MASTER 1 UE Biologie Systémique

Unmet needs in IBD

9 décembre 2021

Dr Catherine LE BERRE, CCA-AHU
Hépato-Gastro-Entérologie, Oncologie Digestive et Assistance Nutritionnelle - IMAD - CHU de Nantes

Définition des MICl

- Pathologies inflammatoires chroniques du tube digestif
- 3 types :
- RCH : rectum +/- colon en amont
- MC : peut atteindre tout le tube digestif avec une prédilection pour la région iléo-cæcale
- MICI inclassée (jusqu’à 15 \%)

Epidémiologie

- Initialement décrites en Europe du Nord et aux États-Unis, désormais présentes dans le monde entier
- Incidence en augmentation depuis une trentaine d’années
- Gradient Nord-Sud et Ouest-Est
- En France, données du SNIIRAM (Système National d'Information Interrégimes d'Assurance Maladie) en 2016 :
- > 200000 personnes atteintes d'une MICI
- 120000 MC
- 80000 RCH

Signes cliniques évocateurs d'une MICl

- Diarrhée chronique +/- glairosanglante
- Son absence n'exclut pas le diagnostic
- Douleurs abdominales
- AEG
- Aphtose buccale
- Lésions proctologiques inhabituelles : fissures multiples et/ou de siège atypique (antérieures, latérales), abcès de la marge anale récidivant, fistules complexes et/ou récidivantes
- Chez l'enfant : retard staturo-pondéral

Signes biologiques évocateurs d'une MICI

- Signes biologiques de malabsorption
- Carence martiale
- Carence vitaminique : folates, B12
- Hypoalbuminémie
- Syndrome inflammatoire biologique

Manifestations extra-intestinales (1)

- Peuvent parfois précéder de plusieurs mois l'apparition des manifestations intestinales:
- Rhumatologiques +++ (arthropathies périphériques et rhumatisme axial)
- Cutanéo-muqueuses (psoriasis, érythème noueux, pyoderma gangrenosum)
- Ophtamologiques (uvéite, sclérite, épisclérite)
- Hépato-biliaires (cholangite sclérosante primitive, hépatite auto-immune, cholangite biliaire primitive)

Manifestations extra-intestinales (2)

- Evolution :
- parallèle à la maladie digestive
- pour leur propre compte de façon non corrélée à l'activité de la MICl (spondylarthropathie axiale, uvéite, pyoderma gangrenosum et CSP)
- Plus d'un tiers des patients atteints de MICl souffrent de MEI, de façon plus fréquente en cas de MC que de RCH à l'exception de la CSP

Diagnostic positif d'une MICI

- Aucun «gold standard » n'existe à l'heure actuelle pour affirmer le diagnostic de MICI
- La confirmation diagnostique repose sur un faisceau d'arguments cliniques, biologiques, endoscopiques, histologiques, voire radiologiques

Diagnostic positif d'une MICI

- L’aspect endoscopique diffère selon le type de MICI :

- RCH :
- Atteinte continue, commençant dès la jonction ano-rectale, s'étendant plus ou moins loin en amont, avec une muqueuse rouge, granitée, fragile, saignant au contact, plus ou moins associée à des ulcérations voire des décollements muqueux selon la sévérité de l'atteinte
- L'existence d'un deuxième foyer inflammatoire caecal péri-appendiculaire est classique.
- MC:
- Ulcérations (aphtoïdes, en carte de géographie, en rails) non spécifiques, mais l'atteinte est multi-segmentaire et discontinue avec des intervalles de muqueuse saine.

Diagnostic positif d'une MICI

- Exploration de l'intestin grêle par entéro-IRM et/ou vidéo-capsule endoscopique :
- recommandée pour les patients chez qui il existe une forte suspicion clinique de MC malgré des explorations endoscopiques conventionnelles normales
- systématique chez tout patient nouvellement diagnostiqué avec une MC

Histoire naturelle (1)

	Montréal
Åge au diagnostic	A1 $:<17$ ans
	A2 $: 17-40$ ans
	A3 $:>40$ ans
Localisation	L.1 $:$ ilćon $+/$ - ccecum
	L2 $:$ côlon seul
	L3 $:$ jléon et côlon
	L4 $:$ tube digestif haut ${ }^{*}$
	B1 : inflammatoire
Évolution	B2 : sténosante
	B3 : fistulisante
	P : maladie périnéale

	Montréal
Extension	E1 : proctite
	E2: colite gauche (distale à l'angle splénique)
	E3 ; colite étendue (proximale à l'angle splénique)
Sévérité	S0: Rémission
	S1: leggėre
	S2 : modėrée
	S3: sêvère

Histoire naturelle (2)

Histoire naturelle (3)

Physiopathologie des MICI

Les objectifs thérapeutiques ont grandement évolué sur la dernière décennie

Approche pas-à-pas basée uniquement sur les symptômes cliniques

Cibles communes
Cibles pour la RCH
Cibles pour la MC

Au-delà de la rémission clinique

Une cicatrisation endoscopique à 2 ans est associée à une rémission clinique maintenue à 4 ans

Les cibles thérapeutiques en 2015 : le consensus STRIDE

Les cibles thérapeutiques en 2021 : le consensus STRIDE-II

Comment atteindre ces objectifs ?

- "Treat-to-target" (au-delà des symptômes)
- Intervention thérapeutique précoce
- Monitoring ("tight control")
- Prédire le cours évolutif de la maladie
- Personnaliser le traitement (médecine de précision)

Comment atteindre ces objectifs ?

- "Treat-to-target" (au-delà des symptômes)
- Intervention thérapeutique précoce
- Monitoring ("tight control")
- Prédire le cours évolutif de la maladie
- Personnaliser le traitement (médecine de précision)

« Treat-to-target »

Comment atteindre ces objectifs ?

- "Treat-to-target" (au-delà des symptômes)
- Intervention thérapeutique précoce
- Monitoring ("tight control")
- Prédire le cours évolutif de la maladie
- Personnaliser le traitement (médecine de précision)

Une prise en charge précoce est associée à une meilleure évolution de la MC

Une cicatrisation muqueuse précoce est associée à une meilleure évolution de la RCH

$$
\begin{array}{|ll}
-\cdots & \text { endoscopy subscore }=0 \quad \text { endoscopy subscore }=2 \\
\cdots & \text { endoscopy subscore }=3
\end{array}
$$

			Week 30		
Week 8 Mayo endoscopy subscore a	Median corticosteroid dose b	Corticosteroid-free, $n / n(\%)$	P value c	Corticosteroid-free symptomatic remission, n/n (\%)	
Infliximab					
0	0	$40 / 65(62)$	$<.0001$	$30 / 65(46)$	$<.0001$
1	4.5	$47 / 102(46)$		$35 / 102(34)$	
2	10	$14 / 71(20)$		$8 / 71(11)$	
3	10	$3 / 31(9.7)$		$2 / 31(6.5)$	

Une cicatrisation muqueuse précoce est associée à une meilleure évolution de la RCH

Week 30

Week 8 Mayo endoscopy subscore ${ }^{\text {a }}$	Median corticosteroid dose ${ }^{b}$	Corticosteroid-free, n/n (\%)	P value c	Corticosteroid-free symptomatic remission, n/n (\%)	P value ${ }^{\text {c }}$
Infliximab					
0	0	40/65 (62)	$<.0001$	30/65 (46)	<. 0001
1	4.5	47/102 (46)		35/102 (34)	
2	10	14/71 (20)		8/71 (11)	
3	10	3/31 (9.7)		2/31 (6.5)	

Le concept de «early disease»

Table 3. Paris criteria defining early Crohn's disease for use in disease-modification trials (evidence level D)

Component ${ }^{2}$

Definition
Disease duration
Treatment
s 18 months after diagnosis
No previous or current use of immunomodulators and/or biologics
Previous or current use of 5 -aminosalicylate and/or corticosteroids permitted
*As a prerequisite, the previous diagnosis of Crohn's disease has to be confirmed according to the criteria adopted by Lennard-Jones (26).

Comment atteindre ces objectifs ?

- "Treat-to-target" (au-delà des symptômes)
- Intervention thérapeutique précoce
- Monitoring ("tight control")
- Prédire le cours évolutif de la maladie
- Personnaliser le traitement (médecine de précision)

Un contrôle serré est associé à une meilleure évolution de la MC

- $N=244$
- Durée d'évolution de la maladie (moyenne) :
- 0,9 an (groupe suivi clinique)
- 1,0 an (groupe T2T)
- Pas de différence en terme d'effets indésirables entre les 2 groupes

Cicatrisation muqueuse (CDEIS < 4) et absence d'ulcération profonde

Peut-on transposer CALM aux patients atteints de RCH ?

RCH quiescente + calprotectine $>50 \mu \mathrm{~g} / \mathrm{g}+5-\mathrm{ASA}<3 \mathrm{~g} / \mathrm{jour}$
Randomisation (1:1) : même dose vs intensification

Réévaluation à S6

Calprotectine > $300 \mu \mathrm{~g} / \mathrm{g}$ Intensification vs stabilité de dose

Réévaluation à M18

Peut-on transposer CALM aux patients atteints de RCH ?

RCH quiescente + calprotectine $>50 \mu \mathrm{~g} / \mathrm{g}+5-\mathrm{ASA}<3 \mathrm{~g} /$ jour Randomisation (1:1) : même dose vs intensification

Calprotectine $>300 \mu \mathrm{~g} / \mathrm{g}$ Intensification vs stabilité de dose

Réévaluation à M18

Le but ultime de cette stratégie est de ralentir l'évolution naturelle de la maladie

Cette stratégie permet-elle vraiment de modifier l'histoire naturelle de la maladie ?

Comment atteindre ces objectifs ?

- "Treat-to-target" (au-delà des symptômes)
- Intervention thérapeutique précoce
- Monitoring ("tight control")
- Prédire le cours évolutif de la maladie
- Personnaliser le traitement (médecine de précision)

Prédire le cours évolutif

Overall disease severity index

- Disease severity \neq Disease activity
- Activité de la maladie = cliché instantané
- Sévérité de la maladie = qualité de vie, handicap fonctionnel, complications à + /- long terme même en l'absence d'activité
- Consensus Delphi par l'IOIBD.
- Echelle de 0 à 100 points pour la maladie de Crohn et la RCH.

Overall disease severity index

Table 2 Disease attribute contributions to overall disease severity

Attribute of Crohn's disease	Proportion (\%)	Attribute of UC	Proportion (\%)
Mucosal lesions	15.8	Mucosal lesions	18.1
Fistula	10.9	Impact on daily activities	14.0
Perianal abscess	9.7	C reactive protein	11.2
Prior bowel resection	7.4	Prior biologic use	10.1
Stoma	7.1	Recent hospitalisation	7.7
Disease extent	5.8	Recent steroid use	7.6
Frequency of loose stools	5.6	Anaemia	5.1
Stricture	5.4	Frequency of loose stools	4.8
C reactive protein	5.3	Albumin	4.8
Prior biologic use	5.3	Disease extent	4.8
Impact on daily activities	4.8	Nocturnal bowel movements	4.3
Albumin	4.2	Anorectal symptoms	4.0
Anorectal symptoms	3.9	Rectal bleeding	3.5
Anaemia	3.6		
Abdominal pain	3.1		
Recent steroid use	2.3		

> Index non validé
> pour le moment

Comment atteindre ces objectifs ?

- Treat-to-target (au-delà des symptômes)
- Intervention précoce
- Monitoring ("tight control")
- Prédire le cours évolutif de la maladie
- Personnaliser le traitement (médecine de précision)

Personnaliser le traitement

Un exemple : l'étude CREOLE

- Prédiction du succès d'un anti-TNF en cas de maladie de Crohn avec sténose symptomatique de l'intestin grêle.

Les traitements disponibles dans les MICl sont de plus en plus nombreux

Pivotal Trial Efficacy of Biologics in Crohn's Disease

Clinical Remission
[Maintenance]

Personnaliser à l'échelle moléculaire

Surexpression colique de
 l'oncostatine M associée
 à un échec des anti-TNF

 UC, remission ($n=8$ pre, $n=6$ post)UC, partial response ($n=15$ pre, $n=11$ post)
UC, refractory ($n=7$ pre, $n=6$ post)
healthy controls ($n=21$)
UC, remission ($n=8$ pre, $n=6$ post)UC, partial response ($n=15$ pre, $n=11$ post)
UC, refractory ($n=7$ pre, $n=6$ post)

Personnaliser à l'échelle moléculaire

Concentration sérique élevée d'IL-22 associée à une meilleure réponse à un

Conclusion

- Des objectifs thérapeutiques de plus en plus stricts.
- Trois concepts déjà bien établis :
- «Treat-to-target»
- Intervention thérapeutique précoce
- «Tight control » (biomarqueurs)
\Rightarrow Nécessité de «disease-modification trials ».
- Deux autres concepts à approfondir :
- Médecine prédictive = évaluer la sévérité de la maladie pour en prédire son cours évolutif.
- Médecine personnalisée = administrer le bon traitement au bon patient.

MASTER 1 UE Biologie Systémique

Applying high dimensional single cell approaches to the characterization of immunopathogenic responses in IBD

Jerome Martin (PharmD, PhD)

Jerome.martin@univ-nantes.fr
MCU-PH/Associate professor
Laboratoire d'Immunologie - CHU de Nantes
Centre de recherche en Transplantation et Immunologie
INSERM UMR1064 - Université de Nantes

- How good is our understanding of immunopathogenic responses in IBD inflamed tissues ?
- What are the exact mechanisms by which current targeted therapies actually work?
- Why does it work in subsets of patients only?
- How can we identify these patients before treatment?
- What targets should be prioritized in those patients who do not respond to current targeted therapies ?

Diseases are caused by complex and dysregulated responses involving multiple cell types, interactions and effector mechanisms in tissues

Urgent need to achieve a deep characterization of pathogenic cellular responses invovled in IBD patient tissues at the system level

Is the current pathophysiological model reflecting what really happens in tissues?

Working model

IBD

The immunological jigsaw puzzle of Crohn's disease inflammation
"Reality"

Bernink JH, Nat Immunol, 2013
Geremia A, J Exp Med, 2013
Glatzer T, Immunity, 2013
Takayama T, Gastroenterology, 2010

Human studies

Fontolizumab
Tocilizumab
Infliximab
Adalimumab
Certolizumab
Golimumab

Sakaruba A, Gastroenterology, 2009
Fuss IJ, J Immunol, 1996
Breese E, Immunology, 1993
Fais S, Gut, 1991

Natalizumab
Vedolimumab

How should the pieces be put together? Should the pieces be put together?

Pariente B, Gatroenterology, 2011
Kleinschek MA, J Exp Med, 2009
Kobayashi T, Gut, 2009
Caprioli F, J Immunol, 2008

Limitations:

- Different cohorts
- Different methods
- Different cellular definitions
- Different paradigms...

Kamada N, J Clin Invest, 2009

Geremia A, J Exp Med, 2013

Baba N, J Exp Med, 2013

Martin JC, Mucosal Immunol, 2016

Breese EJ, Gastroenterology, 1994

- Healthy
- Inflamed aCD

Non-inflamed aCD

- qCD
med auc

CD11c ${ }^{\text {high }}$

Tissue

Healthy

Transcriptomic characterization of healthy and lesional tissues in bulk

Tissue profiling by RNA-seq

How do we connect transcriptomic variations to changes of cellular composition, activation etc...?

Gray Camp J, Science, 2019 (adapted)

Single cell characterization by flow cytometry

Heterogenous suspension of cells to study

- All cells share the expression of

- distinguishes green and orange from blue cells but not green from orange
- distinguishes blue and orange from green cells but not blue from orange
- etc..

Cell sorting to study protein secretion, transcriptome, co-culture with other cells etc...
If we only know about the existence of

(design of the Ab panel, availability of Ab, characterization of the protein etc...) blue and orange cells will not be resolved and will be sorted together

Incorrect conclusions will be brought with regard to blue/orange cell biology

New single-cell technologies allow the study of immunopathogenic responses in human tissues at the system level

Limited success of immunotherapies to subgroup of patients could relate to heterogenous immunopathogenic responses between subgroups of patients

Molecularly defined disease subtypes

Droplet-based single-cell RNA sequencing using the Chromium ${ }^{\text {™ }}$ technology (10x Genomics)

Deciphering cellular heterogeneity within and between multiple samples using scRNAseq

Cluster 1

Unraveling ileum CD heterogeneity through high dimensional analysis at the single cell resolution

Main objectives

1. Unbiased deep analysis of intestinal and blood tissues: redefine the determinants of CD inflammation
2. Identification of shared and distinct signatures among patients
3. Correlate signatures to disease course and response to current therapies: molecular stratification
4. Identify new targets to fulfill unmet needs

Joint clustering analysis revealed 47 clusters accounting for 8 major cellular compartments

Inflamed

Percentage estimated by scRNAseq

Remarkable transcriptomic heterogeneity exists within 8 major cellular compartments

The GIMATS module in inflamed ileums

The GIMATS module is enriched in inflamed ileums of a subgroup of patients

T cells

Plasma cells

- IgA plasma cells - lgM plasma cells - Plasmablasts - IgG plasma cells

CD14+ CD68+ CD206- inflammatory macrophages accumulate in CD inflamed ileums

scRNAseq

Inflamed

CyTOF

Gated on CD14+ Macrophages

CD206

MICSSS

Uninflamed

CD68 ${ }^{+}$CD206- infl.macs accumulate in the inflamed lamina propria of moduleenriched patients

Patients enriched for the module

PD-L1

CD68- DC-LAMP+ HLA-DR+ activated DC in the inflamed lamina propria of module-enriched patients

Activated DC are present in lymphocyte aggregates of T and B cells

CD68
DC-LAMP

PDPN+ activated fibroblasts are detected in the lamina propria of patients enriched for the module

Monocyte-derived inflammatory macrophages organize pathogenic stromal and T cell

 responses in inflamed ileums
Network analysis

T cell receptors

$\xrightarrow[\text { J Gregory ©2019 Mount Sinai Health System }]{ }$
Ig \underline{G} plasma cells, Inflammatory Mononuclear phagocytes,
Activated I cells and Stromal cells

Enrichment of the module in a subgroup of patients is a general feature of ileum $C D$

Enrichment of the GIMATS module in early disease correlates with resistance to anti-TNF

Enrichment in the GIMATS module is not captured by markers of systemic inflammation

Summary

1. $\operatorname{scRNAseq}$ analysis identified a pathogenic cellular module in CD inflamed ileum
2. Differential enrichment of the GIMATS module defines two subgroup of patients
3. Marked enrichment of the GIMATS module during early stage of the disease associates with failure to achieve durable CS-free remission during anti-TNF treatment

Single cell mapping of inflammatory lesions provides the opportunity to identify therapeutic targets tailored to anti-TNF non-responders

Current directions

1. What drives the GIMATS response ?
2. How are molecular programs defining GIMATS cell types and functions regulated?
3. Why are GIMATS ${ }^{\text {high }}$ patients resistant to anti-TNF?
4. What treatment would benefit GIMATShigh patients ?

We need to pursue profiling efforts!!

- Macs-1
- Macs-2
- Macs-3
- Macs-4

DC1

- DC1
- Activated DC
- pDC
- Fibroblasts -1
- Fibroblasts -2
- Lymphatics
- Glial cells
- SMuscles/Pericytes
- Naive/CM T cells
- Type 3 cytokines Trm
- CTLs
- Type 1 cytokine Trm
- TFH-like

- IgA Plasma cells
- IgM Plasma cells
- Plasmablasts
- IgG Plasma cells
- Group 1 ILC
- Group 3 ILC
- Inf. Fibs
- Mesenchymal niche cells
- ACKR1+ECs
- CD36+ ECs
- Tregs
- Activated CD8 T cells
- Activated T cells

Take home message

Only through the study of human tissue lesions at high resolution will be able to understand the organization of immunpathogenic responses, their heterogenity and the way to thereutically target them accordingly

Cross-disciplinary efforts at the service of medical research

Is the current pathophysiological model reflecting what really happens in tissues?

Working model

IBD

B cell populations dominate the inflammatory immune landscape in subgroup of patients

Lineage distrbution

- T cells
- ILCs
- Plasma cells
- B cells
- Myeloid cells
- Mast cells
- Stromal/Glial cells

A type 1 inflammatory microenvironment reshape the B cell compartment by imprinting naïve B cell molecular programs and skewing part of the PC response toward IgG production

Uzzan M, Martin JC et al. Nat Med (accepted)

TPH organize B cell responses in inflamed UC colons

HC

CD3CD20CXCL13DAPI

Uzzan M*, Martin JC* et al. Nat Med (accepted)

Part of the B cell response in UC is autoimmune and targets the epithelial integrin $\alpha v \beta 6$

Monoclonal intestinal anti- $\alpha \mathbf{V} \beta 6$

Serum anti- $\alpha \mathbf{V} \beta 6$

Acute B cells coloninc responses translate into increased plasmablast levels in the blood and associate with more severe forms of UC

