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Filtering Domains by means of Constraints

Each constraint represents a “sub-problem” from which some
inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only
cite:

• AC (Arc Consistency): all inconsistent values are identified and
deleted

• BC (Bounds Consistency): inconsistent values corresponding to the
bounds of the domains are identified and deleted

Warning.
For non-binary constraints, AC is often denoted by GAC (but not in this
course).
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Example.

Constraint x < y with

• dom(x) = 10..20

• dom(y) = 0..15

After AC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

After BC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

Constraint w + 3 = z with

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

After AC filtering, we obtain:

• dom(w) = {1, 5}
• dom(z) = {4, 8}

After BC filtering, we obtain:

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}
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Notion of Support

For a constraint c

• an allowed tuple, or tuple accepted by c , is an element of A = rel(c)

• a valid tuple is an element of V = Πx∈scp(c)dom(x)

• a support (on c) is a tuple that is both allowed and valid, i.e., an
element of A ∩ V

Remark.
A support on c is what we have previously informally called a solution of
the “sub-problem” c .
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Notion of Support

Example.
Let cxyz be a ternary constraint, and let us suppose that
dom(x) = dom(y) = {a, b} and dom(z) = {b, c}. We have:

• A = rel(cxyz)

• V = dom(x)× dom(y)× dom(z)

A
a a a
a b b
a c c
b a a
b b b
c a a
c c c

∩

V
a a b
a a c
a b b
a b c
b a b
b a c
b b b
b b c
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Arc Consistency (AC)

Definition
A constraint c is arc-consistent (AC) iff ∀x ∈ scp(c), ∀a ∈ dom(x), there
exists a support of (x , a) on c , i.e., a support τ on c such that τ [x ] = a.

Example.
Let x and y be two variables such that dom(x) = dom(y) = {1, 2}, and
let x = y be a binary constraint.

• the tuple τ = (1, 2) // τ [x ] = 1 ∧ τ [y ] = 2
• is valid
• but not accepted by x = y

• the tuple τ = (3, 3)
• is not valid,
• but accepted by x = y

• the tuple τ = (2, 2)
• is valid
• and accepted by x = y

it represents a support of both (x , 2) and (y , 2) on x = y
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Supports

In other words, the supports on a constraint c are those tuples that are
present in the intersection of :

• the set of allowed tuples: rel(c)

• the set of valid tuples: val(c) = Πx∈scp(c)dom(x)

rel(c)

val(c)

Supports of c

⇒ We need to “identify” these supports for filtering

9



Supports

In other words, the supports on a constraint c are those tuples that are
present in the intersection of :

• the set of allowed tuples: rel(c)

• the set of valid tuples: val(c) = Πx∈scp(c)dom(x)

rel(c)

val(c)

Supports of c

⇒ We need to “identify” these supports for filtering

9



Example

0

0

1

2

3

1 2 3 4 5

rel(cxy)

y

x

val(cxy)

Supports of cxy

After AC filtering, we obtain?
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AC Algorithm

Definition
A value (x , a) is arc-inconsistent on a constraint c when there is no
support of (x , a) on c .

Definition
An AC algorithm for a constraint c is an algorithm that removes all
values that are arc-inconsistent on c ; the algorithm is said to
enforce/establish AC on c .

Here is an AC algorithm that can be used in theory with any constraint c .

Algorithm 1: filterAC(c : Constraint)

for each variable x ∈ scp(c) do
for each value a ∈ dom(x) do

if ¬ seekSupport(c , x , a) // function to be implemented

then
remove a from dom(x)
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Here is an AC algorithm that can be used in theory with any constraint c .
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AC Filtering for allDifferent

Proposition
A constraint allDifferent(X ) is AC iff ∀X ′ ⊆ X ,

|dom(X ′)| = |X ′| ⇒ ∀x ∈ X \ X ′, dom(x) = dom(x) \ dom(X ′)

where dom(X ′) = ∪x′∈X ′dom(x ′)

Remark.
A subset X ′ of variables such that |dom(X ′)| = |X ′| is called a Hall set.

Example.
The set of variables {x , y , z} such that:

• dom(x) = {a, b},
• dom(y) = {a, c}
• and dom(z) = {b, c}

is a Hall set (of size 3).
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AC Filtering for allDifferent

Example.
For a Sudoku block, a constraint allDifferent(w , x , y , z) :

3

41

8

6
w

x y

z

dom(w) = {2, 5, 7, 9}

dom(z) = {2, 5, 7, 9}
dom(y) = {2, 5, 7, 9}

dom(x) = {2, 5, 7, 9}

Can we filter?
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Identification of Hall sets

The same constraint as previously, but variables have different domains.

Example.
For a Sudoku block, a constraint allDifferent(w , x , y , z) :

3

41

8

6
w

x y

z

dom(w) = {2, 5, 7}

dom(z) = {2, 5, 7, 9}
dom(y) = {2, 5}

dom(x) = {2, 5}

3

41

8

6
w

x y

z

dom(w) = {2, 5, 7}

dom(z) = {2, 5, 7, 9}

dom(x) = {2, 5}

dom(y) = {2, 5}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {7, 9}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {7, 9}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {9}
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AC Filtering for cardinality

Definition
A constraint cardinality(X ,V , L,U) forces the variables in X to take
their values in V with the restriction that each value vi in V is assigned
at least L(vi ) times and at most U(vi ) times.

Example.
Three sets:

• Agents = {Peter ,Paul ,Mary , John,Bob,Mike, Julia}
• Days = {Monday ,Tuesday , ...,Sunday}
• Activities = {M(orning),D(ay),N(ight),B(ackup),O(ff )}.
• We want a roster that looks like:

Mo Tu We Th Fr Sa Su
Peter D N N N O O O
Paul O O D D M M B
Mary M M D D O O N
...
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AC Filtering for cardinality

Example.
For simplicity, we only reason here on Monday. Our variables X represent
the agents, and we have ∀x ∈ X , dom(x) = {M,D,N,B,O}.
The constraint cardinality(X ,{M,D,N,B,O},L,U) is such that:

• L = {1, 1, 1, 0, 0}
• U = {2, 2, 1, 2, 2}.
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AC Filtering for sum :
∑r

i=1 cixi ≥ L

Domains of variables
w , x , y and z

dom

w x y z
1 1 2 2
2 2 3 3
3 3 4 4

Constraint cwxyz : w + 2x + 4y + 5z ≥ 42

Domains of variables
w , x , y et z
after AC filtering of cwxyz

dom

w x y z
1 1 2 2
2 2 3 3
3 3 4 4

Complexity?
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AC Filtering for sum : U ≥∑r
i=1 cixi ≥ L

Domains of variables
w , x , y and z

dom

w x y z
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

Constraint cwxyz : 82 ≥ 27w + 37x + 45y + 53z ≥ 80

Domains of variables
w , x , y and z
after AC filtering of cwxyz

dom

w x y z
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3
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AC Filtering for sum : U ≥∑r
i=1 cixi ≥ L

Possibility of using dynamic programming:

• construction of a graph (Knapsack)

• reduction of the graph

• use of a constraint mdd from the reduced graph

Warning.
Pseudo-polynomial Complexity O(rU2)

Example.
Illustration of this approach with:

• the constraint 12 ≥ 2x1 + 3x2 + 4x3 + 5x4 ≥ 10

• where the domain of each variable is {0, 1}.
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Example
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AC Filtering for or (meta-constraint)

Constructive Disjunction
Enforcing AC on a meta-constraint or(c1,c2) can be achieved by
constructive disjunction: for each variable x , dom(x) is the union of the
domains of x obtained after AC filtering on c1 and AC filtering on c2.

Example.
Let x be a variable such that dom(x) = {1, 2, 3} and the meta-constraint
or(x = 1,x = 2).

AC on x = 1 yields dom1(x) = {1}
AC on x = 2 yields dom2(x) = {2}

AC on or(x = 1,x = 2) reduces dom(x) to dom1(x) ∪ dom2(x) = {1, 2}
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AC Filtering for and (meta-constraint)

Proposition
AC on the conjunction and(c1,c2) is with respect to AC enforced
independently on c1 and c2:

• generally stronger,

• equivalent when |scp(c1) ∩ scp(c2)| ≤ 1

Example
Let x and y two variables such that dom(x) = dom(y) = {1, 2, 3} and
the meta-constraint and(x 6= y ,x ≤ y).

• AC on x 6= y as well as AC on x ≤ y have no effect

• AC on and(x 6= y ,x ≤ y) permits to have:
• dom(x) reduced to {1, 2}
• dom(y) reduced to {2, 3}

24



AC Filtering for and (meta-constraint)

Proposition
AC on the conjunction and(c1,c2) is with respect to AC enforced
independently on c1 and c2:

• generally stronger,

• equivalent when |scp(c1) ∩ scp(c2)| ≤ 1

Example
Let x and y two variables such that dom(x) = dom(y) = {1, 2, 3} and
the meta-constraint and(x 6= y ,x ≤ y).

• AC on x 6= y as well as AC on x ≤ y have no effect

• AC on and(x 6= y ,x ≤ y) permits to have:
• dom(x) reduced to {1, 2}
• dom(y) reduced to {2, 3}

24



Outline

1 Filtering Domains with Constraints

2 Principle of Constraint Propagation
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Constraint Propagation

Definition
A constraint network P is AC iff each constraint of P is AC.

Definition
Computing the AC-closure of a constraint network P is the fact of
removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute
the AC-closure?

NO because when some values are filtered out by a constraint, this can
give new opportunities to other constraints to filter again.

The process that involves executing filtering operations, by solliciting
constraints in turn, until a fixed point is reached is called constraint
propagation.
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Constraint Propagation Algorithm

Algorithm 4: constraintPropagationOn(P: CN): Boolean

Q ← ctrs(P)
while Q 6= ∅ do

pick and delete c from Q
Xevt ← c .filter() // Xevt denotes the set of variables with

reduced domains (after filtering by means of c)
if ∃x ∈ Xevt such that dom(x) = ∅ then

return false // global inconsistency detected

foreach c ′ ∈ ctrs(P) such that c ′ 6= c and Xevt ∩ scp(c ′) 6= ∅ do
add c ′ to Q

return true

Remark.
If each call c .filter() enforces AC on c , then the algorithm computes the
AC-closure of P.
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Constraint Propagation Algorithm

Algorithm 5: constraintPropagationOn(P: CN): Boolean

Q ← ctrs(P)
while Q 6= ∅ do

pick and delete c from Q
Xevt ← c .filter() // Xevt denotes the set of variables with

reduced domains (after filtering by means of c)
if ∃x ∈ Xevt such that dom(x) = ∅ then

return false // global inconsistency detected

foreach c ′ ∈ ctrs(P) such that c ′ 6= c and Xevt ∩ scp(c ′) 6= ∅ do
add c ′ to Q

return true

Remark.
If each call c .filter() enforces AC on c , then the algorithm computes the
AC-closure of P.
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Domino Problem

The instance domino-6 is represented by the following CN P:

• vars(P) = {
x0 with dom(x0) = {0, 1, 2, 3, 4, 5},
x1 with dom(x1) = {0, 1, 2, 3, 4, 5},
x2 with dom(x2) = {0, 1, 2, 3, 4, 5},
x3 with dom(x3) = {0, 1, 2, 3, 4, 5},
x4 with dom(x4) = {0, 1, 2, 3, 4, 5},
x5 with dom(x5) = {0, 1, 2, 3, 4, 5}

}
• ctrs(P) = {

x0 = x1,
x1 = x2,
x2 = x3,
x3 = x4,
x4 = x5,
(x0 = x5 + 1 ∧ x0 < 5) ∨ (x0 = x5 ∧ x0 = 5)

}
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Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6
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Constraint Propagation on queens-4

For the 4-queens instance, we have:

• vars(P) = {
xa with dom(xa) = {1, 2, 3, 4},
xb with dom(xb) = {1, 2, 3, 4},
xc with dom(xc) = {1, 2, 3, 4},
xd with dom(xd) = {1, 2, 3, 4}

}
• ctrs(P) = {

xa 6= xb ∧ |xa − xb| 6= 1,
xa 6= xc ∧ |xa − xc | 6= 2,
xa 6= xd ∧ |xa − xd | 6= 3,
xb 6= xc ∧ |xb − xc | 6= 1,
xb 6= xd ∧ |xb − xd | 6= 2,
xc 6= xd ∧ |xc − xd | 6= 1

}

Exercice
After taking the decision xa = 1,
what is the AC-closure of P?
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Constraint Propagation on queens-4

For the 4-queens instance, we have:

• vars(P) = {
xa with dom(xa) = {1, 2, 3, 4},
xb with dom(xb) = {1, 2, 3, 4},
xc with dom(xc) = {1, 2, 3, 4},
xd with dom(xd) = {1, 2, 3, 4}

}
• ctrs(P) = {

xa 6= xb ∧ |xa − xb| 6= 1,
xa 6= xc ∧ |xa − xc | 6= 2,
xa 6= xd ∧ |xa − xd | 6= 3,
xb 6= xc ∧ |xb − xc | 6= 1,
xb 6= xd ∧ |xb − xd | 6= 2,
xc 6= xd ∧ |xc − xd | 6= 1

}

Exercice
After taking the decision xa = 1,
the AC-closure of P is:
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Exercice
Let P be the following CN:

• vars(P) = {
x1 with dom(x1) = {1, 2, 3},
x2 with dom(x2) = {1, 2, 3},
x3 with dom(x3) = {1, 2, 3},
x4 with dom(x4) = {1, 2, 3}

}
• ctrs(P) = {

x1 6= x2,
x2 + x3 ≤ x1,
x2 + x4 ≥ 2 ∗ x1,

}

Simulate the process of constraint propagation on P (that is to say,
compute the AC-closure of P).
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