Constraint Programming - Filtering : Part 1 -

Christophe Lecoutre lecoutre@cril.fr

CRIL-CNRS UMR 8188 Universite d'Artois Lens, France

January 2021

1 Filtering Domains with Constraints

2 Principle of Constraint Propagation

Outline

1 Filtering Domains with Constraints

2 Principle of Constraint Propagation

Each constraint represents a "sub-problem" from which some *inconsistent* values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only cite:

- AC (Arc Consistency): all inconsistent values are identified and deleted
- BC (Bounds Consistency): inconsistent values corresponding to the bounds of the domains are identified and deleted

Warning.

Each constraint represents a "sub-problem" from which some *inconsistent* values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only cite:

- AC (Arc Consistency): all inconsistent values are identified and deleted
- BC (Bounds Consistency): inconsistent values corresponding to the bounds of the domains are identified and deleted

Warning.

Each constraint represents a "sub-problem" from which some *inconsistent* values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only cite:

- AC (Arc Consistency): all inconsistent values are identified and deleted
- BC (Bounds Consistency): inconsistent values corresponding to the bounds of the domains are identified and deleted

Warning.

Each constraint represents a "sub-problem" from which some *inconsistent* values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only cite:

- AC (Arc Consistency): all inconsistent values are identified and deleted
- BC (Bounds Consistency): inconsistent values corresponding to the bounds of the domains are identified and deleted

Warning.

Each constraint represents a "sub-problem" from which some *inconsistent* values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only cite:

- AC (Arc Consistency): all inconsistent values are identified and deleted
- BC (Bounds Consistency): inconsistent values corresponding to the bounds of the domains are identified and deleted

Warning.

Each constraint represents a "sub-problem" from which some *inconsistent* values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only cite:

- AC (Arc Consistency): all inconsistent values are identified and deleted
- BC (Bounds Consistency): inconsistent values corresponding to the bounds of the domains are identified and deleted

Warning.

Constraint x < y with

- dom(x) = 10..20
- dom(y) = 0..15

After AC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

After BC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

Constraint w + 3 = z with

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

After AC filtering, we obtain:

- $dom(w) = \{1, 5\}$
- $dom(z) = \{4, 8\}$

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

Constraint x < y with

- dom(x) = 10..20
- dom(y) = 0..15

After AC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

After BC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

Constraint w + 3 = z with

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

After AC filtering, we obtain:

- $dom(w) = \{1, 5\}$
- $dom(z) = \{4, 8\}$

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

Constraint x < y with

- dom(x) = 10..20
- dom(y) = 0..15

After AC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

After BC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

Constraint w + 3 = z with

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

After AC filtering, we obtain:

- $dom(w) = \{1, 5\}$
- $dom(z) = \{4, 8\}$

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

Constraint x < y with

- dom(x) = 10..20
- dom(y) = 0..15

After AC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

After BC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

Constraint w + 3 = z with

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

After AC filtering, we obtain:

- $dom(w) = \{1, 5\}$
- $dom(z) = \{4, 8\}$

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

Constraint x < y with

- dom(x) = 10..20
- dom(y) = 0..15

After AC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

After BC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

Constraint w + 3 = z with

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

After AC filtering, we obtain:

- $dom(w) = \{1, 5\}$
- $dom(z) = \{4, 8\}$

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

Constraint x < y with

- dom(x) = 10..20
- dom(y) = 0..15

After AC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

After BC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

Constraint w + 3 = z with

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

After AC filtering, we obtain:

- $dom(w) = \{1, 5\}$
- $dom(z) = \{4, 8\}$

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

Constraint x < y with

- dom(x) = 10..20
- dom(y) = 0..15

After AC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

After BC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

Constraint w + 3 = z with

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

After AC filtering, we obtain:

- $dom(w) = \{1, 5\}$
- $dom(z) = \{4, 8\}$

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

Constraint x < y with

- dom(x) = 10..20
- dom(y) = 0..15

After AC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

After BC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

Constraint w + 3 = z with

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

After AC filtering, we obtain:

- $dom(w) = \{1, 5\}$
- $dom(z) = \{4, 8\}$

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

Constraint x < y with

- dom(x) = 10..20
- dom(y) = 0..15

After AC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

After BC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

Constraint w + 3 = z with

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

After AC filtering, we obtain:

- $dom(w) = \{1, 5\}$
- $dom(z) = \{4, 8\}$

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

Constraint x < y with

- dom(x) = 10..20
- dom(y) = 0..15

After AC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

After BC filtering, we obtain:

- dom(x) = 10..14
- dom(y) = 11..15

Constraint w + 3 = z with

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

After AC filtering, we obtain:

- $dom(w) = \{1, 5\}$
- $dom(z) = \{4, 8\}$

- $dom(w) = \{1, 3, 4, 5\}$
- $dom(z) = \{4, 5, 8\}$

For a constraint c

- an allowed tuple, or tuple accepted by c, is an element of A = rel(c)
- a valid tuple is an element of $V = \prod_{x \in scp(c)} dom(x)$
- a support (on c) is a tuple that is both allowed and valid, i.e., an element of $A \cap V$

Remark.

For a constraint \boldsymbol{c}

- an allowed tuple, or tuple accepted by c, is an element of A = rel(c)
- a valid tuple is an element of $V = \prod_{x \in scp(c)} dom(x)$
- a support (on c) is a tuple that is both allowed and valid, i.e., an element of $A \cap V$

Remark.

For a constraint \boldsymbol{c}

- an allowed tuple, or tuple accepted by c, is an element of A = rel(c)
- a valid tuple is an element of $V = \prod_{x \in scp(c)} dom(x)$
- a support (on c) is a tuple that is both allowed and valid, i.e., an element of $A \cap V$

Remark.

For a constraint c

- an allowed tuple, or tuple accepted by c, is an element of A = rel(c)
- a valid tuple is an element of $V = \prod_{x \in scp(c)} dom(x)$
- a support (on c) is a tuple that is both allowed and valid, i.e., an element of $A \cap V$

Remark.

For a constraint c

- an allowed tuple, or tuple accepted by c, is an element of A = rel(c)
- a valid tuple is an element of $V = \prod_{x \in scp(c)} dom(x)$
- a support (on c) is a tuple that is both allowed and valid, i.e., an element of $A \cap V$

Remark.

Example.

Let c_{xyz} be a ternary constraint, and let us suppose that $dom(x) = dom(y) = \{a, b\}$ and $dom(z) = \{b, c\}$. We have:

- $A = rel(c_{xyz})$
- $V = dom(x) \times dom(y) \times dom(z)$

Example.

Let c_{xyz} be a ternary constraint, and let us suppose that $dom(x) = dom(y) = \{a, b\}$ and $dom(z) = \{b, c\}$. We have:

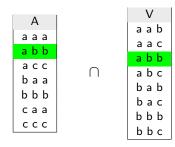
- $A = rel(c_{xyz})$
- $V = dom(x) \times dom(y) \times dom(z)$

Is there a support for (z, b)?

Example.

Let c_{xyz} be a ternary constraint, and let us suppose that $dom(x) = dom(y) = \{a, b\}$ and $dom(z) = \{b, c\}$. We have:

- $A = rel(c_{xyz})$
- $V = dom(x) \times dom(y) \times dom(z)$



(z, b) has a support \checkmark

Example.

Let c_{xyz} be a ternary constraint, and let us suppose that $dom(x) = dom(y) = \{a, b\}$ and $dom(z) = \{b, c\}$. We have:

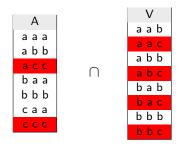
- $A = rel(c_{xyz})$
- $V = dom(x) \times dom(y) \times dom(z)$

Is there a support for (z, c)?

Example.

Let c_{xyz} be a ternary constraint, and let us suppose that $dom(x) = dom(y) = \{a, b\}$ and $dom(z) = \{b, c\}$. We have:

- $A = rel(c_{xyz})$
- $V = dom(x) \times dom(y) \times dom(z)$



(z, c) has no support X

Definition

A constraint c is arc-consistent (AC) iff $\forall x \in scp(c)$, $\forall a \in dom(x)$, there exists a support of (x, a) on c, i.e., a support τ on c such that $\tau[x] = a$.

Example.

Let x and y be two variables such that $dom(x) = dom(y) = \{1, 2\}$, and let x = y be a binary constraint.

- the tuple au = (1,2) // $au[x] = 1 \wedge au[y] = 2$
 - is valid
 - but not accepted by x = y
- the tuple au = (3,3)
 - is not valid,
 - but accepted by x = y
- the tuple au = (2,2)
 - is valid
 - and accepted by x = y

Definition

A constraint c is arc-consistent (AC) iff $\forall x \in scp(c)$, $\forall a \in dom(x)$, there exists a support of (x, a) on c, i.e., a support τ on c such that $\tau[x] = a$.

Example.

Let x and y be two variables such that $dom(x) = dom(y) = \{1, 2\}$, and let x = y be a binary constraint.

- the tuple au = (1,2) // $au [x] = 1 \wedge au [y] = 2$
 - is valid
 - but not accepted by x = y
- the tuple au = (3,3)
 - is not valid,
 - but accepted by x = y
- the tuple au = (2,2)
 - is valid
 - and accepted by x = y

Definition

A constraint c is arc-consistent (AC) iff $\forall x \in scp(c)$, $\forall a \in dom(x)$, there exists a support of (x, a) on c, i.e., a support τ on c such that $\tau[x] = a$.

Example.

Let x and y be two variables such that $dom(x) = dom(y) = \{1, 2\}$, and let x = y be a binary constraint.

- the tuple au=(1,2) // $au[x]=1\wedge au[y]=2$
 - is valid
 - but not accepted by x = y
- the tuple au = (3,3)
 - is not valid,
 - but accepted by x = y
- the tuple au = (2,2)
 - is valid
 - and accepted by x = y

Definition

A constraint c is arc-consistent (AC) iff $\forall x \in scp(c)$, $\forall a \in dom(x)$, there exists a support of (x, a) on c, i.e., a support τ on c such that $\tau[x] = a$.

Example.

Let x and y be two variables such that $dom(x) = dom(y) = \{1, 2\}$, and let x = y be a binary constraint.

- the tuple au=(1,2) // $au[x]=1\wedge au[y]=2$
 - is valid
 - but not accepted by x = y
- the tuple au = (3,3)
 - is not valid,
 - but accepted by x = y
- the tuple au = (2,2)
 - is valid
 - and accepted by x = y

Definition

A constraint c is arc-consistent (AC) iff $\forall x \in scp(c)$, $\forall a \in dom(x)$, there exists a support of (x, a) on c, i.e., a support τ on c such that $\tau[x] = a$.

Example.

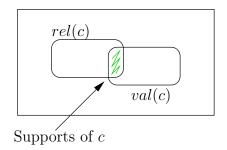
Let x and y be two variables such that $dom(x) = dom(y) = \{1, 2\}$, and let x = y be a binary constraint.

- the tuple au=(1,2) // $au[x]=1\wedge au[y]=2$
 - is valid
 - but not accepted by x = y
- the tuple au = (3,3)
 - is not valid,
 - but accepted by x = y
- the tuple au = (2,2)
 - is valid
 - and accepted by x = y

Supports

In other words, the supports on a constraint c are those tuples that are present in the intersection of :

- the set of allowed tuples: rel(c)
- the set of valid tuples: $val(c) = \prod_{x \in scp(c)} dom(x)$

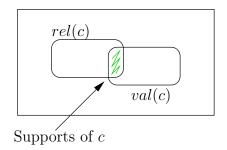


 \Rightarrow We need to "identify" these supports for filtering

Supports

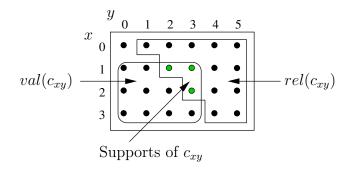
In other words, the supports on a constraint \boldsymbol{c} are those tuples that are present in the intersection of :

- the set of allowed tuples: rel(c)
- the set of valid tuples: $val(c) = \prod_{x \in scp(c)} dom(x)$



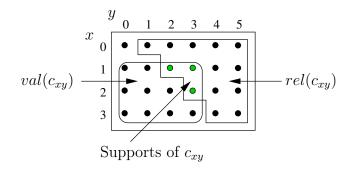
 \Rightarrow We need to "identify" these supports for filtering

Example



After AC filtering, we obtain?

Example



After AC filtering, we obtain?

AC Algorithm

Definition

A value (x, a) is *arc-inconsistent* on a constraint c when there is no support of (x, a) on c.

Definition

An AC algorithm for a constraint c is an algorithm that removes all values that are arc-inconsistent on c; the algorithm is said to enforce/establish AC on c.

Here is an AC algorithm that can be used in theory with any constraint c.

Algorithm 1: filterAC(*c*: Constraint)

```
for each variable x \in scp(c) do
for each value a \in dom(x) do
if \neg seekSupport(c, x, a) // function to be implemented
then
remove a from dom(x)
```

AC Algorithm

Definition

A value (x, a) is *arc-inconsistent* on a constraint *c* when there is no support of (x, a) on *c*.

Definition

An AC algorithm for a constraint c is an algorithm that removes all values that are arc-inconsistent on c; the algorithm is said to enforce/establish AC on c.

Here is an AC algorithm that can be used in theory with any constraint c.

```
Algorithm 2: filterAC(c: Constraint)for each variable x \in scp(c) dofor each value a \in dom(x) doif \neg seekSupport(c, x, a) // function to be implementedthen______ remove a from dom(x)
```

AC Algorithm

Definition

A value (x, a) is *arc-inconsistent* on a constraint *c* when there is no support of (x, a) on *c*.

Definition

An AC algorithm for a constraint c is an algorithm that removes all values that are arc-inconsistent on c; the algorithm is said to enforce/establish AC on c.

Here is an AC algorithm that can be used in theory with any constraint c.

Algorithm 3: filterAC(*c*: Constraint)

```
for each variable x \in scp(c) do
for each value a \in dom(x) do
if \neg seekSupport(c, x, a) // function to be implemented
then
then
remove a from dom(x)
```

Proposition A constraint allDifferent(X) is AC iff $\forall X' \subseteq X$, $|dom(X')| = |X'| \Rightarrow \forall x \in X \setminus X', dom(x) = dom(x) \setminus dom(X')$ where $dom(X') = \bigcup_{x' \in X'} dom(x')$

Remark.

A subset X' of variables such that |dom(X')| = |X'| is called a Hall set.

Example.

The set of variables $\{x, y, z\}$ such that:

- $dom(x) = \{a, b\},\$
- $dom(y) = \{a, c\}$
- and $dom(z) = \{b, c\}$

is a Hall set (of size 3).

Proposition A constraint allDifferent(X) is AC iff $\forall X' \subseteq X$, $|dom(X')| = |X'| \Rightarrow \forall x \in X \setminus X', dom(x) = dom(x) \setminus dom(X')$ where $dom(X') = \bigcup_{x' \in X'} dom(x')$

Remark.

A subset X' of variables such that |dom(X')| = |X'| is called a Hall set.

Example.

The set of variables $\{x, y, z\}$ such that:

- $dom(x) = \{a, b\},\$
- $dom(y) = \{a, c\}$
- and $dom(z) = \{b, c\}$

is a Hall set (of size 3).

Proposition A constraint allDifferent(X) is AC iff $\forall X' \subseteq X$, $|dom(X')| = |X'| \Rightarrow \forall x \in X \setminus X', dom(x) = dom(x) \setminus dom(X')$ where $dom(X') = \bigcup_{x' \in X'} dom(x')$

Remark.

A subset X' of variables such that |dom(X')| = |X'| is called a Hall set.

Example.

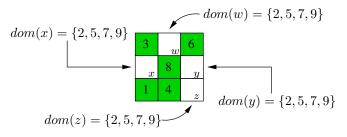
The set of variables $\{x, y, z\}$ such that:

- $dom(x) = \{a, b\},\$
- $dom(y) = \{a, c\}$
- and $dom(z) = \{b, c\}$

is a Hall set (of size 3).

Example.

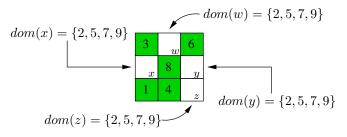
For a Sudoku block, a constraint allDifferent(w, x, y, z):



Can we filter?

Example.

For a Sudoku block, a constraint allDifferent(w, x, y, z):

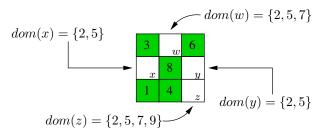


Can we filter?

The same constraint as previously, but variables have different domains.

Example.

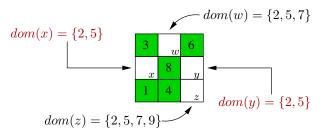
For a Sudoku block, a constraint allDifferent(w, x, y, z):



The same constraint as previously, but variables have different domains.

Example.

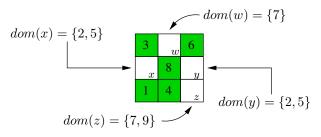
For a Sudoku block, a constraint allDifferent(w, x, y, z):



The same constraint as previously, but variables have different domains.

Example.

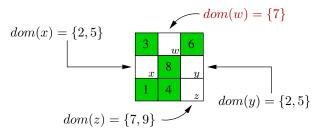
For a Sudoku block, a constraint allDifferent(w, x, y, z) :



The same constraint as previously, but variables have different domains.

Example.

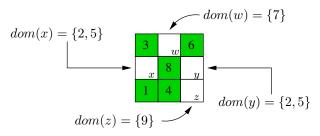
For a Sudoku block, a constraint allDifferent(w, x, y, z) :



The same constraint as previously, but variables have different domains.

Example.

For a Sudoku block, a constraint allDifferent(w, x, y, z) :



Definition

A constraint cardinality(X, V, L, U) forces the variables in X to take their values in V with the restriction that each value v_i in V is assigned at least $L(v_i)$ times and at most $U(v_i)$ times.

Example.

Three sets:

- Agents = { Peter, Paul, Mary, John, Bob, Mike, Julia }
- Days = {Monday, Tuesday, ..., Sunday}
- Activities = {M(orning), D(ay), N(ight), B(ackup), O(ff)}.
- We want a roster that looks like:

Definition

A constraint cardinality(X, V, L, U) forces the variables in X to take their values in V with the restriction that each value v_i in V is assigned at least $L(v_i)$ times and at most $U(v_i)$ times.

Example.

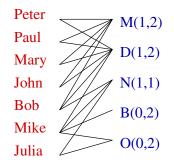
Three sets:

- Agents = {Peter, Paul, Mary, John, Bob, Mike, Julia}
- Days = { Monday, Tuesday, ..., Sunday }
- Activities = {M(orning), D(ay), N(ight), B(ackup), O(ff)}.
- We want a roster that looks like:

	Мо	Tu	We	Th	Fr	Sa	Su
Peter	D	Ν	Ν	Ν	0	0	0
Paul	0	0	D	D	Μ	Μ	В
Peter Paul Mary	М	М	D	D	0	0	Ν

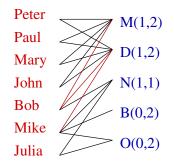
Example.

- $L = \{1, 1, 1, 0, 0\}$
- $U = \{2, 2, 1, 2, 2\}.$



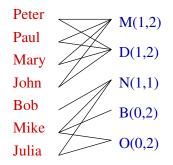
Example.

- $L = \{1, 1, 1, 0, 0\}$
- $U = \{2, 2, 1, 2, 2\}.$



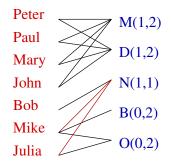
Example.

- $L = \{1, 1, 1, 0, 0\}$
- $U = \{2, 2, 1, 2, 2\}.$



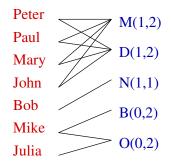
Example.

- $L = \{1, 1, 1, 0, 0\}$
- $U = \{2, 2, 1, 2, 2\}.$



Example.

- $L = \{1, 1, 1, 0, 0\}$
- $U = \{2, 2, 1, 2, 2\}.$



Domains of variables w, x, y and z

dom					
W	X	у	Ζ		
1	1	2	2		
2	2	3	3		
3	3	4	4		

Constraint c_{wxyz} : $w + 2x + 4y + 5z \ge 42$

Domains of variables w, x, y et z after AC filtering of c_{wxyz}

Domains of variables w, x, y and z

dom					
W	X	у	Ζ		
1	1	2	2		
2	2	3	3		
3	3	4	4		

Constraint c_{wxyz} : $w + 2x + 4y + 5z \ge 42$

Domains of variables w, x, y et z after AC filtering of c_{wxyz}

Domains of variables w, x, y and z

dom					
W	X	y	Ζ		
1	1	2	2		
2	2	3	3		
3	3	4	4		

Constraint c_{wxyz} : $w + 2x + 4y + 5z \ge 42$

Domains of variables w, x, y et z after AC filtering of c_{wxyz}

dom					
W	X	y	Ζ		
1	+	2	2		
2	2	3	3		
3	3	4	4		

Domains of variables w, x, y and z

dom					
W	X	y	Ζ		
1	1	2	2		
2	2	3	3		
3	3	4	4		

Constraint c_{wxyz} : $w + 2x + 4y + 5z \ge 42$

Domains of variables w, x, y et z after AC filtering of c_{wxyz}

dom					
W	X	y	Ζ		
1	+	2	2		
2	2	3	3		
3	3	4	4		

		doi	m	
Domains of variables	W	X	у	Ζ
w, x, y and z	1	1	1	1
			2	2

Constraint c_{wxyz} : $w + x + y + z \neq 5$

Domains of variables w, x, y and z after AC filtering of c_{wxyz}

		doi	m	
Domains of variables	W	X	у	Ζ
w, x, y and z	1	1	1	1
			2	2

Constraint c_{wxyz} : $w + x + y + z \neq 5$

Domains of variables w, x, y and z after AC filtering of c_{wxyz}

		doi	m	
Domains of variables	W	X	у	Ζ
w, x, y and z	1	1	1	1
			2	2

Constraint c_{wxyz} : $w + x + y + z \neq 5$

Domains of variables		do	m	
w, x, y and z after AC filtering of c_{wxyz}			у 1 2	1

Domains of variables w, x, y and z

dom							
W	X	y	Ζ				
1	1	1	1				
		2					

Constraint c_{wxyz} : $w + x + y + z \neq 5$

Domains of variables w, x, y and z after AC filtering of c_{wxyz}

Domains of variables w, x, y and z

dom						
w 1	х 1	у 1 2	<i>z</i> 1			

Constraint c_{wxyz} : $w + x + y + z \neq 5$

Domains of variables w, x, y and z after AC filtering of c_{wxyz}

Domains of variables w, x, y and z

dom						
W	X	у	Ζ			
1	1	1	1			
		2				

Constraint c_{wxyz} : $w + x + y + z \neq 5$

Domains of variables w, x, y and z after AC filtering of c_{wxyz}

dom							
w 1	х 1	у 1 <mark>2</mark>	<i>z</i> 1				

Domains of variables w, x, y and z

dom						
W	X	у	Ζ			
1	1	1	1			
		2				

Constraint c_{wxyz} : $w + x + y + z \neq 5$

Domains of variables w, x, y and z after AC filtering of c_{wxyz}

dom							
w 1	х 1	у 1 <mark>2</mark>	<i>z</i> 1				

		dom		
	W	X	y	Ζ
Domains of variables	0	0	0	0
w, x, y and z	1	1	1	1
	2	2	2	2
	3	3	3	3

Constraint c_{wxyz} : $82 \ge 27w + 37x + 45y + 53z \ge 80$

Domains of variables w, x, y and z after AC filtering of c_{wxyz}

	dom			
	W	X	у	Ζ
Domains of variables	0	0	0	0
w, x, y and z	1	1	1	1
	2	2	2	2
	3	3	3	3

Constraint c_{wxyz} : $82 \ge 27w + 37x + 45y + 53z \ge 80$

	dom				
	W	X	у	Ζ	
Domains of variables	0	0	0	0	
w, x, y and z	1	1	1	1	
	2	2	2	2	
	3	3	3	3	

Constraint c_{wxyz} : $82 \ge 27w + 37x + 45y + 53z \ge 80$

	dom			
Domains of variables	W	X	y	Ζ
w, x, y and z	0	0	0	0
after AC filtering of c_{wxyz}	1	1	1	1
	2	2	2	2
	3	3	3	3

AC Filtering for sum : $U \ge \sum_{i=1}^{r} c_i x_i \ge L$

Possibility of using dynamic programming:

- construction of a graph (Knapsack)
- reduction of the graph
- use of a constraint mdd from the reduced graph

Warning

Pseudo-polynomial Complexity $O(rU^2)$

Example.

Illustration of this approach with:

- the constraint $12 \ge 2x_1 + 3x_2 + 4x_3 + 5x_4 \ge 10$
- where the domain of each variable is $\{0,1\}$.

AC Filtering for sum : $U \ge \sum_{i=1}^{r} c_i x_i \ge L$

Possibility of using dynamic programming:

- construction of a graph (Knapsack)
- reduction of the graph
- use of a constraint mdd from the reduced graph

Warning.

Pseudo-polynomial Complexity $O(rU^2)$

Example.

Illustration of this approach with:

- the constraint $12 \ge 2x_1 + 3x_2 + 4x_3 + 5x_4 \ge 10$
- where the domain of each variable is $\{0,1\}$.

AC Filtering for sum : $U \ge \sum_{i=1}^{r} c_i x_i \ge L$

Possibility of using dynamic programming:

- construction of a graph (Knapsack)
- reduction of the graph
- use of a constraint mdd from the reduced graph

Warning.

Pseudo-polynomial Complexity $O(rU^2)$

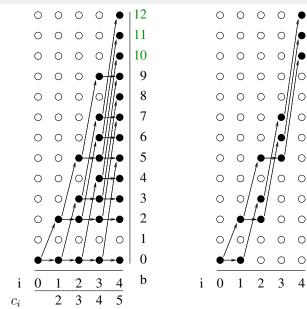
Example.

Illustration of this approach with:

- the constraint $12 \ge 2x_1 + 3x_2 + 4x_3 + 5x_4 \ge 10$
- where the domain of each variable is $\{0,1\}$.

Example

Knapsack Graph



Reduced Knapsack Graph

b

Constructive Disjunction

Enforcing AC on a meta-constraint $or(c_1, c_2)$ can be achieved by *constructive disjunction*: for each variable *x*, dom(x) is the union of the domains of *x* obtained after AC filtering on c_1 and AC filtering on c_2 .

Example.

Let x be a variable such that $dom(x) = \{1, 2, 3\}$ and the meta-constraint or(x = 1, x = 2).

AC on x = 1 yields dom¹(x) = {1} AC on x = 2 yields dom²(x) = {2}

AC on or(x = 1, x = 2) reduces dom(x) to $dom^{1}(x) \cup dom^{2}(x) = \{1, 2\}$

Constructive Disjunction

Enforcing AC on a meta-constraint $or(c_1, c_2)$ can be achieved by *constructive disjunction*: for each variable *x*, dom(x) is the union of the domains of *x* obtained after AC filtering on c_1 and AC filtering on c_2 .

Example.

Let x be a variable such that $dom(x) = \{1, 2, 3\}$ and the meta-constraint or (x = 1, x = 2).

AC on
$$x = 1$$
 yields dom¹(x) = {1}
AC on $x = 2$ yields dom²(x) = {2}

AC on or (x = 1, x = 2) reduces dom(x) to $dom^1(x) \cup dom^2(x) = \{1, 2\}$

AC Filtering for and (meta-constraint)

Proposition

AC on the conjunction $and(c_1,c_2)$ is with respect to AC enforced independently on c_1 and c_2 :

- generally stronger,
- equivalent when $|scp(c_1) \cap scp(c_2)| \le 1$

Example

Let x and y two variables such that $dom(x) = dom(y) = \{1, 2, 3\}$ and the meta-constraint $and(x \neq y, x \leq y)$.

- AC on $x \neq y$ as well as AC on $x \leq y$ have no effect
- AC on and $(x \neq y, x \leq y)$ permits to have:
 - *dom*(*x*) reduced to {1,2}
 - dom(y) reduced to {2,3}

AC Filtering for and (meta-constraint)

Proposition

AC on the conjunction $and(c_1,c_2)$ is with respect to AC enforced independently on c_1 and c_2 :

- generally stronger,
- equivalent when $|scp(c_1) \cap scp(c_2)| \le 1$

Example

Let x and y two variables such that $dom(x) = dom(y) = \{1, 2, 3\}$ and the meta-constraint $and(x \neq y, x \leq y)$.

- AC on $x \neq y$ as well as AC on $x \leq y$ have no effect
- AC on and $(x \neq y, x \leq y)$ permits to have:
 - *dom*(*x*) reduced to {1, 2}
 - *dom*(*y*) reduced to {2,3}

1 Filtering Domains with Constraints

2 Principle of Constraint Propagation

Definition A constraint network P is AC iff each constraint of P is AC.

Definition

Computing the AC-closure of a constraint network P is the fact of removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute the AC-closure?

NO because when some values are filtered out by a constraint, this can give new opportunities to other constraints to filter again.

Definition

A constraint network P is AC iff each constraint of P is AC.

Definition

Computing the AC-closure of a constraint network P is the fact of removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute the AC-closure?

NO because when some values are filtered out by a constraint, this can give new opportunities to other constraints to filter again.

Definition

A constraint network P is AC iff each constraint of P is AC.

Definition

Computing the AC-closure of a constraint network P is the fact of removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute the AC-closure?

NO because when some values are filtered out by a constraint, this can give new opportunities to other constraints to filter again.

Definition

A constraint network P is AC iff each constraint of P is AC.

Definition

Computing the AC-closure of a constraint network P is the fact of removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute the AC-closure?

NO because when some values are filtered out by a constraint, this can give new opportunities to other constraints to filter again.

Definition

A constraint network P is AC iff each constraint of P is AC.

Definition

Computing the AC-closure of a constraint network P is the fact of removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute the AC-closure?

NO because when some values are filtered out by a constraint, this can give new opportunities to other constraints to filter again.

Constraint Propagation Algorithm

Algorithm 4: constraintPropagationOn(P: CN): Boolean

return true

Remark.

If each call *c.filter*() enforces AC on *c*, then the algorithm computes the AC-closure of *P*.

Constraint Propagation Algorithm

Algorithm 5: constraintPropagationOn(P: CN): Boolean

return true

Remark.

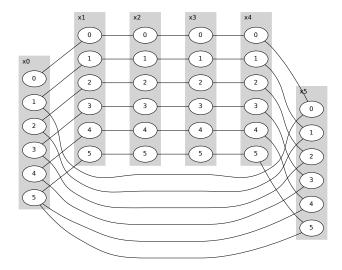
If each call c.filter() enforces AC on c, then the algorithm computes the AC-closure of P.

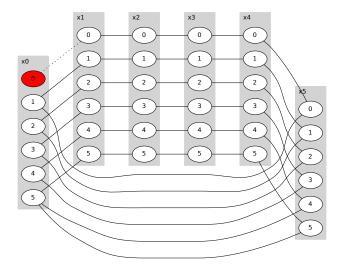
Domino Problem

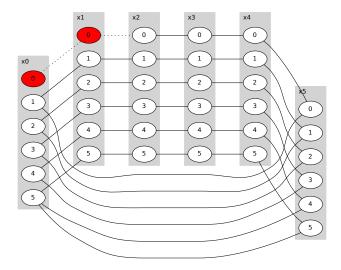
The instance domino-6 is represented by the following CN P:

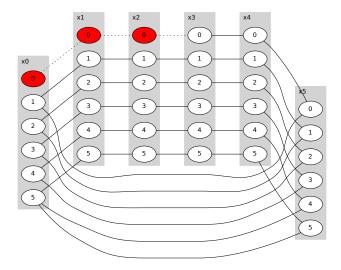
•
$$vars(P) = \{$$

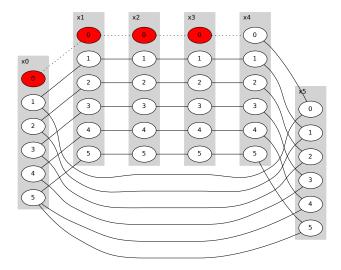
 $x_0 \text{ with } dom(x_0) = \{0, 1, 2, 3, 4, 5\},$
 $x_1 \text{ with } dom(x_1) = \{0, 1, 2, 3, 4, 5\},$
 $x_2 \text{ with } dom(x_2) = \{0, 1, 2, 3, 4, 5\},$
 $x_3 \text{ with } dom(x_3) = \{0, 1, 2, 3, 4, 5\},$
 $x_4 \text{ with } dom(x_4) = \{0, 1, 2, 3, 4, 5\},$
 $x_5 \text{ with } dom(x_5) = \{0, 1, 2, 3, 4, 5\},$
 $\}$
• $ctrs(P) = \{$
 $x_0 = x_1,$
 $x_1 = x_2,$
 $x_2 = x_3,$
 $x_3 = x_4,$
 $x_4 = x_5,$
 $(x_0 = x_5 + 1 \land x_0 < 5) \lor (x_0 = x_5 \land x_0 = 5)$
 $\}$

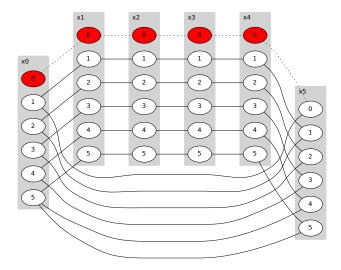


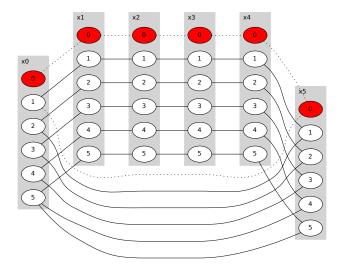


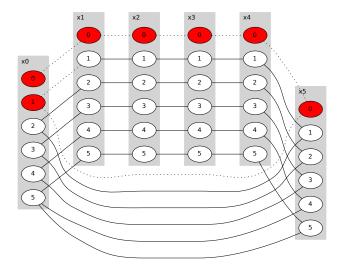


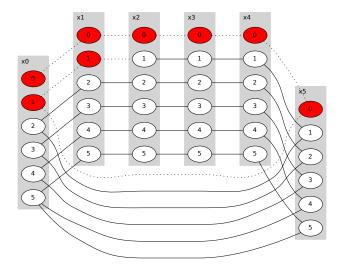


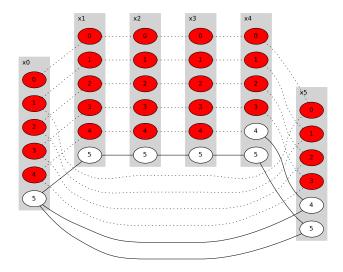


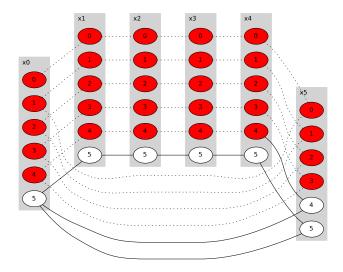


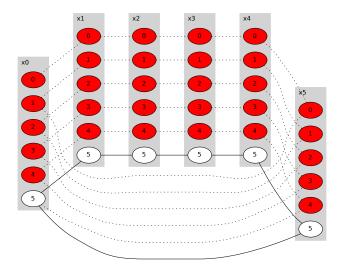












Constraint Propagation on queens-4

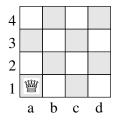
For the 4-queens instance, we have:

•
$$vars(P) = \{$$

 $x_a \text{ with } dom(x_a) = \{1, 2, 3, 4\}$
 $x_b \text{ with } dom(x_b) = \{1, 2, 3, 4\}$
 $x_c \text{ with } dom(x_c) = \{1, 2, 3, 4\}$
 $x_d \text{ with } dom(x_d) = \{1, 2, 3, 4\}$
• $ctrs(P) = \{$
 $x_a \neq x_b \land |x_a - x_b| \neq 1,$
 $x_a \neq x_c \land |x_a - x_c| \neq 2,$
 $x_a \neq x_d \land |x_a - x_c| \neq 2,$
 $x_b \neq x_c \land |x_b - x_c| \neq 1,$
 $x_b \neq x_d \land |x_b - x_d| \neq 2,$
 $x_c \neq x_d \land |x_c - x_d| \neq 1$
}

Exercice

After taking the decision $x_a = 1$, what is the AC-closure of *P*?



Constraint Propagation on queens-4

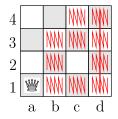
For the 4-queens instance, we have:

•
$$vars(P) = \{$$

 $x_a \text{ with } dom(x_a) = \{1, 2, 3, 4\},$
 $x_b \text{ with } dom(x_b) = \{1, 2, 3, 4\},$
 $x_c \text{ with } dom(x_c) = \{1, 2, 3, 4\},$
 $x_d \text{ with } dom(x_d) = \{1, 2, 3, 4\},$
 $\}$
• $ctrs(P) = \{$
 $x_a \neq x_b \land |x_a - x_b| \neq 1,$
 $x_a \neq x_c \land |x_a - x_c| \neq 2,$
 $x_a \neq x_d \land |x_a - x_d| \neq 3,$
 $x_b \neq x_c \land |x_b - x_c| \neq 1,$
 $x_b \neq x_d \land |x_b - x_d| \neq 2,$
 $x_c \neq x_d \land |x_c - x_d| \neq 1$
 $\}$

Exercice

After taking the decision $x_a = 1$, the AC-closure of *P* is:



Exercice

Let P be the following CN:

•
$$vars(P) = \{$$

 $x_1 \text{ with } dom(x_1) = \{1, 2, 3\},$
 $x_2 \text{ with } dom(x_2) = \{1, 2, 3\},$
 $x_3 \text{ with } dom(x_3) = \{1, 2, 3\},$
 $x_4 \text{ with } dom(x_4) = \{1, 2, 3\}$
}
• $ctrs(P) = \{$
 $x_1 \neq x_2,$
 $x_2 + x_3 \leq x_1,$
 $x_2 + x_4 \geq 2 * x_1,$
}

Simulate the process of constraint propagation on P (that is to say, compute the AC-closure of P).