Constraint Programming
— Filtering : Part 1 -

Christophe Lecoutre
lecoutre@cril fr

CRIL-CNRS UMR 8188
Universite d'Artois
Lens, France

January 2021

Outline

@ Filtering Domains with Constraints

@ Principle of Constraint Propagation

Outline

@ Filtering Domains with Constraints

Filtering Domains by means of Constraints

Each constraint represents a “sub-problem” from which some
inconsistent values can be deleted.

Filtering Domains by means of Constraints

Each constraint represents a “sub-problem” from which some
inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Filtering Domains by means of Constraints

Each constraint represents a “sub-problem” from which some
inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only
cite:

Filtering Domains by means of Constraints

Each constraint represents a “sub-problem” from which some
inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only
cite:

® AC (Arc Consistency): all inconsistent values are identified and
deleted

Filtering Domains by means of Constraints

Each constraint represents a “sub-problem” from which some
inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only
cite:

® AC (Arc Consistency): all inconsistent values are identified and
deleted

® BC (Bounds Consistency): inconsistent values corresponding to the
bounds of the domains are identified and deleted

Filtering Domains by means of Constraints

Each constraint represents a “sub-problem” from which some
inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only
cite:
® AC (Arc Consistency): all inconsistent values are identified and
deleted

® BC (Bounds Consistency): inconsistent values corresponding to the
bounds of the domains are identified and deleted

Warning.
For non-binary constraints, AC is often denoted by GAC (but not in this
course).

Example.

Constraint x < y with
® dom(x) =10..20
® dom(y) =0..15

Example.

Constraint x < y with
® dom(x) =10..20
® dom(y) =0..15
After AC filtering, we obtain:

Example.

Constraint x < y with
® dom(x) =10..20
® dom(y) =0..15
After AC filtering, we obtain:
® dom(x) =10..14
® dom(y) =11..15

Example.

Constraint x < y with
® dom(x) =10..20
® dom(y) =0..15
After AC filtering, we obtain:
® dom(x) =10..14
® dom(y) =11..15
After BC filtering, we obtain:

Example.

Constraint x < y with
® dom(x) =10..20
® dom(y) =0..15

After AC filtering, we obtain:
® dom(x) =10..14
® dom(y) =11..15

After BC filtering, we obtain:
® dom(x) =10..14
® dom(y) =11..15

Example.

Constraint x < y with
® dom(x) =10..20
® dom(y) =0..15

After AC filtering, we obtain:

® dom(x) =10..14
® dom(y) =11..15

After BC filtering, we obtain:

® dom(x) =10..14
® dom(y) =11..15

Constraint w + 3 = z with
® dom(w) ={1,3,4,5}
® dom(z) = {4,5,8}

Example.

Constraint x < y with
® dom(x) =10..20
® dom(y) =0..15

After AC filtering, we obtain:

® dom(x) =10..14
® dom(y) =11..15

After BC filtering, we obtain:

® dom(x) =10..14
® dom(y) =11..15

Constraint w + 3 = z with

® dom(w) ={1,3,4,5}

® dom(z) = {4,5,8}
After AC filtering, we obtain:

Example.

Constraint x < y with
® dom(x) =10..20
® dom(y) =0..15

After AC filtering, we obtain:

® dom(x) =10..14
® dom(y) =11..15

After BC filtering, we obtain:

® dom(x) =10..14
® dom(y) =11..15

Constraint w + 3 = z with
® dom(w) ={1,3,4,5}
® dom(z) = {4,5,8}
After AC filtering, we obtain:
® dom(w) = {1,5}
® dom(z) = {4,8}

Example.

Constraint x < y with
® dom(x) =10..20
® dom(y) =0..15

After AC filtering, we obtain:

® dom(x) =10..14
® dom(y) =11..15

After BC filtering, we obtain:

® dom(x) =10..14
® dom(y) =11..15

Constraint w + 3 = z with
® dom(w) ={1,3,4,5}
® dom(z) = {4,5,8}
After AC filtering, we obtain:
® dom(w) = {1,5}
® dom(z) = {4,8}
After BC filtering, we obtain:

Example.

Constraint x < y with
® dom(x) =10..20
® dom(y) =0..15

After AC filtering, we obtain:

® dom(x) =10..14
® dom(y) =11..15

After BC filtering, we obtain:

® dom(x) =10..14
® dom(y) =11..15

Constraint w + 3 = z with
® dom(w) ={1,3,4,5}
® dom(z) = {4,5,8}
After AC filtering, we obtain:
® dom(w) = {1,5}
® dom(z) = {4,8}
After BC filtering, we obtain:
e dom(w) = {1,3,4,5}
® dom(z) = {4,5,8}

Notion of Support

For a constraint ¢

Notion of Support

For a constraint ¢

® an allowed tuple, or tuple accepted by c, is an element of A = rel(c)

Notion of Support

For a constraint ¢
® an allowed tuple, or tuple accepted by c, is an element of A = rel(c)

® avalid tuple is an element of V = MM, ¢ p(c)dom(x)

Notion of Support

For a constraint ¢
® an allowed tuple, or tuple accepted by c, is an element of A = rel(c)
® avalid tuple is an element of V = MM, ¢ p(c)dom(x)

® a support (on ¢) is a tuple that is both allowed and valid, i.e., an
element of ANV

Notion of Support

For a constraint ¢
® an allowed tuple, or tuple accepted by c, is an element of A = rel(c)
® avalid tuple is an element of V = MM, ¢ p(c)dom(x)

® a support (on ¢) is a tuple that is both allowed and valid, i.e., an
element of ANV

Remark.
A support on c¢ is what we have previously informally called a solution of

the “sub-problem” c.

Notion of Support

Example.
Let c,y, be a ternary constraint, and let us suppose that

dom(x) = dom(y) = {a, b} and dom(z) = {b,c}. We have:

* A= rel(cy,)
® V = dom(x) x dom(y) x dom(z)

\Y

S aab

aaa aac

zig abb

N abc

baa bab
bbb

caa bac

ccc bbb

bbc

Notion of Support

Example.
Let c,y, be a ternary constraint, and let us suppose that
dom(x) = dom(y) = {a, b} and dom(z) = {b,c}. We have:
* A= rel(cy,)
® V = dom(x) x dom(y) x dom(z)

V
S aab
aaa aac
ai? abb
Eaa N abc Is there a support for (z, b)?
bbb bab
bac
2
bbc

Notion of Support

Example.
Let c,y, be a ternary constraint, and let us suppose that
dom(x) = dom(y) = {a, b} and dom(z) = {b,c}. We have:
* A= rel(cy,)
® V = dom(x) x dom(y) x dom(z)

\Y,
A aab
aaa
E:Z N abc (z, b) has a support v/
bbb bab
caa bac
ccc bbb
bbc

Notion of Support

Example.
Let c,y, be a ternary constraint, and let us suppose that
dom(x) = dom(y) = {a, b} and dom(z) = {b,c}. We have:
* A= rel(cy,)
® V = dom(x) x dom(y) x dom(z)

V
S aab
aaa aac
ai? abb
Eaa N abc Is there a support for (z, c)?
bbb bab
bac
2
bbc

Notion of Support

Example.
Let c,y, be a ternary constraint, and let us suppose that
dom(x) = dom(y) = {a, b} and dom(z) = {b,c}. We have:
* A= rel(cy,)
® V = dom(x) x dom(y) x dom(z)

aaa
abb
baa (z,¢) has no support X
bbb

caa

Arc Consistency (AC)

Definition
A constraint ¢ is arc-consistent (AC) iff Vx € scp(c), Va € dom(x), there
exists a support of (x, a) on ¢, i.e., a support 7 on c¢ such that 7[x] = a.

Arc Consistency (AC)

Definition
A constraint ¢ is arc-consistent (AC) iff Vx € scp(c), Va € dom(x), there
exists a support of (x, a) on ¢, i.e., a support 7 on c¢ such that 7[x] = a.

Example.

Let x and y be two variables such that dom(x) = dom(y) = {1, 2}, and
let x = y be a binary constraint.

Arc Consistency (AC)

Definition
A constraint ¢ is arc-consistent (AC) iff Vx € scp(c), Va € dom(x), there
exists a support of (x, a) on ¢, i.e., a support 7 on c¢ such that 7[x] = a.

Example.
Let x and y be two variables such that dom(x) = dom(y) = {1, 2}, and
let x = y be a binary constraint.
® thetuple 7= (1,2) //7[x]=1AT[y]=2
® is valid
® but not accepted by x =y

Arc Consistency (AC)

Definition
A constraint ¢ is arc-consistent (AC) iff Vx € scp(c), Va € dom(x), there
exists a support of (x, a) on ¢, i.e., a support 7 on c¢ such that 7[x] = a.

Example.
Let x and y be two variables such that dom(x) = dom(y) = {1, 2}, and
let x = y be a binary constraint.
® thetuple 7= (1,2) //7[x]=1AT[y]=2
® is valid
® but not accepted by x =y
® the tuple 7 = (3,3)
® s not valid,
® but accepted by x =y

Arc Consistency (AC)

Definition
A constraint ¢ is arc-consistent (AC) iff Vx € scp(c), Va € dom(x), there
exists a support of (x, a) on ¢, i.e., a support 7 on c¢ such that 7[x] = a.

Example.
Let x and y be two variables such that dom(x) = dom(y) = {1, 2}, and
let x = y be a binary constraint.
® thetuple 7= (1,2) //7[x]=1AT[y]=2
® is valid
® but not accepted by x =y
® the tuple 7 = (3,3)
® s not valid,
® but accepted by x =y
e the tuple 7 = (2,2)
® s valid
® and accepted by x =y
it represents a support of both (x,2) and (y,2) on x =y

Supports

In other words, the supports on a constraint ¢ are those tuples that are
present in the intersection of :

® the set of allowed tuples: rel(c)

® the set of valid tuples: val(c) = Myesep(c)dom(x)

rel(c

Supports of ¢

Supports

In other words, the supports on a constraint ¢ are those tuples that are
present in the intersection of :

® the set of allowed tuples: rel(c)

® the set of valid tuples: val(c) = Myesep(c)dom(x)

rel(c

Supports of ¢

= We need to “identify” these supports for filtering

Example

4 5
[] []
o o
« o
o o

Supports of ¢y,

rel(cyy)

Example

4 5
[] []
o o
. : rel(cyy)
e o

Supports of ¢y,

After AC filtering, we obtain?

AC Algorithm

Definition
A value (x, a) is arc-inconsistent on a constraint ¢ when there is no
support of (x,a) on c.

AC Algorithm

Definition
A value (x, a) is arc-inconsistent on a constraint ¢ when there is no
support of (x,a) on c.

Definition

An AC algorithm for a constraint c is an algorithm that removes all
values that are arc-inconsistent on c; the algorithm is said to
enforce/establish AC on c.

AC Algorithm

Definition
A value (x, a) is arc-inconsistent on a constraint ¢ when there is no
support of (x,a) on c.

Definition

An AC algorithm for a constraint c is an algorithm that removes all
values that are arc-inconsistent on c; the algorithm is said to
enforce/establish AC on c.

Here is an AC algorithm that can be used in theory with any constraint c.

Algorithm 3: filterAC(c: Constraint)

for each variable x € scp(c) do
for each value a € dom(x) do
if — seekSupport(c, x, a) // function to be implemented
then
L remove a from dom(x)

AC Filtering for allDifferent

Proposition
A constraint allDifferent(X) is AC iff VX' C X,
|dom(X")| = |X'| = Vx € X\ X', dom(x) = dom(x) \ dom(X")

where dom(X') = Uy ex dom(x")

AC Filtering for allDifferent

Proposition
A constraint allDifferent(X) is AC iff VX' C X,

|dom(X")| = |X'| = Vx € X\ X', dom(x) = dom(x) \ dom(X")

where dom(X') = Uy ex dom(x")

Remark.
A subset X’ of variables such that |[dom(X")| = |X’| is called a Hall set.

AC Filtering for allDifferent

Proposition
A constraint allDifferent(X) is AC iff VX' C X,
|dom(X")| = |X'| = Vx € X\ X', dom(x) = dom(x) \ dom(X")

where dom(X') = Uy ex dom(x")

Remark.
A subset X’ of variables such that |[dom(X")| = |X’| is called a Hall set.

Example.

The set of variables {x, y, z} such that:
® dom(x) = {a, b},
o dom(y) = {a,c}
® and dom(z) = {b, c}

is a Hall set (of size 3).

AC Filtering for allDifferent

Example.
For a Sudoku block, a constraint allDifferent(w,x,y,z) :

dom(w) = {2,5,7,9}
dom(z) = {2,5,7,9} r

() ={2,5,7,9}

dom(z) ={2,5,7

AC Filtering for allDifferent

Example.
For a Sudoku block, a constraint allDifferent(w,x,y,z) :

dom(w) = {2,5,7,9}
dom(z) = {2,5,7,9} r

() ={2,5,7,9}

dom(z) ={2,5,7

Can we filter?

Identification of Hall sets

The same constraint as previously, but variables have different domains.

Example.
For a Sudoku block, a constraint allDifferent(w,x,y,z) :

dom(w) = {2,5,7}
dom(z) = {2,5} r

(y) = {2,5}
dom(z) ={2,5,7

Identification of Hall sets

The same constraint as previously, but variables have different domains.

Example.
For a Sudoku block, a constraint allDifferent(w,x,y,z) :

dom(w) ={2,5,7}
dom(x) = {2,5} r

dom(y) = {2,5}
dom(z) ={2,5,7

Identification of Hall sets

The same constraint as previously, but variables have different domains.

Example.
For a Sudoku block, a constraint allDifferent(w,x,y,z) :

dom(w) = {7}
dom(z) = {2,5} r

(v) ={2,5}

Identification of Hall sets

The same constraint as previously, but variables have different domains.

Example.
For a Sudoku block, a constraint allDifferent(w,x,y,z) :

dom(w) = {7}
dom(z) = {2,5} r

(v) ={2,5}

Identification of Hall sets

The same constraint as previously, but variables have different domains.

Example.
For a Sudoku block, a constraint allDifferent(w,x,y,z) :

dom(w) = {7}
dom(z) = {2,5} r

(v) ={2,5}

AC Filtering for cardinality

Definition
A constraint cardinality(X, V, L, U) forces the variables in X to take
their values in V' with the restriction that each value v; in V' is assigned

at least L(v;) times and at most U(v;) times.

AC Filtering for cardinality

Definition

A constraint cardinality(X, V, L, U) forces the variables in X to take
their values in V' with the restriction that each value v; in V' is assigned
at least L(v;) times and at most U(v;) times.

Example.
Three sets:
e Agents = {Peter, Paul, Mary, John, Bob, Mike, Julia}
® Days = {Monday, Tuesday, ..., Sunday }
® Activities = {M(orning), D(ay), N(ight), B(ackup), O(ff)}.
® We want a roster that looks like:
| Mo Tu We Th F
Peter | D N N N

0]
Paul 0O O D D M
Mary | M M D D O

—

o=ZolY
zw oY

AC Filtering for cardinality

Example.
For simplicity, we only reason here on Monday. Our variables X represent
the agents, and we have Vx € X, dom(x) = {M,D, N, B, O}.
The constraint cardinality(X,{M, D, N, B, O},L,U) is such that:
e | ={1,1,1,0,0}
e U=1{2,2,1,22}.

Peter M(1.2)
Paul
Mary D(1,2)
John N(1,1)
Bob B(0.2)
Mike

0(0,2)

Julia

AC Filtering for cardinality

Example.
For simplicity, we only reason here on Monday. Our variables X represent
the agents, and we have Vx € X, dom(x) = {M,D, N, B, O}.
The constraint cardinality(X,{M, D, N, B, O},L,U) is such that:
e | ={1,1,1,0,0}
e U=1{2,2,1,22}.

Peter M(1.2)
Paul
Mary D(1,2)
John N(1,1)
Bob B(0.2)
Mike

0(0,2)

Julia

AC Filtering for cardinality

Example.
For simplicity, we only reason here on Monday. Our variables X represent
the agents, and we have Vx € X, dom(x) = {M,D, N, B, O}.
The constraint cardinality(X,{M, D, N, B, O},L,U) is such that:
e | ={1,1,1,0,0}
e U=1{2,2,1,22}.

Peter M(1.2)
Paul
Mary D(1,2)
John N(1,1)
Bob B(0.2)
Mike

0(0,2)

Julia

AC Filtering for cardinality

Example.
For simplicity, we only reason here on Monday. Our variables X represent
the agents, and we have Vx € X, dom(x) = {M,D, N, B, O}.
The constraint cardinality(X,{M, D, N, B, O},L,U) is such that:
e | ={1,1,1,0,0}
e U=1{2,2,1,22}.

Peter M(1.2)
Paul
Mary D(1,2)
John N(1,1)
Bob B(0.2)
Mike

0(0,2)

Julia

AC Filtering for cardinality

Example.
For simplicity, we only reason here on Monday. Our variables X represent
the agents, and we have Vx € X, dom(x) = {M,D, N, B, O}.
The constraint cardinality(X,{M, D, N, B, O},L,U) is such that:
e | ={1,1,1,0,0}
e U=1{2,2,1,22}.

Peter M(1.2)
Paul

Mary D(1.2)
John N(1,1)

Bob

/ B(0,2)
Mike
§ 0(0,2)

Julia

AC Filtering for sum : >, ¢ix; > L

dom

Domains of variables
w, X, y and z

wl\)l—ls
W N =X
AW N

S~ W NN

AC Filtering for sum : >, ¢ix; > L

dom
Domains of variables w o x y z
w, x, y and z 1 1 2 2
2 2 3 3
3 3 4 4

Constraint Cuxy, * W+ 2x + 4y + 5z > 42

AC Filtering for sum : >, ¢ix; > L

dom
Domains of variables wox ¥y z
w, X, y and z 1 12 2
2 2 3 3
3 3 4 4

Constraint Cuxy, * W+ 2x + 4y + 5z > 42

dom
Domains of variables w ox y z
w, X,yetz 1 1 2 2
after AC filtering of ¢y, 27 2 3 3
3 3 4 4

AC Filtering for sum : >, ¢ix; > L

dom
Domains of variables wox ¥y z
w, X, y and z 1 12 2
2 2 3 3
3 3 4 4

Constraint Cuxy, * W+ 2x + 4y + 5z > 42

dom
Domains of variables w ox y z
w, X,yetz 1 1 2 2
after AC filtering of ¢y, 27 2 3 3
3 3 4 4

Complexity?

AC Filtering for sum : ", ¢ix; # L

dom
Domains of variables w o x y z
w, x, y and z 1 1 1 1
2 2

AC Filtering for sum : ", ¢ix; # L

dom
Domains of variables w o x y z
w, x, y and z 1 1 1 1
2 2

Constraint Cuxy, W+ X+y+2z#5

AC Filtering for sum : ", ¢ix; # L

dom
Domains of variables w ox y z
w, x, y and z 1 1 1 1
2 2
Constraint Cuxy, W+ X+y+2z#5
d
Domains of variables om
w, x, y and z Xy Z
after AC filtering of ¢y, 1 1 ; ;

AC Filtering for sum : ", ¢ix; # L

dom

Domains of variables w o x
w, x, y and z 1

—
N R

AC Filtering for sum : ", ¢ix; # L

dom

Domains of variables w o x
w, x, y and z 1

—
N R
—

Constraint Cpxyz W+ X+y+2z#5

AC Filtering for sum : ", ¢ix; # L

dom

Domains of variables w o x
w, x, y and z 1

—
N R
—

Constraint Cpxyz W+ X+y+2z#5

dom

Domains of variables
w, x, y and z
after AC filtering of cyyy,

—
NN =<
=

AC Filtering for sum : ", ¢ix; # L

dom
Domains of variables w ox y z
w, x, y and z 1 1 1 1
2
Constraint Cpxyz W+ X+y+2z#5
d
Domains of variables om
w, x, y and z WXy z
after AC filtering of cyyy, 1 1 ; 1

Complexity?

AC Filtering for sum : U > > ' ¢x; > L

dom

Domains of variables
w, X, y and z

ool\Jl—lO§
WN R O X
WN = OX
W N~ ON

AC Filtering for sum : U > > ' ¢x; > L

dom

Domains of variables
w, X, y and z

ool\Jl—lO§
WN R O X
WN = OX
W N~ ON

Constraint Cuxy, 1 82 > 27w + 37x 4 45y 4 53z > 80

AC Filtering for sum : U > > ' ¢x; > L

dom

Domains of variables
w, X, y and z

ool\Jl—lO§
WN R O X
WN = OX
W N~ ON

Constraint Cuxy, 1 82 > 27w + 37x 4 45y 4 53z > 80

dom

Domains of variables
w, x, y and z
after AC filtering of cyyy-

WM~ os
W N = o X
o R oKX
N~ ON

AC Filtering for sum : U > > ' ¢x; > L

Possibility of using dynamic programming:
® construction of a graph (Knapsack)
® reduction of the graph

® use of a constraint mdd from the reduced graph

AC Filtering for sum : U > > ' ¢x; > L

Possibility of using dynamic programming:
® construction of a graph (Knapsack)
® reduction of the graph

® use of a constraint mdd from the reduced graph

Warning.
Pseudo-polynomial Complexity O(rU?)

AC Filtering for sum : U > > ' ¢x; > L

Possibility of using dynamic programming:
® construction of a graph (Knapsack)
® reduction of the graph

® use of a constraint mdd from the reduced graph
Warning.
Pseudo-polynomial Complexity O(rU?)

Example.
[llustration of this approach with:

® the constraint 12 > 2x; + 3x, + 4x3 + 5x4 > 10
® where the domain of each variable is {0, 1}.

Example

Knapsack
Graph

O O O 0O O O O O O O
O O O O O O O

O O 0O O O 0O O O OO O O

T O = N W Ak LN

O O O O O O O
e ®& O O O O O

O O O O 0O O o O O O
O

0O O 0O 0O o o o0 o o o O
(]

O
o

(@)
w| O O O O O
~10 O O O O O O O O O e o o

e}
—
[\

—_ = =
o O =

T O = N W B~ L N I

Reduced
Knapsack
Graph

AC Filtering for or (meta-constraint)

Constructive Disjunction

Enforcing AC on a meta-constraint or(cy,c;) can be achieved by
constructive disjunction: for each variable x, dom(x) is the union of the
domains of x obtained after AC filtering on ¢; and AC filtering on ;.

AC Filtering for or (meta-constraint)

Constructive Disjunction

Enforcing AC on a meta-constraint or(cy,c;) can be achieved by
constructive disjunction: for each variable x, dom(x) is the union of the
domains of x obtained after AC filtering on ¢; and AC filtering on ;.

Example.
Let x be a variable such that dom(x) = {1,2,3} and the meta-constraint
or(x =1,x =2).

AC on x = 1 yields dom*(x) = {1}

AC on x = 2 yields dom?(x) = {2}

AC on or(x = 1,x = 2) reduces dom(x) to dom*(x) U dom?(x) = {1,2}

AC Filtering for and (meta-constraint)

Proposition
AC on the conjunction and(c;,c,) is with respect to AC enforced
independently on ¢; and c;:

® generally stronger,
® equivalent when |scp(ci) Nsep(c)| <1

AC Filtering for and (meta-constraint)

Proposition
AC on the conjunction and(c;,c,) is with respect to AC enforced
independently on ¢; and c;:

® generally stronger,

® equivalent when |scp(ci) Nsep(c)| <1

Example
Let x and y two variables such that dom(x) = dom(y) = {1,2,3} and
the meta-constraint and(x # y,x < y).

® AC on x # y as well as AC on x < y have no effect

® AC on and(x # y,x < y) permits to have:

® dom(x) reduced to {1,2}
® dom(y) reduced to {2,3}

Outline

@ Principle of Constraint Propagation

25

Constraint Propagation

Definition
A constraint network P is AC iff each constraint of P is AC.

Constraint Propagation

Definition
A constraint network P is AC iff each constraint of P is AC.

Definition
Computing the AC-closure of a constraint network P is the fact of
removing all arc-inconsistent of P (when considering any constraint of P).

Constraint Propagation

Definition
A constraint network P is AC iff each constraint of P is AC.

Definition
Computing the AC-closure of a constraint network P is the fact of
removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute
the AC-closure?

Constraint Propagation

Definition
A constraint network P is AC iff each constraint of P is AC.

Definition
Computing the AC-closure of a constraint network P is the fact of

removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute
the AC-closure?

NO because when some values are filtered out by a constraint, this can
give new opportunities to other constraints to filter again.

Constraint Propagation

Definition
A constraint network P is AC iff each constraint of P is AC.

Definition
Computing the AC-closure of a constraint network P is the fact of

removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute
the AC-closure?

NO because when some values are filtered out by a constraint, this can
give new opportunities to other constraints to filter again.

The process that involves executing filtering operations, by solliciting
constraints in turn, until a fixed point is reached is called constraint

propagation.

Constraint Propagation Algorithm

Algorithm 4: constraintPropagationOn(P: CN): Boolean

Q <+ ctrs(P)

while Q # () do

pick and delete ¢ from Q

Xewt < c.filter() // Xen denotes the set of variables with
reduced domains (after filtering by means of c)

if Ix € X.: such that dom(x) = () then

L return false // global inconsistency detected
foreach ¢’ € ctrs(P) such that ¢’ # ¢ and Xe,: Nscp(c’) # 0 do
L add ¢’ to Q

return true

Constraint Propagation Algorithm

Algorithm 5: constraintPropagationOn(P: CN): Boolean

Q <+ ctrs(P)

while Q # () do

pick and delete ¢ from Q

Xewt < c.filter() // Xen denotes the set of variables with
reduced domains (after filtering by means of c)

if Ix € X.: such that dom(x) = () then

L return false // global inconsistency detected
foreach ¢’ € ctrs(P) such that ¢’ # ¢ and Xe,: Nscp(c’) # 0 do
L add ¢’ to Q

return true

Remark.

If each call c.filter() enforces AC on c, then the algorithm computes the
AC-closure of P.

Domino Problem

The instance domino-6 is represented by the following CN P:

e vars(P) ={

xp with dom(xg) =
x; with dom(x;) =
x2 with dom(xp) =
x3 with dom(x3) =
xs with dom(xs) =
x5 with dom(xs) =

}
e ctrs(P) = {
X0 = X1,
X1 = X2,
Xo = X3,
X3 = X4,
X4 = X5,

(xo=xs+1Ax0<5)V(x=x5Axg=D5)

{0,1,2,3,4,5},
{0 1 2,3,4,5},

Constraint Propagation on domino-6

Constraint Propagation on domino-6

Constraint Propagation on domino-6

Constraint Propagation on domino-6

Constraint Propagation on domino-6

Constraint Propagation on domino-6

Constraint Propagation on domino-6

29

Constraint Propagation on domino-6

29

Constraint Propagation on domino-6

29

Constraint Propagation on domino-6

29

Constraint Propagation on domino-6

29

Constraint Propagation on domino-6

29

Constraint Propagation on queens-4

For the 4-queens instance, we have:

e vars(P) ={
x, with dom(x,) = {1, 2,3, 4},
xp with dom(xp) = {1,2,3,4},
xc with dom(x.) = {1,2,3,4},
X4 with dom(x4) = {1,2,3,4}

}

o ctrs(P) = {
Xa £ Xp A |Xa — Xp| # 1,
Xa # X N |Xa — x| # 2,
Xa 7# Xa A |Xa — xq| # 3,
Xp 7 Xe N |Xp — Xc| # 1,
Xp F Xg N |Xb—Xd| #*2,
Xe £ Xg N |xe — xq| # 1

Exercice
After taking the decision x, = 1,
what is the AC-closure of P?

—_— N W B

a b c d

30

Constraint Propagation on queens-4

For the 4-queens instance, we have:
e vars(P) ={
x, with dom(x,) = {1,2,3
xp with dom(xp) = {1,2
xc with dom(x.) = {1, 2,
xg with dom(xq) = {1,2
}
o ctrs(P) = {
Xa £ Xp A |Xa — Xp| # 1,
Xa # X N |Xa — x| # 2,
Xa 7# Xa A |Xa — xq| # 3,
Xp 7 Xe N |Xp — Xc| # 1,
Xp F Xg N |Xb—Xd| #*2,
Xe £ Xg N |xe — xq| # 1

Exercice
After taking the decision x, = 1,
the AC-closure of P is:

Al

— N W

= | IE

T ===

il
il

30

Exercice
Let P be the following CN:

e vars(P) ={

x1 with dom(x;) = {1,2,3},
xp with dom(x2) = {1, 2,3},
x3 with dom(x3) = {1, 2,3},
xs with dom(xs) = {1,2,3}

}
o ctrs(P) ={
X1 # X2,
X2 + x3 < xq,
Xo + X4 > 2% xq,

}

Simulate the process of constraint propagation on P (that is to say,
compute the AC-closure of P).

31

	Filtering Domains with Constraints
	Principle of Constraint Propagation

