Constraint Programming

- Filtering : Part 1 -

Christophe Lecoutre
lecoutre@cril.fr

CRIL-CNRS UMR 8188
Universite d'Artois
Lens, France

January 2021

Outline

(1) Filtering Domains with Constraints
(2) Principle of Constraint Propagation

Outline

(1) Filtering Domains with Constraints

(2) Principle of Constraint Propagation

Filtering Domains by means of Constraints

Each constraint represents a "sub-problem" from which some inconsistent values can be deleted.

Filtering Domains by means of Constraints

Each constraint represents a "sub-problem" from which some inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Filtering Domains by means of Constraints

Each constraint represents a "sub-problem" from which some inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).
Several levels/types of filtering can be defined. For the moment, we only cite:

- AC (Arc Consistency): all inconsistent values are identified and

Filtering Domains by means of Constraints

Each constraint represents a "sub-problem" from which some inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).
Several levels/types of filtering can be defined. For the moment, we only cite:

- AC (Arc Consistency): all inconsistent values are identified and deleted
bounds of the domains are identified and deleted

Filtering Domains by means of Constraints

Each constraint represents a "sub-problem" from which some inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).
Several levels/types of filtering can be defined. For the moment, we only cite:

- AC (Arc Consistency): all inconsistent values are identified and deleted
- BC (Bounds Consistency): inconsistent values corresponding to the bounds of the domains are identified and deleted

Filtering Domains by means of Constraints

Each constraint represents a "sub-problem" from which some inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).
Several levels/types of filtering can be defined. For the moment, we only cite:

- AC (Arc Consistency): all inconsistent values are identified and deleted
- BC (Bounds Consistency): inconsistent values corresponding to the bounds of the domains are identified and deleted

Warning.

For non-binary constraints, AC is often denoted by GAC (but not in this course).

Example.

Constraint $x<y$ with

- $\operatorname{dom}(x)=10 . .20$
- $\operatorname{dom}(y)=0 . .15$

Example.

Constraint $x<y$ with

- $\operatorname{dom}(x)=10 . .20$
- $\operatorname{dom}(y)=0 . .15$

After AC filtering, we obtain:

Example.

Constraint $x<y$ with

- $\operatorname{dom}(x)=10 . .20$
- $\operatorname{dom}(y)=0 . .15$

After AC filtering, we obtain:

- $\operatorname{dom}(x)=10 . .14$
- $\operatorname{dom}(y)=11 . .15$

Example.

Constraint $x<y$ with

- $\operatorname{dom}(x)=10 . .20$
- $\operatorname{dom}(y)=0 . .15$

After AC filtering, we obtain:

- $\operatorname{dom}(x)=10 . .14$
- $\operatorname{dom}(y)=11 . .15$

After BC filtering, we obtain:

- $\operatorname{dom}(y)=11 . .15$

Example.

Constraint $x<y$ with

- $\operatorname{dom}(x)=10 . .20$
- $\operatorname{dom}(y)=0 . .15$

After AC filtering, we obtain:

- $\operatorname{dom}(x)=10 . .14$
- $\operatorname{dom}(y)=11 . .15$

After BC filtering, we obtain:

- $\operatorname{dom}(x)=10 . .14$
- $\operatorname{dom}(y)=11 . .15$

Example.

Constraint $x<y$ with

- $\operatorname{dom}(x)=10 . .20$
- $\operatorname{dom}(y)=0 . .15$

After AC filtering, we obtain:

- $\operatorname{dom}(x)=10 . .14$
- $\operatorname{dom}(y)=11 . .15$

After BC filtering, we obtain:

- $\operatorname{dom}(x)=10 . .14$
- $\operatorname{dom}(y)=11 . .15$

Constraint $w+3=z$ with

- $\operatorname{dom}(w)=\{1,3,4,5\}$
- $\operatorname{dom}(z)=\{4,5,8\}$

Example.

Constraint $x<y$ with

- $\operatorname{dom}(x)=10 . .20$
- $\operatorname{dom}(y)=0 . .15$

After AC filtering, we obtain:

- $\operatorname{dom}(x)=10 . .14$
- $\operatorname{dom}(y)=11 . .15$

After BC filtering, we obtain:

- $\operatorname{dom}(x)=10 . .14$
- $\operatorname{dom}(y)=11 . .15$

Constraint $w+3=z$ with

- $\operatorname{dom}(w)=\{1,3,4,5\}$
- $\operatorname{dom}(z)=\{4,5,8\}$

After AC filtering, we obtain:

Example.

Constraint $x<y$ with

- $\operatorname{dom}(x)=10 . .20$
- $\operatorname{dom}(y)=0 . .15$

After AC filtering, we obtain:

- $\operatorname{dom}(x)=10 . .14$
- $\operatorname{dom}(y)=11 . .15$

After BC filtering, we obtain:

- $\operatorname{dom}(x)=10 . .14$
- $\operatorname{dom}(y)=11 . .15$

Constraint $w+3=z$ with

- $\operatorname{dom}(w)=\{1,3,4,5\}$
- $\operatorname{dom}(z)=\{4,5,8\}$

After AC filtering, we obtain:

- $\operatorname{dom}(w)=\{1,5\}$
- $\operatorname{dom}(z)=\{4,8\}$

Example.

Constraint $x<y$ with

- $\operatorname{dom}(x)=10 . .20$
- $\operatorname{dom}(y)=0 . .15$

After AC filtering, we obtain:

- $\operatorname{dom}(x)=10 . .14$
- $\operatorname{dom}(y)=11 . .15$

After BC filtering, we obtain:

- $\operatorname{dom}(x)=10 . .14$
- $\operatorname{dom}(y)=11 . .15$

Constraint $w+3=z$ with

- $\operatorname{dom}(w)=\{1,3,4,5\}$
- $\operatorname{dom}(z)=\{4,5,8\}$

After AC filtering, we obtain:

- $\operatorname{dom}(w)=\{1,5\}$
- $\operatorname{dom}(z)=\{4,8\}$

After BC filtering, we obtain:

Example.

Constraint $x<y$ with

- $\operatorname{dom}(x)=10 . .20$
- $\operatorname{dom}(y)=0 . .15$

After AC filtering, we obtain:

- $\operatorname{dom}(x)=10 . .14$
- $\operatorname{dom}(y)=11 . .15$

After BC filtering, we obtain:

- $\operatorname{dom}(x)=10 . .14$
- $\operatorname{dom}(y)=11 . .15$

Constraint $w+3=z$ with

- $\operatorname{dom}(w)=\{1,3,4,5\}$
- $\operatorname{dom}(z)=\{4,5,8\}$

After AC filtering, we obtain:

- $\operatorname{dom}(w)=\{1,5\}$
- $\operatorname{dom}(z)=\{4,8\}$

After BC filtering, we obtain:

- $\operatorname{dom}(w)=\{1,3,4,5\}$
- $\operatorname{dom}(z)=\{4,5,8\}$

Notion of Support

For a constraint c

Notion of Support

For a constraint c

- an allowed tuple, or tuple accepted by c, is an element of $A=r e l(c)$

Notion of Support

For a constraint c

- an allowed tuple, or tuple accepted by c, is an element of $A=r e l(c)$
- a valid tuple is an element of $V=\Pi_{x \in \operatorname{scp}(c)} \operatorname{dom}(x)$

Notion of Support

For a constraint c

- an allowed tuple, or tuple accepted by c, is an element of $A=r e l(c)$
- a valid tuple is an element of $V=\Pi_{x \in \operatorname{scp}(c)} \operatorname{dom}(x)$
- a support (on c) is a tuple that is both allowed and valid, i.e., an element of $A \cap V$

Notion of Support

For a constraint c

- an allowed tuple, or tuple accepted by c, is an element of $A=\operatorname{rel}(c)$
- a valid tuple is an element of $V=\Pi_{x \in \operatorname{scp}(c)} \operatorname{dom}(x)$
- a support (on c) is a tuple that is both allowed and valid, i.e., an element of $A \cap V$

Remark.

A support on c is what we have previously informally called a solution of the "sub-problem" c.

Notion of Support

Example.

Let $c_{x y z}$ be a ternary constraint, and let us suppose that $\operatorname{dom}(x)=\operatorname{dom}(y)=\{a, b\}$ and $\operatorname{dom}(z)=\{b, c\}$. We have:

- $A=r e l\left(c_{x y z}\right)$
- $V=\operatorname{dom}(x) \times \operatorname{dom}(y) \times \operatorname{dom}(z)$

A		V
a a a		$\mathrm{a} a \mathrm{~b}$
$a \mathrm{~b}$ b		a ac
a b		abb
a c c	\cap	$a \mathrm{bc}$
b a a		$b a b$
b b b		b a c
c a a		b b b
c c c		b b c

Notion of Support

Example.

Let $c_{x y z}$ be a ternary constraint, and let us suppose that $\operatorname{dom}(x)=\operatorname{dom}(y)=\{a, b\}$ and $\operatorname{dom}(z)=\{b, c\}$. We have:

- $A=r e l\left(c_{x y z}\right)$
- $V=\operatorname{dom}(x) \times \operatorname{dom}(y) \times \operatorname{dom}(z)$

$$
\left.\begin{array}{|c|c|c|}
\hline \text { A } \\
\text { a } a & a \\
a & b & b \\
a & c & c \\
b & a & a \\
b & b & b \\
c & a & a \\
c & c & c
\end{array}\left|\begin{array}{ccc}
\text { a }
\end{array}\right| \begin{array}{ccc}
\text { a } & \text { b } \\
a & a & c \\
a & b & b \\
a & b & c \\
b & a & b \\
b & a & c \\
b & b & b \\
b & b & c
\end{array} \right\rvert\,
$$

Is there a support for (z, b) ?

Notion of Support

Example.

Let $c_{x y z}$ be a ternary constraint, and let us suppose that $\operatorname{dom}(x)=\operatorname{dom}(y)=\{a, b\}$ and $\operatorname{dom}(z)=\{b, c\}$. We have:

- $A=r e l\left(c_{x y z}\right)$
- $V=\operatorname{dom}(x) \times \operatorname{dom}(y) \times \operatorname{dom}(z)$

$$
\begin{aligned}
& (z, b) \text { has a support } \checkmark
\end{aligned}
$$

Notion of Support

Example.

Let $c_{x y z}$ be a ternary constraint, and let us suppose that $\operatorname{dom}(x)=\operatorname{dom}(y)=\{a, b\}$ and $\operatorname{dom}(z)=\{b, c\}$. We have:

- $A=r e l\left(c_{x y z}\right)$
- $V=\operatorname{dom}(x) \times \operatorname{dom}(y) \times \operatorname{dom}(z)$

$$
\begin{aligned}
& \text { Is there a support for }(z, c) \text { ? }
\end{aligned}
$$

Notion of Support

Example.

Let $c_{x y z}$ be a ternary constraint, and let us suppose that $\operatorname{dom}(x)=\operatorname{dom}(y)=\{a, b\}$ and $\operatorname{dom}(z)=\{b, c\}$. We have:

- $A=r e l\left(c_{x y z}\right)$
- $V=\operatorname{dom}(x) \times \operatorname{dom}(y) \times \operatorname{dom}(z)$

	A	
a	a	a
a	b	b
a	c	c
b	a	a
b	b	b
c	a	a
c	c	c

$\begin{gathered} \mathrm{V} \\ \mathrm{a} a \mathrm{~b} \end{gathered}$
a b b
a b c
b a b
b a c
b b b
b b c

(z, c) has no support X

Arc Consistency (AC)

Definition

A constraint c is arc-consistent (AC) iff $\forall x \in \operatorname{scp}(c), \forall a \in \operatorname{dom}(x)$, there exists a support of (x, a) on c, i.e., a support τ on c such that $\tau[x]=a$.

Arc Consistency (AC)

Definition

A constraint c is arc-consistent (AC) iff $\forall x \in \operatorname{scp}(c), \forall a \in \operatorname{dom}(x)$, there exists a support of (x, a) on c, i.e., a support τ on c such that $\tau[x]=a$.

Example.
Let x and y be two variables such that $\operatorname{dom}(x)=\operatorname{dom}(y)=\{1,2\}$, and let $x=y$ be a binary constraint.

Arc Consistency (AC)

Definition

A constraint c is arc-consistent (AC) iff $\forall x \in \operatorname{scp}(c), \forall a \in \operatorname{dom}(x)$, there exists a support of (x, a) on c, i.e., a support τ on c such that $\tau[x]=a$.

Example.
Let x and y be two variables such that $\operatorname{dom}(x)=\operatorname{dom}(y)=\{1,2\}$, and let $x=y$ be a binary constraint.

- the tuple $\tau=(1,2) \quad / / \tau[x]=1 \wedge \tau[y]=2$
- is valid
- but not accepted by $x=y$

Arc Consistency (AC)

Definition

A constraint c is arc-consistent (AC) iff $\forall x \in \operatorname{scp}(c), \forall a \in \operatorname{dom}(x)$, there exists a support of (x, a) on c, i.e., a support τ on c such that $\tau[x]=a$.

Example.

Let x and y be two variables such that $\operatorname{dom}(x)=\operatorname{dom}(y)=\{1,2\}$, and let $x=y$ be a binary constraint.

- the tuple $\tau=(1,2) \quad / / \tau[x]=1 \wedge \tau[y]=2$
- is valid
- but not accepted by $x=y$
- the tuple $\tau=(3,3)$
- is not valid,
- but accepted by $x=y$

Arc Consistency (AC)

Definition

A constraint c is arc-consistent (AC) iff $\forall x \in \operatorname{scp}(c), \forall a \in \operatorname{dom}(x)$, there exists a support of (x, a) on c, i.e., a support τ on c such that $\tau[x]=a$.

Example.

Let x and y be two variables such that $\operatorname{dom}(x)=\operatorname{dom}(y)=\{1,2\}$, and let $x=y$ be a binary constraint.

- the tuple $\tau=(1,2) \quad / / \tau[x]=1 \wedge \tau[y]=2$
- is valid
- but not accepted by $x=y$
- the tuple $\tau=(3,3)$
- is not valid,
- but accepted by $x=y$
- the tuple $\tau=(2,2)$
- is valid
- and accepted by $x=y$
it represents a support of both $(x, 2)$ and $(y, 2)$ on $x=y$

Supports

In other words, the supports on a constraint c are those tuples that are present in the intersection of :

- the set of allowed tuples: rel(c)
- the set of valid tuples: $\operatorname{val}(c)=\Pi_{x \in \operatorname{scp}(c)} \operatorname{dom}(x)$

Supports

In other words, the supports on a constraint c are those tuples that are present in the intersection of :

- the set of allowed tuples: rel(c)
- the set of valid tuples: $\operatorname{val}(c)=\Pi_{x \in \operatorname{scp}(c)} \operatorname{dom}(x)$

\Rightarrow We need to "identify" these supports for filtering

Example

Example

After AC filtering, we obtain?

AC Algorithm

Definition

A value (x, a) is arc-inconsistent on a constraint c when there is no support of (x, a) on c.

Definition
An AC algorithm for a constraint c is an algorithm that removes all values that are arc-inconsistent on c; the algorithm is said to enforce/establish AC on c
\qquad
Algorithm 1: filter $\mathrm{AC}(\mathrm{C}$: Constraint $)$

AC Algorithm

Definition

A value (x, a) is arc-inconsistent on a constraint c when there is no support of (x, a) on c.

Definition

An AC algorithm for a constraint c is an algorithm that removes all values that are arc-inconsistent on c; the algorithm is said to enforce/establish AC on c.

Algorithm 2: filterAC(c: Constraint)

AC Algorithm

Definition

A value (x, a) is arc-inconsistent on a constraint c when there is no support of (x, a) on c.

Definition

An AC algorithm for a constraint c is an algorithm that removes all values that are arc-inconsistent on c; the algorithm is said to enforce/establish AC on c.

Here is an AC algorithm that can be used in theory with any constraint c.
Algorithm 3: filterAC(c: Constraint)
for each variable $x \in \operatorname{scp}(c)$ do
for each value $a \in \operatorname{dom}(x)$ do
if $\neg \operatorname{seekSupport}(c, x, a)$ // function to be implemented
then
L remove a from $\operatorname{dom}(x)$

AC Filtering for allDifferent

Proposition
A constraint allDifferent (X) is $A C$ iff $\forall X^{\prime} \subseteq X$,

$$
\left|\operatorname{dom}\left(X^{\prime}\right)\right|=\left|X^{\prime}\right| \Rightarrow \forall x \in X \backslash X^{\prime}, \operatorname{dom}(x)=\operatorname{dom}(x) \backslash \operatorname{dom}\left(X^{\prime}\right)
$$

where $\operatorname{dom}\left(X^{\prime}\right)=\cup_{x^{\prime} \in X^{\prime}} \operatorname{dom}\left(x^{\prime}\right)$

AC Filtering for allDifferent

Proposition
A constraint allDifferent (X) is $A C$ iff $\forall X^{\prime} \subseteq X$,

$$
\left|\operatorname{dom}\left(X^{\prime}\right)\right|=\left|X^{\prime}\right| \Rightarrow \forall x \in X \backslash X^{\prime}, \operatorname{dom}(x)=\operatorname{dom}(x) \backslash \operatorname{dom}\left(X^{\prime}\right)
$$

where $\operatorname{dom}\left(X^{\prime}\right)=\cup_{x^{\prime} \in X^{\prime}} \operatorname{dom}\left(x^{\prime}\right)$
Remark.
A subset X^{\prime} of variables such that $\left|\operatorname{dom}\left(X^{\prime}\right)\right|=\left|X^{\prime}\right|$ is called a Hall set.

AC Filtering for allDifferent

Proposition

A constraint allDifferent (X) is $A C$ iff $\forall X^{\prime} \subseteq X$,

$$
\left|\operatorname{dom}\left(X^{\prime}\right)\right|=\left|X^{\prime}\right| \Rightarrow \forall x \in X \backslash X^{\prime}, \operatorname{dom}(x)=\operatorname{dom}(x) \backslash \operatorname{dom}\left(X^{\prime}\right)
$$

where $\operatorname{dom}\left(X^{\prime}\right)=\cup_{x^{\prime} \in X^{\prime}} \operatorname{dom}\left(x^{\prime}\right)$
Remark.
A subset X^{\prime} of variables such that $\left|\operatorname{dom}\left(X^{\prime}\right)\right|=\left|X^{\prime}\right|$ is called a Hall set.

Example.
The set of variables $\{x, y, z\}$ such that:

- $\operatorname{dom}(x)=\{a, b\}$,
- $\operatorname{dom}(y)=\{a, c\}$
- and $\operatorname{dom}(z)=\{b, c\}$
is a Hall set (of size 3).

AC Filtering for allDifferent

Example.

For a Sudoku block, a constraint allDifferent (w, x, y, z) :

$$
\operatorname{dom}(x)=\{2,5,7,9\}
$$

AC Filtering for allDifferent

Example.

For a Sudoku block, a constraint allDifferent (w, x, y, z) :

Can we filter?

Identification of Hall sets

The same constraint as previously, but variables have different domains.

Example.
For a Sudoku block, a constraint allDifferent(w, x, y, z) :

Identification of Hall sets

The same constraint as previously, but variables have different domains.

Example.
For a Sudoku block, a constraint allDifferent(w, x, y, z) :

Identification of Hall sets

The same constraint as previously, but variables have different domains.

Example.
For a Sudoku block, a constraint allDifferent (w, x, y, z) :

$$
\begin{array}{rl}
\operatorname{dom}(x)=\{2,5\} \\
& \operatorname{dom}(z)=\{7,9\} \\
\hline 1 & 4 \\
\hline
\end{array}
$$

Identification of Hall sets

The same constraint as previously, but variables have different domains.

Example.
For a Sudoku block, a constraint allDifferent(w, x, y, z) :

$$
\begin{array}{rl}
\operatorname{dom}(x)=\{2,5\} \\
& \operatorname{dom}(z)=\{7,9\} \\
\hline 1 & 4 \\
\hline
\end{array}
$$

Identification of Hall sets

The same constraint as previously, but variables have different domains.

Example.
For a Sudoku block, a constraint allDifferent (w, x, y, z) :

$$
\begin{aligned}
\operatorname{dom}(x)=\{2,5\} & \operatorname{com}(w)=\{7\} \\
& \operatorname{dom}(z)
\end{aligned}=\left\{\begin{array}{|c|c|c|}
\hline 3 & w & 6 \\
\hline x & 8 & y \\
\hline 1 & 4 & z \\
& \operatorname{dom}(y)=\{2,5\}
\end{array}\right.
$$

AC Filtering for cardinality

Definition
A constraint cardinality (X, V, L, U) forces the variables in X to take their values in V with the restriction that each value v_{i} in V is assigned at least $L\left(v_{i}\right)$ times and at most $U\left(v_{i}\right)$ times.

- Agents $=\{$ Peter, Paul, Mary, John, Bob, Mike, Julia $\}$
- Days $=\{$ Monday, Tuesday, \ldots, Sunday $\}$
- Activities $=\{M($ orning $), D($ ay $), N($ ight $), B($ ackup $), O($ ff $)\}$
- We want a roster that looks like:

AC Filtering for cardinality

Definition

A constraint cardinality (X, V, L, U) forces the variables in X to take their values in V with the restriction that each value v_{i} in V is assigned at least $L\left(v_{i}\right)$ times and at most $U\left(v_{i}\right)$ times.

Example.

Three sets:

- Agents $=\{$ Peter, Paul, Mary, John, Bob, Mike, Julia $\}$
- Days $=\{$ Monday, Tuesday, ..., Sunday $\}$
- Activities $=\{M$ (orning) $, D($ ay $), N($ ight $), B($ ackup $), O(f f)\}$.
- We want a roster that looks like:

	Mo	Tu	We	Th	Fr	Sa	Su
Peter	D	N	N	N	O	O	O
Paul	O	O	D	D	M	M	B
Mary	M	M	D	D	O	O	N
\ldots							

AC Filtering for cardinality

Example.

For simplicity, we only reason here on Monday. Our variables X represent the agents, and we have $\forall x \in X, \operatorname{dom}(x)=\{M, D, N, B, O\}$.
The constraint cardinality $(X,\{M, D, N, B, O\}, L, U)$ is such that:

- $L=\{1,1,1,0,0\}$
- $U=\{2,2,1,2,2\}$.

AC Filtering for cardinality

Example.

For simplicity, we only reason here on Monday. Our variables X represent the agents, and we have $\forall x \in X, \operatorname{dom}(x)=\{M, D, N, B, O\}$.
The constraint cardinality $(X,\{M, D, N, B, O\}, L, U)$ is such that:

- $L=\{1,1,1,0,0\}$
- $U=\{2,2,1,2,2\}$.

AC Filtering for cardinality

Example.

For simplicity, we only reason here on Monday. Our variables X represent the agents, and we have $\forall x \in X, \operatorname{dom}(x)=\{M, D, N, B, O\}$.
The constraint cardinality $(X,\{M, D, N, B, O\}, L, U)$ is such that:

- $L=\{1,1,1,0,0\}$
- $U=\{2,2,1,2,2\}$.

AC Filtering for cardinality

Example.

For simplicity, we only reason here on Monday. Our variables X represent the agents, and we have $\forall x \in X, \operatorname{dom}(x)=\{M, D, N, B, O\}$.
The constraint cardinality $(X,\{M, D, N, B, O\}, L, U)$ is such that:

- $L=\{1,1,1,0,0\}$
- $U=\{2,2,1,2,2\}$.

AC Filtering for cardinality

Example.

For simplicity, we only reason here on Monday. Our variables X represent the agents, and we have $\forall x \in X, \operatorname{dom}(x)=\{M, D, N, B, O\}$.
The constraint cardinality $(X,\{M, D, N, B, O\}, L, U)$ is such that:

- $L=\{1,1,1,0,0\}$
- $U=\{2,2,1,2,2\}$.

AC Filtering for sum : $\sum_{i=1}^{r} c_{i} x_{i} \geq L$

Domains of variables	w	x	y	z
w, x, y and z	1	1	2	2
	2	2	3	3
3	3	4	4	

dom

AC Filtering for sum : $\sum_{i=1}^{r} c_{i} x_{i} \geq L$

Domains of variables	w	x	y	z
w, x, y and z	1	1	2	2
	2	2	3	3
	3	3	4	4

Constraint $c_{w x y z}: w+2 x+4 y+5 z \geq 42$

AC Filtering for sum : $\sum_{i=1}^{r} c_{i} x_{i} \geq L$

Domains of variables
w, x, y and z

dom			
w	x	y	z
1	1	2	2
2	2	3	3
3	3	4	4

Constraint $c_{w x y z}: w+2 x+4 y+5 z \geq 42$

Domains of variables
w, x, y et z
after AC filtering of $c_{w x y z}$

dom			
w	x	y	z
1	1	z	z
2	2	3	3
3	3	4	4

AC Filtering for sum : $\sum_{i=1}^{r} c_{i} x_{i} \geq L$

Domains of variables
w, x, y and z

dom			
w	x	y	z
1	1	2	2
2	2	3	3
3	3	4	4

Constraint $c_{w x y z}: w+2 x+4 y+5 z \geq 42$

Domains of variables
w, x, y et z
after AC filtering of $c_{w x y z}$

dom			
w	x	y	z
1	1	z	z
2	2	3	3
3	3	4	4

Complexity?

AC Filtering for sum : $\sum_{i=1}^{r} c_{i} x_{i} \neq L$

Domains of variables
w, x, y and z

dom			
w	x	y	z
1	1	1	1
		2	2

AC Filtering for sum : $\sum_{i=1}^{r} c_{i} x_{i} \neq L$

Domains of variables
w, x, y and z

dom			
w	x	y	z
1	1	1	1
		2	2

Constraint $c_{w x y z}: w+x+y+z \neq 5$

AC Filtering for sum : $\sum_{i=1}^{r} c_{i} x_{i} \neq L$

Domains of variables
w, x, y and z

dom			
w	x	y	z
1	1	1	1
		2	2

Constraint $c_{w x y z}: w+x+y+z \neq 5$

Domains of variables w, x, y and z after AC filtering of $c_{w x y z}$

dom			
w	x	y	z
1	1	1	1
		2	2

AC Filtering for sum : $\sum_{i=1}^{r} c_{i} x_{i} \neq L$

Domains of variables
w, x, y and z

dom			
w	x	y	z
1	1	1	1
		2	

dom

AC Filtering for sum : $\sum_{i=1}^{r} c_{i} x_{i} \neq L$

Domains of variables
w, x, y and z

dom			
w	x	y	z
1	1	1	1
		2	

Constraint $c_{w x y z}: w+x+y+z \neq 5$

AC Filtering for sum : $\sum_{i=1}^{r} c_{i} x_{i} \neq L$

Domains of variables
w, x, y and z

dom			
w	x	y	z
1	1	1	1
		2	

Constraint $c_{w x y z}: w+x+y+z \neq 5$

Domains of variables
w, x, y and z
after AC filtering of $c_{w x y z}$

dom			
w	x	y	z
1	1	1	1
		z	

AC Filtering for sum : $\sum_{i=1}^{r} c_{i} x_{i} \neq L$

Domains of variables
w, x, y and z

dom			
w	x	y	z
1	1	1	1
		2	

Constraint $c_{w x y z}: w+x+y+z \neq 5$

Domains of variables
w, x, y and z
after AC filtering of $c_{w x y z}$

dom			
w	x	y	z
1	1	1	1
		z	

Complexity?

AC Filtering for sum : $U \geq \sum_{i=1}^{r} c_{i} x_{i} \geq L$

Domains of variables

dom			
w	x	y	z
0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3

Constraint $c_{w x y z}$ $82 \geq 27 w+37 x+45$

AC Filtering for sum : $U \geq \sum_{i=1}^{r} c_{i} x_{i} \geq L$

dom			
w	x	y	z
0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3

Constraint $c_{w x y z}: 82 \geq 27 w+37 x+45 y+53 z \geq 80$

AC Filtering for sum : $U \geq \sum_{i=1}^{r} c_{i} x_{i} \geq L$

dom			
w	x	y	z
0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3

Constraint $c_{w x y z}: 82 \geq 27 w+37 x+45 y+53 z \geq 80$

Domains of variables
w, x, y and z
after $A C$ filtering of $c_{w x y z}$

dom			
w	x	y	z
0	0	0	0
1	1	1	1
z	z	z	z
3	3	3	3

AC Filtering for sum : $U \geq \sum_{i=1}^{r} c_{i} x_{i} \geq L$

Possibility of using dynamic programming:

- construction of a graph (Knapsack)
- reduction of the graph
- use of a constraint mdd from the reduced graph Pseudo-polynomial Complexity $O\left(r U^{2}\right)$ Example. Illustration of this approach with - the constraint $12 \geq 2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} \geq 10$ - where the domain of each variable is $\{0,1\}$.

AC Filtering for sum : $U \geq \sum_{i=1}^{r} c_{i} x_{i} \geq L$

Possibility of using dynamic programming:

- construction of a graph (Knapsack)
- reduction of the graph
- use of a constraint mdd from the reduced graph

Warning.
Pseudo-polynomial Complexity $O\left(r U^{2}\right)$

Illustration of this approach with:

- the constraint $12 \geq 2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} \geq 10$
- where the domain of each variable is $\{0,1\}$

AC Filtering for sum : $U \geq \sum_{i=1}^{r} c_{i} x_{i} \geq L$

Possibility of using dynamic programming:

- construction of a graph (Knapsack)
- reduction of the graph
- use of a constraint mdd from the reduced graph

Warning.
Pseudo-polynomial Complexity $O\left(r U^{2}\right)$
Example.
Illustration of this approach with:

- the constraint $12 \geq 2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} \geq 10$
- where the domain of each variable is $\{0,1\}$.

Example

AC Filtering for or (meta-constraint)

Constructive Disjunction

Enforcing AC on a meta-constraint or $\left(c_{1}, c_{2}\right)$ can be achieved by constructive disjunction: for each variable $x, \operatorname{dom}(x)$ is the union of the domains of x obtained after AC filtering on c_{1} and AC filtering on c_{2}.

AC Filtering for or (meta-constraint)

Constructive Disjunction

Enforcing AC on a meta-constraint or $\left(c_{1}, c_{2}\right)$ can be achieved by constructive disjunction: for each variable $x, \operatorname{dom}(x)$ is the union of the domains of x obtained after $A C$ filtering on c_{1} and $A C$ filtering on c_{2}.

Example.

Let x be a variable such that $\operatorname{dom}(x)=\{1,2,3\}$ and the meta-constraint or ($x=1, x=2$).

AC on $x=1$ yields dom $^{1}(x)=\{1\}$
$A C$ on $x=2$ yields $\operatorname{dom}^{2}(x)=\{2\}$
AC on $\operatorname{or}(x=1, x=2)$ reduces $\operatorname{dom}(x)$ to $\operatorname{dom}^{1}(x) \cup \operatorname{dom}^{2}(x)=\{1,2\}$

AC Filtering for and (meta-constraint)

Proposition

$A C$ on the conjunction and $\left(c_{1}, c_{2}\right)$ is with respect to $A C$ enforced independently on c_{1} and c_{2} :

- generally stronger,
- equivalent when $\left|\operatorname{scp}\left(c_{1}\right) \cap \operatorname{scp}\left(c_{2}\right)\right| \leq 1$

AC Filtering for and (meta-constraint)

Proposition

$A C$ on the conjunction and $\left(c_{1}, c_{2}\right)$ is with respect to $A C$ enforced independently on c_{1} and c_{2} :

- generally stronger,
- equivalent when $\left|\operatorname{scp}\left(c_{1}\right) \cap \operatorname{scp}\left(c_{2}\right)\right| \leq 1$

Example

Let x and y two variables such that $\operatorname{dom}(x)=\operatorname{dom}(y)=\{1,2,3\}$ and the meta-constraint and $(x \neq y, x \leq y)$.

- AC on $x \neq y$ as well as AC on $x \leq y$ have no effect
- AC on and $(x \neq y, x \leq y)$ permits to have:
- $\operatorname{dom}(x)$ reduced to $\{1,2\}$
- $\operatorname{dom}(y)$ reduced to $\{2,3\}$

Outline

(1) Filtering Domains with Constraints
(2) Principle of Constraint Propagation

Constraint Propagation

Definition
A constraint network P is AC iff each constraint of P is AC.

Constraint Propagation

Definition

A constraint network P is AC iff each constraint of P is AC.
Definition
Computing the AC-closure of a constraint network P is the fact of removing all arc-inconsistent of P (when considering any constraint of P).

NO because when some values are filtered out by a constraint, this can give new opportunities to other constraints to filter again.

Constraint Propagation

Definition

A constraint network P is AC iff each constraint of P is AC.

Definition

Computing the AC-closure of a constraint network P is the fact of removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute the AC-closure?

NO because when some values are filtered out by a constraint, this can give new opportunities to other constraints to filter again.

The process that involves executing filtering operations, by solliciting constraints in turn, until a fixed point is reached is called constraint propagation.

Constraint Propagation

Definition

A constraint network P is AC iff each constraint of P is AC.

Definition

Computing the AC-closure of a constraint network P is the fact of removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute the AC-closure?

NO because when some values are filtered out by a constraint, this can give new opportunities to other constraints to filter again.

The process that involves executing filtering operations, by solliciting constraints in turn, until a fixed point is reached is called constraint

Constraint Propagation

Definition

A constraint network P is AC iff each constraint of P is AC.

Definition

Computing the AC-closure of a constraint network P is the fact of removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute the AC-closure?

NO because when some values are filtered out by a constraint, this can give new opportunities to other constraints to filter again.

The process that involves executing filtering operations, by solliciting constraints in turn, until a fixed point is reached is called constraint propagation.

Constraint Propagation Algorithm

```
Algorithm 4: constraintPropagationOn( \(P: \mathrm{CN}\) ): Boolean
\(Q \leftarrow \operatorname{ctrs}(P)\)
while \(Q \neq \emptyset\) do
    pick and delete \(c\) from \(Q\)
    \(X_{\text {evt }} \leftarrow c\).filter () // \(X_{\text {evt }}\) denotes the set of variables with
    reduced domains (after filtering by means of \(c\) )
        if \(\exists x \in X_{\text {evt }}\) such that \(\operatorname{dom}(x)=\emptyset\) then
            return false // global inconsistency detected
        foreach \(c^{\prime} \in \operatorname{ctrs}(P)\) such that \(c^{\prime} \neq c\) and \(X_{\text {evt }} \cap \operatorname{scp}\left(c^{\prime}\right) \neq \emptyset\) do
        add \(c^{\prime}\) to \(Q\)
return true
```


Constraint Propagation Algorithm

```
Algorithm 5: constraintPropagationOn( \(P: \mathrm{CN})\) : Boolean
\(Q \leftarrow \operatorname{ctrs}(P)\)
while \(Q \neq \emptyset\) do
    pick and delete c from \(Q\)
    \(X_{\text {evt }} \leftarrow c\).filter () // \(X_{\text {evt }}\) denotes the set of variables with
    reduced domains (after filtering by means of c)
        if \(\exists x \in X_{\text {evt }}\) such that \(\operatorname{dom}(x)=\emptyset\) then
                return false // global inconsistency detected
        foreach \(c^{\prime} \in \operatorname{ctrs}(P)\) such that \(c^{\prime} \neq c\) and \(X_{\text {evt }} \cap \operatorname{scp}\left(c^{\prime}\right) \neq \emptyset\) do
        add \(c^{\prime}\) to \(Q\)
return true
```

Remark.
If each call c.filter() enforces AC on c, then the algorithm computes the AC-closure of P.

Domino Problem

The instance domino-6 is represented by the following CN P :

- $\operatorname{vars}(P)=\{$
x_{0} with $\operatorname{dom}\left(x_{0}\right)=\{0,1,2,3,4,5\}$,
x_{1} with $\operatorname{dom}\left(x_{1}\right)=\{0,1,2,3,4,5\}$,
x_{2} with $\operatorname{dom}\left(x_{2}\right)=\{0,1,2,3,4,5\}$,
x_{3} with $\operatorname{dom}\left(x_{3}\right)=\{0,1,2,3,4,5\}$,
x_{4} with $\operatorname{dom}\left(x_{4}\right)=\{0,1,2,3,4,5\}$,
x_{5} with $\operatorname{dom}\left(x_{5}\right)=\{0,1,2,3,4,5\}$
\}
- $\operatorname{ctrs}(P)=\{$
$x_{0}=x_{1}$,
$x_{1}=x_{2}$,
$x_{2}=x_{3}$,
$x_{3}=x_{4}$,
$x_{4}=x_{5}$,
$\left(x_{0}=x_{5}+1 \wedge x_{0}<5\right) \vee\left(x_{0}=x_{5} \wedge x_{0}=5\right)$
\}

Constraint Propagation on domino-6

Constraint Propagation on queens-4

For the 4-queens instance, we have:

- $\operatorname{vars}(P)=\{$
x_{a} with $\operatorname{dom}\left(x_{a}\right)=\{1,2,3,4\}$, x_{b} with $\operatorname{dom}\left(x_{b}\right)=\{1,2,3,4\}$, x_{c} with $\operatorname{dom}\left(x_{c}\right)=\{1,2,3,4\}$, x_{d} with $\operatorname{dom}\left(x_{d}\right)=\{1,2,3,4\}$ \}
- $\operatorname{ctrs}(P)=\{$

$$
\begin{aligned}
& x_{a} \neq x_{b} \wedge\left|x_{a}-x_{b}\right| \neq 1, \\
& x_{a} \neq x_{c} \wedge\left|x_{a}-x_{c}\right| \neq 2, \\
& x_{a} \neq x_{d} \wedge\left|x_{a}-x_{d}\right| \neq 3, \\
& x_{b} \neq x_{c} \wedge\left|x_{b}-x_{c}\right| \neq 1, \\
& x_{b} \neq x_{d} \wedge\left|x_{b}-x_{d}\right| \neq 2, \\
& x_{c} \neq x_{d} \wedge\left|x_{c}-x_{d}\right| \neq 1
\end{aligned}
$$

Exercice

After taking the decision $x_{a}=1$, what is the AC-closure of P ?

$$
\}
$$

Constraint Propagation on queens-4

For the 4-queens instance, we have:

- $\operatorname{vars}(P)=\{$
x_{a} with $\operatorname{dom}\left(x_{a}\right)=\{1,2,3,4\}$, x_{b} with $\operatorname{dom}\left(x_{b}\right)=\{1,2,3,4\}$, x_{c} with $\operatorname{dom}\left(x_{c}\right)=\{1,2,3,4\}$, x_{d} with $\operatorname{dom}\left(x_{d}\right)=\{1,2,3,4\}$
\}
- $\operatorname{ctrs}(P)=\{$

$$
\begin{aligned}
& x_{a} \neq x_{b} \wedge\left|x_{a}-x_{b}\right| \neq 1, \\
& x_{a} \neq x_{c} \wedge\left|x_{a}-x_{c}\right| \neq 2, \\
& x_{a} \neq x_{d} \wedge\left|x_{a}-x_{d}\right| \neq 3, \\
& x_{b} \neq x_{c} \wedge\left|x_{b}-x_{c}\right| \neq 1, \\
& x_{b} \neq x_{d} \wedge\left|x_{b}-x_{d}\right| \neq 2, \\
& x_{c} \neq x_{d} \wedge\left|x_{c}-x_{d}\right| \neq 1
\end{aligned}
$$

Exercice

After taking the decision $x_{a}=1$, the AC-closure of P is:

$$
\}
$$

Exercice

Let P be the following CN:

- $\operatorname{vars}(P)=\{$
x_{1} with $\operatorname{dom}\left(x_{1}\right)=\{1,2,3\}$, x_{2} with $\operatorname{dom}\left(x_{2}\right)=\{1,2,3\}$, x_{3} with $\operatorname{dom}\left(x_{3}\right)=\{1,2,3\}$, x_{4} with $\operatorname{dom}\left(x_{4}\right)=\{1,2,3\}$
\}
- $\operatorname{ctrs}(P)=\{$

$$
\begin{aligned}
& x_{1} \neq x_{2} \\
& x_{2}+x_{3} \leq x_{1} \\
& x_{2}+x_{4} \geq 2 * x_{1}
\end{aligned}
$$

$$
\}
$$

Simulate the process of constraint propagation on P (that is to say, compute the AC-closure of P).

