall, 1935] the constraint $\texttt{alldiff}(x_1, \ldots, x_n)$ over the variables x_1, \ldots, x_n with domains D_1, \ldots, D_n has a solution iff there does not exists a sub-set $K \subseteq \{x_1, \ldots, x_n\}$ s.t. :

 $|K| > |\mathsf{dom}(K)|$

Idea : if there exists a set *K* s.t. |K| = |dom(K)|, we know that the variables of *K* will use all the values from dom(K)

 \rightarrow these values can be removed from variables not in K

Examples (previous example) : $K = \{M, S, P\}$ and $K = \{M, P\}$

Hall interval Given the variables x_1, \ldots, x_n with domains D_1, \ldots, D_n and an interval *I*, let $vars(I) = \{x_i \mid D_i \subseteq I\}$. The interval *I* is a *Hall interval* iff |I| = |vars(I)|.

Proposition the constraint $alldiff(x_1, \ldots, x_n)$ is *bound* consistent w.r.t. D_1, \ldots, D_n iff

- for each interval I, $|vars(I)| \leq |I|$,
- and if for each Hall interval J and each variable x_i , we have : either $D_i \subseteq J$, or $\{\min D_i, \max D_i\} \cap J = \emptyset$

alldiff/2 : mechanism

Process in 2 phases : update of left bounds and update of right bounds

- ordering of variables : increasing ordering on right bounds
- determining Hall intervals
- modification of right bounds

alldiff/2 : algorithm (based on Hall)

```
1 \text{ update min}(x=x 1...x n)
 2 begin
 3
    sort(x)
   for i=1 to n do
 4
 5
    min[i]=min(x[i])
 6
    max[i]=max(x[i])
 7
    done
 8
    for i=1 to n do
 9
    Insert(i)
10
    done
11 end
12
13 IncrMin(a,b,i)
14 % [a,b] Intervalle de Hall
15 begin
16
    for j=i+1 to n do
17
       if \min[j] >= a then
18
           x[i] #>= b+1
       fi
19
20
    done
21 end
```

```
1 Insert(i)
 2 begin
 3 u[i]=min[i]
    for j=1 to i-1 do
 4
      if min[j]<min[i] then</pre>
 5
 6
          u[j]++
 7
          if u[j]>max[i] then Fail
 8
          if u[j]=max[i] then
 9
            IncrMin(min[j], max[j], i)
10
          fi
11
     else
12
          u[i]++
13
      fi
14 done
15 if u[i]>max[i] then Fail
16
    if u[i]=max[i] then
17
        IncrMin(min[i],max[i],i)
18
  fi
19 end
```

primitive algorithm in $\mathcal{O}(n^3)$. a refined version in $\mathcal{O}(n \log n)$

alldiff/2 : graph

possibility to enforce a stronger consistency (hyper-arc consistency) by searching a maximum coupling in the graph of the values of the problem

complexity : $\mathcal{O}(m\sqrt{n})$, *m* the number of arcs in the graph

alldiff/2 : idea of algorithm (graph)

- graph : bipartite (values, variables)
- coupling : not two arcs on the same node
- maximum : the coupling cannot be extended
- if a variable is not connected : insatisfiable constraint
- if a value is not connected : several solutions

Other global constraints

- element $(k, [c_1, \ldots, c_n], x)$. the variable x must be equal to c_k
- atmost(N,List,V)
 at most N variables of List must be equal to the value V
- $gcc([x_1, \ldots, x_n], [v_1, \ldots, v_k], [q_1, \ldots, q_k])$ the number of variables from $[x_1, \ldots, x_n]$ that have the value v_i must be equal to q_i (generalization of alldiff)

cycle/2

- cycle $(n, [s_1, \ldots, s_m])$. the list $[s_1, \ldots, s_m]$ must be a permutation of $\{1, \ldots, m\}$ constituting *n* distinct cycles :
 - $\forall i \in [1,m] \colon 1 \leqslant s_i \leqslant m$
 - $s_i \neq s_j \quad \forall i \neq j$
 - let C_i be a set of integers defined by :
 - $i \in C_i$
 - if $j \in C_i$ then $s_j \in C_i$ (so, *n* distinct sets are defined)

Example : cycle (3, [1, 3, 4, 2, 6, 5]).
 4 in 3rd position, thus an arc from 3 to 4, ...

Example (1)

Travelling salesman problem :

- n sites must be visited exactly once
- there are k travelling salesmen
- distances c_{ij} between sites i and j are known
- $\rightarrow\,$ find the round of each salesman which minimizes the total covered distance

Modelling : x_i is the site to visit after the site *i*, y_i the cost (distance) from *i*.

$$\min \sum_{i=1}^{n} y_i$$
s.t. $x_i \in \{1, \dots, n\}, \text{ for } i \in \{1, \dots, n\}$
 $y_i \in \{c_{i1}, \dots, c_{in}\}, \text{ for } i \in \{1, \dots, n\}$
 $element(x_i, [c_{i1}, \dots, c_{in}], y_i), \text{ for } i \in \{1, \dots, n\}$
 $cycle(k, [x_1, \dots, x_n])$

Exemple (2)

- $\{c_{i1}, \ldots, c_{in}\}$: cost from city *i* to the *n* other cities
- k : number of cycles needed (number of travelling salesmen)
- x_1, \ldots, x_n : set of cities
- element $(x_i, [c_{i1}, \ldots, c_{in}], y_i)$: the cost from city *i* to city x_i (i.e., y_i) is an element of the list of costs from city *i* to another city
- $cycle(k, [x_1, ..., x_n])$: all cities must be visited in k distinct cycles
- $\min \sum_{i=1}^{n} y_i$: money, money !!! the total cost to visit all cities must be minimized

cumulative/4

cumulative $([O_1, \ldots, O_m], [D_1, \ldots, D_m], [R_1, \ldots, R_m], L)$ the constraint is verified iff

$$\forall i \in \mathbb{N} \colon \sum_{j \mid O_j \leqslant i \leqslant O_j + D_j - 1} R_j \leqslant L$$

interprétation : allocation of a single resource

- $[O_1, \ldots, O_m]$: starting date of the *m* tasks
- $[D_1, \ldots, D_m]$: duration of the *m* tasks
- $[R_1, \ldots, R_m]$: number of resource units required for each task
- L : total number of resource units available at each moment

there are 13 resource units available at each moment

we have the following tasks :

task	t_1	t_2	t_3	t_4	t_5	t_6	t_7
duration	16	6	13	7	5	18	4
resource units	2	9	3	7	10	1	11

Question : for all the tasks, find starting and ending dates that minimize the total time of resource utilization

```
1 schedule (LO, End) :-
    LO = [01, 02, 03, 04]
2
          05,06,071,
3
   LD = [16, 6, 13, 7,
 4
           5,18,4],
5
    LR = [2, 9, 3, 7, 10]
6
           1,11],
7
    LE = [E1, E2, E3, E4]
8
9
          E5,E6,E7],
    End in 1..30,
10
    domain(LO,1,30),
11
    domain(LE,1,30),
12
   O1 + 16 \# = E1,
13
   O2 + 6 \# = E2,
14
   O3 + 13 \# = E3,
15
```

- $1 \quad 04 + 7 \# = E4,$
- $2 \quad 05 + 5 \# = E5,$
- $3 \quad 06 + 18 \# = E6,$
- $4 \quad 07 + 4 \# = E7,$
- 5 maximum(End, LE),
- 6 cumulative(LO,LD,LR,13),
- 7 minimize(labeling(LO), End).

Program (ECL i **PS** e) (1)

```
1:-lib(fd), lib(fd_global), lib(cumulative).
2
3 schedule (LO, End) :-
   % starting time
 4
    LO = [01, 02, 03, 04, 05, 06, 07],
5
 6
    %duration of tasks
7
    LD = [16, 6, 13, 7, 5, 18, 4],
8
9
    % resources needed by each task
10
    LR = [2, 9, 3, 7, 10, 1, 11],
11
12
13
    % ending times
    LE = [E1, E2, E3, E4, E5, E6, E7],
14
15
    % time allowed
16
    End:: [1..30],
17
    LO:: [1..30],
18
    LE:: [1..30],
19
```

Program (ECL i **PS** e) (2)

```
% ending time is starting time + duration
1
   01 + 16 \# = E1,
2
   O2 + 6 \# = E2,
3
   O3 + 13 \# = E3,
4
   O4 + 7 \# = E4,
5
   05 + 5 \# = E5,
6
   06 + 18 \# = E6,
7
   07 + 4 \# = E7,
8
9
    % constraint End to be the maximum element in the list L
10
    maxlist(LE,End),
11
12
    % start, duration, resource units, resource limits
13
14
    cumulative (LO, LD, LR, 13),
15
    % find the values that minize LO
16
17
    minimize(labeling(LO), End).
```

Solution

```
1 [eclipse 22]: schedule(LO,E).

2 Found a solution with cost 28

3 Found a solution with cost 27

4 Found a solution with cost 23

5

6 LO = [1, 17, 10, 10, 5, 5, 1]

7 E = 23

8 Yes (0.07s cpu)
```