Solving

Problem Modeling and Solving: an Introduction to Constraint Programming

Eric Monfroy

Eric Monfroy

Acknowledgement

Some slides (e.g., about applications) are largely inspired by the introduction to constraint programming of Christophe Lecoutre.

Eric Monfroy

・ロト + 伊ト + 臣ト + 臣ト - 夏 - 今へで Problem Modeling and Solving: an Introduction to Constraint

Overview

- First steps in constraint programming?
 - what is CP?
 - some applications
 - context
- Modeling
 - let's try it!
 - and it works!!!
- Constraint solving
 - filtering
 - constraint propagation
 - search

イロン イロン イヨン イヨン 三日

Solving

Firsts steps in CP

Eric Monfroy

・ロト + @ ト + 茎ト + 茎ト - 茎 - のへや Problem Modeling and Solving: an Introduction to Constraint First steps in CP

Modeling

Solving

What is CP about?

Eric Monfroy

roblem Modeling and Solving: an Introduction to Constraint

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

First steps in CP ○○●○○○○○○○○○○○○○○○○○○○○○ Modeling

Solving

Constraint Programming

Constraint Programming = modeling and solving problems under constraints

Eric Monfroy

・□ト + @ト + 臣ト + 臣ト 臣 のへで Problem Modeling and Solving: an Introduction to Constraint First steps in CP

Solving

You has always known CP

World of blocks (planning and placement problem)

Eric Monfroy

< □ > < □ > < □ > < 臣 > < 臣 > < 臣 > 至 のへで Problem Modeling and Solving: an Introduction to Constraint First steps in CP

Solving

You has always known CP

A matching problem

Eric Monfroy

・ロト・日下・ 前下・ 前下・ 日本 うらんの

Problem Modeling and Solving: an Introduction to Constraint

Solving

"History" of constraint programming

"Constraint Programming represents one of the closest approaches computer science has yet made to the Holy Grail of programming: the user states the problem, the computer solves it."

Eugene C. Freuder, Inaugural issue of the Constraints Journal, 1997.

Solving

Constraint programming paradigme

Constraint Programming paradigme **focus on WHAT not on HOW**

- \Rightarrow the user models her/his problem, the "solver" solves it.
 - solver: algorithms for computing solutions of a model instance
 - solution: a set of values for variables that:
 - satisfies the constraints
 - satisfies the constraints and optimizes a criterion

イロト 不得下 イヨト イヨト 二日

Solving

You already know constraint programming

- you can model it
- you can solve it

Eric Monfroy

You can model Sudoku

- fill the empty cells with {1,...,9}
- such that
 - numbers of a line are different
 - numbers of a column are different
 - numbers of a 3x3 block are different

In fact: variables, domains, and constraints

Solution: assignment of values to variables satisfying the constraints

< □ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > つへぐ Problem Modeling and Solving: an Introduction to Constraint

You can solve Sudoku 1/2

Removing impossible candidate values:

- if a cell is 4
 - \Rightarrow remove 4 from the possibilities of the other cells of the row
- in a row, if 2 and 6 are the only candidates of 2 cells
 ⇒ remove 2 and 6 from the possibilities of the other cells
- ...
- in a row, if 5 cells have the same 5 candidate values
 ⇒ these 5 values can be removed from other cells
- X-wing, XY-wing, ...
- \Rightarrow and you iterate

these are the "filtering" and propagation techniques of constraint solvers

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

You can solve Sudoku 2/2

When there is no more filtering to perfom:

- 1. choose a cell c and fix it with one of its remaining value v
- 2. apply propagation again
- 3. if you obtain a solution \Rightarrow done
- 4. otherwise:
 - 4.1 restore c as it was before 1.
 - 4.2 remove v from c
 - 4.3 execute 1. again
- \Rightarrow and you iterate up to a solution
 - 1. is labeling/enumeration
 - 4. is backtracking
 - together they constitute search

イロト イヨト イヨト イヨト 三日

Solving

So, you do constraint programming!

- you can model a problem
- you know how does a solver work

Eric Monfroy

< □ > < □ > < □ > < 臣 > < 臣 > < 臣 > 王 のへで Problem Modeling and Solving: an Introduction to Constraint First steps in CP

Solving

Some applications of CP

Eric Monfroy

oblem Modeling and Solving: an Introduction to Constraint

Early successes

- Scene labeling (Waltz 75)
- Circuit design (Siemens)
- Container port scheduling (Hong Kong and Singapore)
- Transport: SNCF, British Airways, Cathay Pacific, ...
- Industry: Renault, British Telecom,

Solving

Vehicle Routing Problem

Given:

- a set of customers
- their demands
- a fleet of trucks
- a depot
- Find:
 - the best route for each truck
 - satisfying each client

< □ > < □ > < □ > < 臣 > < 臣 > < 臣 > < 臣 > ○ Q (?)
Problem Modeling and Solving: an Introduction to Constraint I

Solving

Ship loading

- Given:
 - ships
 - containers
 - cranes
 - requests to load containers on ships
- Find:
 - the fastest loading schedule
 - meeting the requests

 $\longleftarrow \mathsf{without}\ \mathsf{CP}$

with CP \longrightarrow

・ロト・日本・モト・モー うべん

Eric Monfroy

Problem Modeling and Solving: an Introduction to Constraint

Solving

Car sequencing

- Given:
 - cars to produce
 - option set for each car
 - machines installing the options
- Find:
 - the best production order
 - respecting the capacity of the machines

< □ > < ② > < 差 > < 差 > 差 少くで Problem Modeling and Solving: an Introduction to Constraint

Solving

Nurse Rostering

- Given:
 - nurses with qualifications and shifts
 - constraints on the working/resting patterns
 - needs of the hospital for each service
- Find:
 - an assignment of shifts to nurses
 - maximizing additional criteria (equity between nurses, etc.)
 - respecting all the constraints

Eric Monfroy

< □ > < ⊡ > < 글 > < 글 > < 글 < つ < ぐ
 Problem Modeling and Solving: an Introduction to Constraint

Some more applications

- Job shop scheduling
- Assembly line smoothing and balancing
- Cellular frequency assignment
- Shift planning
- Maintenance planning
- Airline crew rostering and scheduling
- Airport gate allocation and stand planning
- Production scheduling
- Transport scheduling (food, nuclear fuel)
- Course timetabling
- Smart cities
- Sport scheduling
- Mining problem
- Wine blending

Solving

・ロト・団ト・ヨト・ヨー うへぐ

Eric Monfroy

Problem Modeling and Solving: an Introduction to Constraint

History

- Issued (mainly) from Artificial Intelligence (symbolic AI)
- First, CLP: Constraint Logic Programming (1987)
 - declarative programming
 - first systems: Prolog III, CLP, CHIP, ECLiPSe
- Then, CP: Constraint Programming
 - its own paradigme
 - creation of languages/libraries
 - creation of autonomous solvers
 - separation from the logic world

< □ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 > 王 のへで Problem Modeling and Solving: an Introduction to Constraint

Problems subject to constraints and/or objective functions

Optimization tools:

- Mathematical Programming
 - Linear Programming
 - Integer Linear Programming
 - Nonlinear programming
- Meta-heuristics
 - Trajectory-based (LS)
 - Population-based (GA, EA)
- Constraint Programming

Advantages of CP

• Powerful modeling language.

- Simpler models (global constraints, high level languages).
- Problem structure is kept (up to solving)

Easy problem variant modeling

- adding/removing some constraints
- no need for changing solving algorithm

• Complete solvers

- find solution if there is one
- find optimal solution
- prove unsatisfiability

< □ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 > こ 臣 の Q () Problem Modeling and Solving: an Introduction to Constraint

Disadvantages of CP

Less robust

- does not always scale well (blow up)
- but global constraints may help
- Less effective for continuous optimization
 - relies on interval propagation
 - but provides certified computation
- Less highly engineered softwares
 - young field and community

・□ト + @ト + 臣ト + 臣ト 臣 のへで Problem Modeling and Solving: an Introduction to Constraint

Constraint programming

CP: general framework with generic and efficient algorithms for solving problems under constraints

Attractive: clear separation between

- modeling: simple representation of many problems
- **solving**: many generic algorithms and heuristics to find solutions

Modeling and Solving are independent processes:

- a model can be applied various solvers or search techniques
- a solver is used for different models and problems

Solving

Modeling

Eric Monfroy

< □ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > つへ ペ Problem Modeling and Solving: an Introduction to Constraint

Solving

A "tentative" definition

modeling

declaratively describe a real-life problem into a "formal" language

- the problem is generally given as some verbal statements
- the target language may generally use some mathematical or logical objects (arithmetic equations, Boolean connectors, ...)
- the target language is preferably understandable by a solver

How to model

Typically as:

- a Constraint Satisfaction Problem (CSP)
- or a Constraint Optimization Problem (COP)
- A CSP is given by:
 - some (decision) variables
 - some domains for variables (i.e., some candidate values)
 - some relations (constraints) between variables
- A COP is given by:
 - a CSP
 - an objective function to be optimized

CP: solving models of problems, stated as CSP/COP instances

・ロン ・回 と ・ ヨ と ・ ヨ と … ヨ

Remarks

- a (decision) variable is a mathematical variable (not a container as in CS)
- a variable can take at most one value of its domain (if the domain is empty, the problem has no solution)
- a constraint is a "real" relation (as an equation) Thus:
 - x = x + 1 correct, but no solution (or unsatisfiable)
 - 3 = x + y correct constraint
 - $x = 3 \land x = 4$ no solution
- variables and constraints can have numerous types:
 - Integer FD with linear, quadratic, or non linear constraints
 - "real" (continuous) and linear/non linear constraint
 - Boolean variables and logic formulas (SAT)
 - set variables and set constraints
 - lists, symbolic, functions, trees, . . .

Eric Monfroy

Problem Modeling and Solving: an Introduction to Constraint

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → つへで

Solving

Eric Monfroy

oblem Modeling and Solving: an Introduction to Constraint

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

Solving

A simple example: the *n*-queen problem

Place *n* chess queens on an $n \times n$ chessboard so that no two queens threaten each other.

- do you know this problem?
- can you solve it?
- how much time do you need to solve it?

Eric Monfroy

< ロト < 合ト < 臣ト < 臣ト < 臣 の Q ()
 Problem Modeling and Solving: an Introduction to Constraint

The *n*-queen problem

Place *n* chess queens on an $n \times n$ chessboard so that no two queens threaten each other.

- a verbal description of the problem
- some implicit knowledge:
 - what is a chessboard?
 - a queen can move?
 - how does a queen move?
 - threaten or "attack"? what does it mean?
 - . . .

\Rightarrow let's try to clarify and model this problem

イロト 不得 トイラト イラト・ラ

The *n*-queen problem

nothing to optimize, thus CSP

- the manipulated "objects"
 - how to represent the chessboard?
 - a set of n² cells?
 - a 2-d array?
 - a set (1-d array) of columns?
 - how to represent the queens?
 - integer, Boolean domains?
 - \Rightarrow the variables
- relations between the "objects"
 - no 2 queens in attack?
 - not 2 queens on the same row
 - not 2 queens on the same column
 - not 2 queens on the same diagonal
 - a relation between these 2 queens?
 - \Rightarrow the constraints

Eric Monfroy

Problem Modeling and Solving: an Introduction to Constraint

イロト イヨト イヨト イヨト 三日
n-queen: a first model

- Variables: $x_{i,j}$, $i, j \in [1, n]$
 - 1: if there is a queen in row *i*, column *j*
 - 0: otherwise

. . .

- Domains (candidate values): {0,1}
- Constraints (requirements):
 - one and only one queen per row: $\forall i \in [1, n], \sum_{j=1}^{n} x_{i,j} = 1$
 - one and only one queen per column: $\forall j \in [1, n], \sum_{i=1}^{n} x_{i,j} = 1$
 - 0 or 1 queen per diagonal (4.n 6 diagonals) $x_{2,1} + x_{1,2} \leq 1$ $x_{3,1} + x_{2,2} + x_{1,3} \leq 1$

Note: "= 1" can be replaced by " ≤ 1 " adding $\sum_{i=1}^{n} (\sum_{j=1}^{n} x_{i,j}) = n$

About the first model

Model:

- a 2-d array of cells/variables
- a variable = presence or not of a queen

Family:

- Pseudo-Boolean variables and constraints
- or 0/1 Integer Linear Programming
- or integer Finite Domain (FD) model

\Rightarrow can be solved by an Integer FD constraint solver

イロト 不得 トイラト イラト・ラ

n-queen: a second model

- Variables and Domains: $x_{i,j} \in \{true, false\}$ for $i, j \in [1, n]$
 - true, if there is a queen at the intersection of (row *i*, column *j*)
 - false, otherwise
- Constraints:
 - one and only one queen per row:

$$\forall i \in [1, n], \quad \left(\bigvee_{j \in [1, n]} x_{i, j}\right) \ \bigwedge \ \left(\bigwedge_{j, k \in [1, n], j \neq k} (\neg x_{i, j} \lor \neg x_{i, k}\right)$$

- one and only one queen per column: similar, switching *i* and *j*
- diagonals (the main diagonal only)

$$\bigwedge_{j,j\in[1,n],i\neq j} (\neg x_{i,i} \lor \neg x_{j,j})$$

Eric Monfroy

< □ ト < 団 ト < 臣 ト < 臣 ト < 臣 ト 王 のへで Problem Modeling and Solving: an Introduction to Constraint

About the second model

Model:

- a 2-d array of cells/variables
- a variable = presence or not of a queen

Family:

- Boolean variables and constraints
- \Rightarrow can be solved by a constraint solver, a SAT solver

Note:

- $\forall i \in [1, n]$ in the first group of constraint is in fact $\bigwedge_{j \in [1, n]}$
- j, k ∈ [1, n], j ≠ k
 can be changed to
 j ∈ [1, n − 1], k ∈ [j + 1, n]
 to avoid redundant constraints (commutativity of ∨)

Problem Modeling and Solving: an Introduction to Constraint

n-queen: a third model

- Variables and Domains: for $i \in [1, n]$
 - $c_i \in [1, n]$ (column position of the *i*-th queen)
 - $\ell_i \in [1, n]$ (line position of the *i*-th queen)
- Constraints:
 - queens *i* and *j* are not on the same line: $\forall i, j \in [1, n], i \neq j, \ \ell_i \neq \ell_j$
 - queens *i* and *j* are not on the same column: $\forall i, j \in [1, n], i \neq j, c_i \neq c_j$
 - queens *i* and *j* are not on the same diagonal: $\forall i, j \in [1, n], i \neq j, \quad \ell_i - \ell_j \neq c_i - c_j \text{ and } \ell_i - \ell_j \neq c_j - c_i$

Problem Modeling and Solving: an Introduction to Constraint

About the third model

Model:

- two 1-d array (vectors) of coordinates
- a queen is given by 2 variables (coordinate row/column) (c_i, l_i) coordinates of queen k

Family:

- in the Integer Linear Programming family
- or integer Finite Domain (FD) model

 \Rightarrow can be solved by an Integer FD constraint solver

Note:

- a lot of symmetric solutions
- e.g., values of (c_i, ℓ_i) and (c_j, ℓ_j) can be switched
- globally: queen number k can be put in (c_i, ℓ_i) , whatever i

Problem Modeling and Solving: an Introduction to Constraint

n-queen: a fourth model

- Variables and Domains: x_i ∈ [1, n] for i ∈ [1, n]
 x_i is the *i*-th row, x_i's value is the column of the *i*-th queen i.e., x_i = j means: the *i*-th queen is on row i and column j
- Constraints:
 - one and only one queen per column: $\forall i, j \in [1, n], i \neq j, x_i \neq x_i$
 - one and only one queen per row: already in the semantics of variables and domains
 - not 2 queens on a diagonal $\forall i, j \in [1, n], i \neq j, x_i - x_j \neq i - j \text{ and } x_i - x_j \neq j - i$

Problem Modeling and Solving: an Introduction to Constraint

About the fourth model

Model:

- one 1-d array (vector) of columns
- a queen is given by 1 variable x_i is the place of queen *i*

Family:

- same family as the third model, and same remarks
- much less symmetric solutions

Let's improve it

Eric Monfroy

<ロト 4 団ト 4 団ト 4 臣ト 4 臣ト 差 のへで Problem Modeling and Solving: an Introduction to Constraint

n-queen: a fifth model

• Variables and Domains: $x_i \in [1, n]$ for $i \in [1, n]$

 $x_i = j$ means: the *i*-th queen is on row *i* and column *j*

- Constraints:
 - one and only one queen per column: *alldifferent*({x₁,...,x_n})
 - one and only one queen per row: already in the semantics of variables and domains
 - not 2 queens on a diagonal alldifferent($\{x_i + i | i \in [1..n]\}$) alldifferent($\{x_i - i | i \in [1..n]\}$)

About the fifth model

- integer FD family
- use of global constraints (*alldifferent*):
 - simpler modeling, more declarative, more concise
 - but also, better solving (specific algorithm)

n-queen: a 6th model

- Variables: R_i, C_i, i ∈ [1, n] Rows, Columns, and Cells of the chessboard
- Domains: $\{q_1, ..., q_n\}$
- Constraints:
 - one and only one queen per row: $\forall i \in [1, n], R_i = \{q_i\}$
 - one and only one queen per column: $\forall i \in [1, n], |C_i| = 1 \text{ and } |\bigcup_{i=1}^n C_i| = n$
 - not 2 queens on a diagonal $|(R_1 \cap C_2) \cup (R_2 \cap C_1)| \leq 1$

About the 6th model

Model:

- two 1-d array (vectors) of columns and rows
- a queen is given by the intersection of 2 variables queen *i* is at the intersection of row *i* and a column to be determined

Family:

- family of set constraints
- a type of FD variables
- solved by a set constraint CP solvers

Solving

And it works!

Eric Monfroy

Problem Modeling and Solving: an Introduction to Constraint

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

Model in PyCSP3 (Python)

from pycsp3 import *

n = data # number of queens, it's a data

q[i] is the column where is put the ith queen (at row i)
q = VarArray(size=n, dom=range(n))

```
satisfy(
    AllDifferent(q), # no 2 queens on the same column
```

no two queens on the same upward diagonal AllDifferent(q[i] + i for i in range(n)),

no two queens on the same downward diagonal
AllDifferent(q[i] - i for i in range(n)))

Problem Modeling and Solving: an Introduction to Constraint

Solving an instance

Create an xml file containing the instance:

python .\Queens.py -data=100

Solve the instance:

java -jar .\ACE-21-04.jar .\Queens-100.xml

Create and solve the instance:

```
python .\Queens.py -data=100 -solve
```

Model in MiniZinc

include "alldifferent.mzn";

int: n; % The number of queens.

array [1..n] of var 1..n: q; % The chessboard

constraint alldifferent(q); % no 2 queens on a column

% no two queens on the same upward diagonal constraint alldifferent(i in 1..n)(q[i] + i);

% no two queens on the same downward diagonal constraint alldifferent(i in 1..n)(q[i] - i);

solve satisfy;

Problem Modeling and Solving: an Introduction to Constraint

To be noticed

• instance = model + data

a model represents a family of problem instances

- PyCSP3 and MiniZinc are modelers
 - modelers or modeling languages
 - i.e., languages to model problems using some form of control and abstraction.
 - \Rightarrow from model + data, they generate the instance
- the generated instance can be solved with various solvers
- solvers without "specific" modelers: Gecode, Choco, Oscar, ECLiPSe, ...

Solving

CSP solving

Eric Monfroy

・ロト < 唇ト < 茎ト < 茎ト 茎 のへや Problem Modeling and Solving: an Introduction to Constraint

Constraint solving

- Mathematical programming (LP, ILP, NLP, ...)
 - generally efficient
 - no global constraints
 - no declarative modeling
- Meta-heuristics
 - efficient when adapted to the problem
 - need problem specific representation and operators
 - not so "generic"
 - incomplete
- Constraint propagation-based solvers
 - generic, i.e., problem independent
 - generic, i.e., same technique for variable types
 - enables declarative modeling
 - more efficient with global constraints

イロト イヨト イヨト イヨト 三日

Constraint propagation-based solver

- need to explore the search space
- interleaves two steps:
 - reduction of the search space, i.e., constraint propagation
 - exploration of the search space, i.e., search
- constraint propagation
 - fix-point application of filtering function
 - a filtering function removes values of variable domains that cannot participate in any solution
- search
 - split the current search space
 - decide which "branch" to explore

Solving

Sketch of a solver

function solve(
$$\mathcal{P} = (X, D, C) : CSP$$
) $\longrightarrow Map < X, D >$
 $S: Set(CSP)$
 $\mathcal{P}' : CSP$
 $S \leftarrow \{\mathcal{P}\}$
while $S \neq \emptyset$
 $\mathcal{P}' \leftarrow select(S)$
 $S \leftarrow S \setminus \{\mathcal{P}'\}$
 $\#$ reduce search space of \mathcal{P}'
if happy
 $\#$ expected solution found
then return solution(\mathcal{P}')
 $elif \neg unsat(\mathcal{P}')$
 $\#$ there may still be solutions in \mathcal{P}'
then $S \leftarrow S \cup split_search_space(\mathcal{P}')$
 $\#$ split into "smaller" CSPs, and add them to S
 $endWhile$
return \emptyset

Problem Modeling and Solving: an Introduction to Constraint

Solving

・ロト・雪ト・雪・・雪・ 回 ろんの

Eric Monfroy

Problem Modeling and Solving: an Introduction to Constraint

Filtering domains of variables

- constraint propagation = fix-point of filtering functions the work of a function can wake up other functions
- a constraint can be seen as a sub-problem
- inconsistent values are removed/filtered using a constraint
- several level/strength of filtering (resulting property is called local consistency)
 - AC (Arc Consistency): all inconsistent values are deleted
 - BC (Bound Consistency): only inconsistent bounds of domains are deleted
 - . . .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Solving

AC vs. BC

Eric Monfroy

Problem Modeling and Solving: an Introduction to Constraint

Solving

Filtering examples

- Constraint w + 3 = z with
 - $dom(w) = \{0, 1, 3, 4, 5\}$
 - $dom(z) = \{4, 5, 8\}$
- After AC filtering:
 - $dom(w) = \{1, 5\}$
 - $dom(z) = \{4, 8\}$
- After BC filtering:
 - $dom(w) = \{1, 3, 4, 5\}$
 - $dom(z) = \{4, 5, 8\}$

Solving

BC (AC) filtering for $x \leq y$ (integer FD)

constraint:

$$x \leqslant y$$

• intuitively:

 $x \leqslant \max D_y$ $y \geqslant \min D_x$

• BC with initial domains $D_x = [a, b], D_y = [c, d]$

$$D_x \leftarrow [a, \min\{b, d\}]$$
$$D_y \leftarrow [\max\{a, c\}, d]$$

Eric Monfroy

Problem Modeling and Solving: an Introduction to Constraint

イロト 不得下 イヨト イヨト 二日

Solving

BC filtering for x = y + z (Integer FD)

constraint:

$$x + y = z \equiv x = z - y \equiv y = z - x$$

• intuitively:

$$\begin{array}{ll} z \geqslant \min D_x + \min D_y & z \leqslant \max D_x + \max D_y \\ x \geqslant \min D_z - \max D_y & x \leqslant \max D_z - \min D_y \\ y \geqslant \min D_z - \max D_x & y \leqslant \max D_z - \min D_x \end{array}$$

• BC from $D_x = [a, b], D_y = [c, d], D_z = [e, f]$

$$D_x \leftarrow D_x \cap [e - d, c - f]$$

 $D_y \leftarrow D_y \cap [e - b, f - a]$
 $D_z \leftarrow D_z \cap [a + c, b + d]$

Eric Monfroy

Problem Modeling and Solving: an Introduction to Constraint

What about global constraints? Alldifferent?

With "simple" constraints:

- constraints: $x_1 \neq x_2 \land x_1 \neq x_3 \land x_2 \neq x_3$ domains: $x_1 \in [0, 1], x_2 \in [0, 1], x_3 \in [0, 1]$
- no filtering with $x_1 \neq x_2$ (nor with $x_1 \neq x_3$, or $x_2 \neq x_3$)

•
$$x_1 = 0$$
 and $x_2 = 1$, or $x_1 = 1$ and $x_2 = 0$

With a more global view, stronger filtering:

- constraints: all different $(\{x_1, x_2, x_3\})$ domains: $x_1 \in [0, 1], x_2 \in [0, 1], x_3 \in [0, 1]$
- 3 variables and 2 values \Rightarrow no solution

and

- constraints: all different $(\{x_1, x_2, x_3\})$ with $x_1 \in [1, 2], x_2 \in [1, 2, 3, 4], x_3 \in [1, 2]$
- filtering: $x_1 \in [1, 2], x_2 \in [3, 4], x_3 \in [1, 2]$

What about global constraints? Alldifferent?

- various filtering algorithms for the *alldifferent* constraint
 - remember "You can solve Sudoku" \Rightarrow Hall sets
 - or bi-partite graphs
- main global constraints:
 - sum: $\sum_{i=1}^{r} c_i x_i \triangleq L \ (\triangleq \in \{=, \neq, \geqslant, \ldots\})$
 - cumulative
 - cardinality
 - element
 - . . .

Solving

Constraint propagation

Eric Monfroy

< □ ト < 団 ト < 臣 ト < 臣 ト < 臣 ト 王 のへで Problem Modeling and Solving: an Introduction to Constraint

Propagation

- iterated application of filtering functions
- untill reaching a fixed-point
- or untill a given criterion (before reaching local consistency)

Propagation algorithm:

- parameters:
 - $D = D_1 \times D_2 \times \ldots \times D_n$: Cartesian product of domains
 - $F = \{f_1, f_2, \dots, f_n\}$: a set of filtering functions
- result: D: Cartesian product of reduced domains

Propagation algorithm

function propagate $(D, F) \longrightarrow D$

$$\begin{array}{ll} G \leftarrow \emptyset \\ \text{while } F \neq \emptyset \\ F \leftarrow F \setminus \{f_i\} & \# \text{ select a function, remove if from } F \\ G \leftarrow G \cup \{f_i\} & \# \text{ add it to } F \\ D' \leftarrow f_i(D) & \# \text{ filter domains with } f_i \\ F \leftarrow F \cup G' \text{ and } G \leftarrow G \setminus G' \\ & \text{where } \forall g \in G, \exists x_k \in var(g), D'_k \neq D_k \rightarrow g \in G' \\ & \# \text{ functions whose at least one variable} \\ & \# \text{ has been modified must be woken} \\ D \leftarrow D' \\ \text{endwhile} \\ \text{return D} \end{array}$$

Problem Modeling and Solving: an Introduction to Constraint

Search: exploration of the search space

Eric Monfroy

Search tree

• a complete search can be represented by a "reversed" tree

- nodes: filtered CSPs
- root: initial CSP
- branching corresponds to split (solve algorithm)
- leaves: success (solution) or fail (unsat) CSP
- goal: pruning the search tree \Rightarrow to improve solving efficiency
 - cutting branches that do not lead to a success leaf

with pruning:

Eric Monfroy

Problem Modeling and Solving: an Introduction to Constraint

Pruning and splitting

- pruning by constraint inference: filtering and propagation
- split: split a CSP into sub-CSPs such that no solution is lost
 - generally: labelling
 - a branch with: $x = v, v \in D_x$
 - a second branch with $x \in D_x \setminus \{v\}$
 - selection heuristics: which variable? which value?

Eric Monfroy

< ロト < 合ト < 臣ト < 臣ト < 臣 の Q ()
 Problem Modeling and Solving: an Introduction to Constraint

Complete exploration

Classical approach

- depth-first left-right (find a solution or fail and prune)
- backtracking mechanism when a branch fails:
 - go back to last split
 - try the other branch
- interleaving of
 - decisions (branching)
 - inferences (propagation, reduction of the search space)
Modeling

To go futher on CP

Modelers (and solvers)

- PyCSP3:
 - Modeler: https://github.com/xcsp3team/pycsp3 or https://pypi.org/project/pycsp3/
 - Tutorial:

https://github.com/xcsp3team/pycsp3/blob/master/guidePyCSP3.pd

- MiniZinc:
 - Modeler: https://www.minizinc.org/
 - Tutorial:

https://www.minizinc.org/doc-2.5.5/en/part_2_tutorial.html

Solvers/Modelers from commercial companies

- Z3 (SMT Microsoft)
- OR-Tools (Google)
- OPL (IBM)

イロト イヨト イヨト イヨト 三日