
Constraint Programming
– Filtering : Part 1 –

Christophe Lecoutre
lecoutre@cril.fr

CRIL-CNRS UMR 8188
Universite d’Artois

Lens, France

January 2021

1



Outline

1 Filtering Domains with Constraints

2 Principle of Constraint Propagation

2



Outline

1 Filtering Domains with Constraints

2 Principle of Constraint Propagation

3



Filtering Domains by means of Constraints

Each constraint represents a “sub-problem” from which some
inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only
cite:

• AC (Arc Consistency): all inconsistent values are identified and
deleted

• BC (Bounds Consistency): inconsistent values corresponding to the
bounds of the domains are identified and deleted

Warning.
For non-binary constraints, AC is often denoted by GAC (but not in this
course).

4



Filtering Domains by means of Constraints

Each constraint represents a “sub-problem” from which some
inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only
cite:

• AC (Arc Consistency): all inconsistent values are identified and
deleted

• BC (Bounds Consistency): inconsistent values corresponding to the
bounds of the domains are identified and deleted

Warning.
For non-binary constraints, AC is often denoted by GAC (but not in this
course).

4



Filtering Domains by means of Constraints

Each constraint represents a “sub-problem” from which some
inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only
cite:

• AC (Arc Consistency): all inconsistent values are identified and
deleted

• BC (Bounds Consistency): inconsistent values corresponding to the
bounds of the domains are identified and deleted

Warning.
For non-binary constraints, AC is often denoted by GAC (but not in this
course).

4



Filtering Domains by means of Constraints

Each constraint represents a “sub-problem” from which some
inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only
cite:

• AC (Arc Consistency): all inconsistent values are identified and
deleted

• BC (Bounds Consistency): inconsistent values corresponding to the
bounds of the domains are identified and deleted

Warning.
For non-binary constraints, AC is often denoted by GAC (but not in this
course).

4



Filtering Domains by means of Constraints

Each constraint represents a “sub-problem” from which some
inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only
cite:

• AC (Arc Consistency): all inconsistent values are identified and
deleted

• BC (Bounds Consistency): inconsistent values corresponding to the
bounds of the domains are identified and deleted

Warning.
For non-binary constraints, AC is often denoted by GAC (but not in this
course).

4



Filtering Domains by means of Constraints

Each constraint represents a “sub-problem” from which some
inconsistent values can be deleted.

Inconsistent values belong to no solution (of the sub-problem).

Several levels/types of filtering can be defined. For the moment, we only
cite:

• AC (Arc Consistency): all inconsistent values are identified and
deleted

• BC (Bounds Consistency): inconsistent values corresponding to the
bounds of the domains are identified and deleted

Warning.
For non-binary constraints, AC is often denoted by GAC (but not in this
course).

4



Example.

Constraint x < y with

• dom(x) = 10..20

• dom(y) = 0..15

After AC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

After BC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

Constraint w + 3 = z with

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

After AC filtering, we obtain:

• dom(w) = {1, 5}
• dom(z) = {4, 8}

After BC filtering, we obtain:

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

5



Example.

Constraint x < y with

• dom(x) = 10..20

• dom(y) = 0..15

After AC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

After BC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

Constraint w + 3 = z with

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

After AC filtering, we obtain:

• dom(w) = {1, 5}
• dom(z) = {4, 8}

After BC filtering, we obtain:

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

5



Example.

Constraint x < y with

• dom(x) = 10..20

• dom(y) = 0..15

After AC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

After BC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

Constraint w + 3 = z with

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

After AC filtering, we obtain:

• dom(w) = {1, 5}
• dom(z) = {4, 8}

After BC filtering, we obtain:

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

5



Example.

Constraint x < y with

• dom(x) = 10..20

• dom(y) = 0..15

After AC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

After BC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

Constraint w + 3 = z with

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

After AC filtering, we obtain:

• dom(w) = {1, 5}
• dom(z) = {4, 8}

After BC filtering, we obtain:

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

5



Example.

Constraint x < y with

• dom(x) = 10..20

• dom(y) = 0..15

After AC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

After BC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

Constraint w + 3 = z with

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

After AC filtering, we obtain:

• dom(w) = {1, 5}
• dom(z) = {4, 8}

After BC filtering, we obtain:

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

5



Example.

Constraint x < y with

• dom(x) = 10..20

• dom(y) = 0..15

After AC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

After BC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

Constraint w + 3 = z with

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

After AC filtering, we obtain:

• dom(w) = {1, 5}
• dom(z) = {4, 8}

After BC filtering, we obtain:

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

5



Example.

Constraint x < y with

• dom(x) = 10..20

• dom(y) = 0..15

After AC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

After BC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

Constraint w + 3 = z with

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

After AC filtering, we obtain:

• dom(w) = {1, 5}
• dom(z) = {4, 8}

After BC filtering, we obtain:

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

5



Example.

Constraint x < y with

• dom(x) = 10..20

• dom(y) = 0..15

After AC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

After BC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

Constraint w + 3 = z with

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

After AC filtering, we obtain:

• dom(w) = {1, 5}
• dom(z) = {4, 8}

After BC filtering, we obtain:

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

5



Example.

Constraint x < y with

• dom(x) = 10..20

• dom(y) = 0..15

After AC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

After BC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

Constraint w + 3 = z with

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

After AC filtering, we obtain:

• dom(w) = {1, 5}
• dom(z) = {4, 8}

After BC filtering, we obtain:

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

5



Example.

Constraint x < y with

• dom(x) = 10..20

• dom(y) = 0..15

After AC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

After BC filtering, we obtain:

• dom(x) = 10..14

• dom(y) = 11..15

Constraint w + 3 = z with

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

After AC filtering, we obtain:

• dom(w) = {1, 5}
• dom(z) = {4, 8}

After BC filtering, we obtain:

• dom(w) = {1, 3, 4, 5}
• dom(z) = {4, 5, 8}

5



Notion of Support

For a constraint c

• an allowed tuple, or tuple accepted by c , is an element of A = rel(c)

• a valid tuple is an element of V = Πx∈scp(c)dom(x)

• a support (on c) is a tuple that is both allowed and valid, i.e., an
element of A ∩ V

Remark.
A support on c is what we have previously informally called a solution of
the “sub-problem” c .

6



Notion of Support

For a constraint c

• an allowed tuple, or tuple accepted by c , is an element of A = rel(c)

• a valid tuple is an element of V = Πx∈scp(c)dom(x)

• a support (on c) is a tuple that is both allowed and valid, i.e., an
element of A ∩ V

Remark.
A support on c is what we have previously informally called a solution of
the “sub-problem” c .

6



Notion of Support

For a constraint c

• an allowed tuple, or tuple accepted by c , is an element of A = rel(c)

• a valid tuple is an element of V = Πx∈scp(c)dom(x)

• a support (on c) is a tuple that is both allowed and valid, i.e., an
element of A ∩ V

Remark.
A support on c is what we have previously informally called a solution of
the “sub-problem” c .

6



Notion of Support

For a constraint c

• an allowed tuple, or tuple accepted by c , is an element of A = rel(c)

• a valid tuple is an element of V = Πx∈scp(c)dom(x)

• a support (on c) is a tuple that is both allowed and valid, i.e., an
element of A ∩ V

Remark.
A support on c is what we have previously informally called a solution of
the “sub-problem” c .

6



Notion of Support

For a constraint c

• an allowed tuple, or tuple accepted by c , is an element of A = rel(c)

• a valid tuple is an element of V = Πx∈scp(c)dom(x)

• a support (on c) is a tuple that is both allowed and valid, i.e., an
element of A ∩ V

Remark.
A support on c is what we have previously informally called a solution of
the “sub-problem” c .

6



Notion of Support

Example.
Let cxyz be a ternary constraint, and let us suppose that
dom(x) = dom(y) = {a, b} and dom(z) = {b, c}. We have:

• A = rel(cxyz)

• V = dom(x)× dom(y)× dom(z)

A
a a a
a b b
a c c
b a a
b b b
c a a
c c c

∩

V
a a b
a a c
a b b
a b c
b a b
b a c
b b b
b b c

7



Notion of Support

Example.
Let cxyz be a ternary constraint, and let us suppose that
dom(x) = dom(y) = {a, b} and dom(z) = {b, c}. We have:

• A = rel(cxyz)

• V = dom(x)× dom(y)× dom(z)

A
a a a
a b b
a c c
b a a
b b b
c a a
c c c

∩

V
a a b
a a c
a b b
a b c
b a b
b a c
b b b
b b c

Is there a support for (z , b)?

7



Notion of Support

Example.
Let cxyz be a ternary constraint, and let us suppose that
dom(x) = dom(y) = {a, b} and dom(z) = {b, c}. We have:

• A = rel(cxyz)

• V = dom(x)× dom(y)× dom(z)

A
a a a
a b b
a c c
b a a
b b b
c a a
c c c

∩

V
a a b
a a c
a b b
a b c
b a b
b a c
b b b
b b c

(z , b) has a support 3

7



Notion of Support

Example.
Let cxyz be a ternary constraint, and let us suppose that
dom(x) = dom(y) = {a, b} and dom(z) = {b, c}. We have:

• A = rel(cxyz)

• V = dom(x)× dom(y)× dom(z)

A
a a a
a b b
a c c
b a a
b b b
c a a
c c c

∩

V
a a b
a a c
a b b
a b c
b a b
b a c
b b b
b b c

Is there a support for (z , c)?

7



Notion of Support

Example.
Let cxyz be a ternary constraint, and let us suppose that
dom(x) = dom(y) = {a, b} and dom(z) = {b, c}. We have:

• A = rel(cxyz)

• V = dom(x)× dom(y)× dom(z)

A
a a a
a b b
a c c
b a a
b b b
c a a
c c c

∩

V
a a b
a a c
a b b
a b c
b a b
b a c
b b b
b b c

(z , c) has no support 7

7



Arc Consistency (AC)

Definition
A constraint c is arc-consistent (AC) iff ∀x ∈ scp(c), ∀a ∈ dom(x), there
exists a support of (x , a) on c , i.e., a support τ on c such that τ [x ] = a.

Example.
Let x and y be two variables such that dom(x) = dom(y) = {1, 2}, and
let x = y be a binary constraint.

• the tuple τ = (1, 2) // τ [x ] = 1 ∧ τ [y ] = 2
• is valid
• but not accepted by x = y

• the tuple τ = (3, 3)
• is not valid,
• but accepted by x = y

• the tuple τ = (2, 2)
• is valid
• and accepted by x = y

it represents a support of both (x , 2) and (y , 2) on x = y

8



Arc Consistency (AC)

Definition
A constraint c is arc-consistent (AC) iff ∀x ∈ scp(c), ∀a ∈ dom(x), there
exists a support of (x , a) on c , i.e., a support τ on c such that τ [x ] = a.

Example.
Let x and y be two variables such that dom(x) = dom(y) = {1, 2}, and
let x = y be a binary constraint.

• the tuple τ = (1, 2) // τ [x ] = 1 ∧ τ [y ] = 2
• is valid
• but not accepted by x = y

• the tuple τ = (3, 3)
• is not valid,
• but accepted by x = y

• the tuple τ = (2, 2)
• is valid
• and accepted by x = y

it represents a support of both (x , 2) and (y , 2) on x = y

8



Arc Consistency (AC)

Definition
A constraint c is arc-consistent (AC) iff ∀x ∈ scp(c), ∀a ∈ dom(x), there
exists a support of (x , a) on c , i.e., a support τ on c such that τ [x ] = a.

Example.
Let x and y be two variables such that dom(x) = dom(y) = {1, 2}, and
let x = y be a binary constraint.

• the tuple τ = (1, 2) // τ [x ] = 1 ∧ τ [y ] = 2
• is valid
• but not accepted by x = y

• the tuple τ = (3, 3)
• is not valid,
• but accepted by x = y

• the tuple τ = (2, 2)
• is valid
• and accepted by x = y

it represents a support of both (x , 2) and (y , 2) on x = y

8



Arc Consistency (AC)

Definition
A constraint c is arc-consistent (AC) iff ∀x ∈ scp(c), ∀a ∈ dom(x), there
exists a support of (x , a) on c , i.e., a support τ on c such that τ [x ] = a.

Example.
Let x and y be two variables such that dom(x) = dom(y) = {1, 2}, and
let x = y be a binary constraint.

• the tuple τ = (1, 2) // τ [x ] = 1 ∧ τ [y ] = 2
• is valid
• but not accepted by x = y

• the tuple τ = (3, 3)
• is not valid,
• but accepted by x = y

• the tuple τ = (2, 2)
• is valid
• and accepted by x = y

it represents a support of both (x , 2) and (y , 2) on x = y

8



Arc Consistency (AC)

Definition
A constraint c is arc-consistent (AC) iff ∀x ∈ scp(c), ∀a ∈ dom(x), there
exists a support of (x , a) on c , i.e., a support τ on c such that τ [x ] = a.

Example.
Let x and y be two variables such that dom(x) = dom(y) = {1, 2}, and
let x = y be a binary constraint.

• the tuple τ = (1, 2) // τ [x ] = 1 ∧ τ [y ] = 2
• is valid
• but not accepted by x = y

• the tuple τ = (3, 3)
• is not valid,
• but accepted by x = y

• the tuple τ = (2, 2)
• is valid
• and accepted by x = y

it represents a support of both (x , 2) and (y , 2) on x = y

8



Supports

In other words, the supports on a constraint c are those tuples that are
present in the intersection of :

• the set of allowed tuples: rel(c)

• the set of valid tuples: val(c) = Πx∈scp(c)dom(x)

rel(c)

val(c)

Supports of c

⇒ We need to “identify” these supports for filtering

9



Supports

In other words, the supports on a constraint c are those tuples that are
present in the intersection of :

• the set of allowed tuples: rel(c)

• the set of valid tuples: val(c) = Πx∈scp(c)dom(x)

rel(c)

val(c)

Supports of c

⇒ We need to “identify” these supports for filtering

9



Example

0

0

1

2

3

1 2 3 4 5

rel(cxy)

y

x

val(cxy)

Supports of cxy

After AC filtering, we obtain?

10



Example

0

0

1

2

3

1 2 3 4 5

rel(cxy)

y

x

val(cxy)

Supports of cxy

After AC filtering, we obtain?

10



AC Algorithm

Definition
A value (x , a) is arc-inconsistent on a constraint c when there is no
support of (x , a) on c .

Definition
An AC algorithm for a constraint c is an algorithm that removes all
values that are arc-inconsistent on c ; the algorithm is said to
enforce/establish AC on c .

Here is an AC algorithm that can be used in theory with any constraint c .

Algorithm 1: filterAC(c : Constraint)

for each variable x ∈ scp(c) do
for each value a ∈ dom(x) do

if ¬ seekSupport(c , x , a) // function to be implemented

then
remove a from dom(x)

11



AC Algorithm

Definition
A value (x , a) is arc-inconsistent on a constraint c when there is no
support of (x , a) on c .

Definition
An AC algorithm for a constraint c is an algorithm that removes all
values that are arc-inconsistent on c ; the algorithm is said to
enforce/establish AC on c .

Here is an AC algorithm that can be used in theory with any constraint c .

Algorithm 2: filterAC(c : Constraint)

for each variable x ∈ scp(c) do
for each value a ∈ dom(x) do

if ¬ seekSupport(c , x , a) // function to be implemented

then
remove a from dom(x)

11



AC Algorithm

Definition
A value (x , a) is arc-inconsistent on a constraint c when there is no
support of (x , a) on c .

Definition
An AC algorithm for a constraint c is an algorithm that removes all
values that are arc-inconsistent on c ; the algorithm is said to
enforce/establish AC on c .

Here is an AC algorithm that can be used in theory with any constraint c .

Algorithm 3: filterAC(c : Constraint)

for each variable x ∈ scp(c) do
for each value a ∈ dom(x) do

if ¬ seekSupport(c , x , a) // function to be implemented

then
remove a from dom(x)

11



AC Filtering for allDifferent

Proposition
A constraint allDifferent(X ) is AC iff ∀X ′ ⊆ X ,

|dom(X ′)| = |X ′| ⇒ ∀x ∈ X \ X ′, dom(x) = dom(x) \ dom(X ′)

where dom(X ′) = ∪x′∈X ′dom(x ′)

Remark.
A subset X ′ of variables such that |dom(X ′)| = |X ′| is called a Hall set.

Example.
The set of variables {x , y , z} such that:

• dom(x) = {a, b},
• dom(y) = {a, c}
• and dom(z) = {b, c}

is a Hall set (of size 3).

12



AC Filtering for allDifferent

Proposition
A constraint allDifferent(X ) is AC iff ∀X ′ ⊆ X ,

|dom(X ′)| = |X ′| ⇒ ∀x ∈ X \ X ′, dom(x) = dom(x) \ dom(X ′)

where dom(X ′) = ∪x′∈X ′dom(x ′)

Remark.
A subset X ′ of variables such that |dom(X ′)| = |X ′| is called a Hall set.

Example.
The set of variables {x , y , z} such that:

• dom(x) = {a, b},
• dom(y) = {a, c}
• and dom(z) = {b, c}

is a Hall set (of size 3).

12



AC Filtering for allDifferent

Proposition
A constraint allDifferent(X ) is AC iff ∀X ′ ⊆ X ,

|dom(X ′)| = |X ′| ⇒ ∀x ∈ X \ X ′, dom(x) = dom(x) \ dom(X ′)

where dom(X ′) = ∪x′∈X ′dom(x ′)

Remark.
A subset X ′ of variables such that |dom(X ′)| = |X ′| is called a Hall set.

Example.
The set of variables {x , y , z} such that:

• dom(x) = {a, b},
• dom(y) = {a, c}
• and dom(z) = {b, c}

is a Hall set (of size 3).

12



AC Filtering for allDifferent

Example.
For a Sudoku block, a constraint allDifferent(w , x , y , z) :

3

41

8

6
w

x y

z

dom(w) = {2, 5, 7, 9}

dom(z) = {2, 5, 7, 9}
dom(y) = {2, 5, 7, 9}

dom(x) = {2, 5, 7, 9}

Can we filter?

13



AC Filtering for allDifferent

Example.
For a Sudoku block, a constraint allDifferent(w , x , y , z) :

3

41

8

6
w

x y

z

dom(w) = {2, 5, 7, 9}

dom(z) = {2, 5, 7, 9}
dom(y) = {2, 5, 7, 9}

dom(x) = {2, 5, 7, 9}

Can we filter?

13



Identification of Hall sets

The same constraint as previously, but variables have different domains.

Example.
For a Sudoku block, a constraint allDifferent(w , x , y , z) :

3

41

8

6
w

x y

z

dom(w) = {2, 5, 7}

dom(z) = {2, 5, 7, 9}
dom(y) = {2, 5}

dom(x) = {2, 5}

3

41

8

6
w

x y

z

dom(w) = {2, 5, 7}

dom(z) = {2, 5, 7, 9}

dom(x) = {2, 5}

dom(y) = {2, 5}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {7, 9}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {7, 9}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {9}

14



Identification of Hall sets

The same constraint as previously, but variables have different domains.

Example.
For a Sudoku block, a constraint allDifferent(w , x , y , z) :

3

41

8

6
w

x y

z

dom(w) = {2, 5, 7}

dom(z) = {2, 5, 7, 9}
dom(y) = {2, 5}

dom(x) = {2, 5}

3

41

8

6
w

x y

z

dom(w) = {2, 5, 7}

dom(z) = {2, 5, 7, 9}

dom(x) = {2, 5}

dom(y) = {2, 5}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {7, 9}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {7, 9}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {9}

14



Identification of Hall sets

The same constraint as previously, but variables have different domains.

Example.
For a Sudoku block, a constraint allDifferent(w , x , y , z) :

3

41

8

6
w

x y

z

dom(w) = {2, 5, 7}

dom(z) = {2, 5, 7, 9}
dom(y) = {2, 5}

dom(x) = {2, 5}
3

41

8

6
w

x y

z

dom(w) = {2, 5, 7}

dom(z) = {2, 5, 7, 9}

dom(x) = {2, 5}

dom(y) = {2, 5}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {7, 9}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {7, 9}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {9}

14



Identification of Hall sets

The same constraint as previously, but variables have different domains.

Example.
For a Sudoku block, a constraint allDifferent(w , x , y , z) :

3

41

8

6
w

x y

z

dom(w) = {2, 5, 7}

dom(z) = {2, 5, 7, 9}
dom(y) = {2, 5}

dom(x) = {2, 5}
3

41

8

6
w

x y

z

dom(w) = {2, 5, 7}

dom(z) = {2, 5, 7, 9}

dom(x) = {2, 5}

dom(y) = {2, 5}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {7, 9}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {7, 9}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {9}

14



Identification of Hall sets

The same constraint as previously, but variables have different domains.

Example.
For a Sudoku block, a constraint allDifferent(w , x , y , z) :

3

41

8

6
w

x y

z

dom(w) = {2, 5, 7}

dom(z) = {2, 5, 7, 9}
dom(y) = {2, 5}

dom(x) = {2, 5}
3

41

8

6
w

x y

z

dom(w) = {2, 5, 7}

dom(z) = {2, 5, 7, 9}

dom(x) = {2, 5}

dom(y) = {2, 5}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {7, 9}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {7, 9}

3

41

8

6
w

x y

z

dom(x) = {2, 5}

dom(y) = {2, 5}

dom(w) = {7}

dom(z) = {9}

14



AC Filtering for cardinality

Definition
A constraint cardinality(X ,V , L,U) forces the variables in X to take
their values in V with the restriction that each value vi in V is assigned
at least L(vi ) times and at most U(vi ) times.

Example.
Three sets:

• Agents = {Peter ,Paul ,Mary , John,Bob,Mike, Julia}
• Days = {Monday ,Tuesday , ...,Sunday}
• Activities = {M(orning),D(ay),N(ight),B(ackup),O(ff )}.
• We want a roster that looks like:

Mo Tu We Th Fr Sa Su
Peter D N N N O O O
Paul O O D D M M B
Mary M M D D O O N
...

15



AC Filtering for cardinality

Definition
A constraint cardinality(X ,V , L,U) forces the variables in X to take
their values in V with the restriction that each value vi in V is assigned
at least L(vi ) times and at most U(vi ) times.

Example.
Three sets:

• Agents = {Peter ,Paul ,Mary , John,Bob,Mike, Julia}
• Days = {Monday ,Tuesday , ...,Sunday}
• Activities = {M(orning),D(ay),N(ight),B(ackup),O(ff )}.
• We want a roster that looks like:

Mo Tu We Th Fr Sa Su
Peter D N N N O O O
Paul O O D D M M B
Mary M M D D O O N
...

15



AC Filtering for cardinality

Example.
For simplicity, we only reason here on Monday. Our variables X represent
the agents, and we have ∀x ∈ X , dom(x) = {M,D,N,B,O}.
The constraint cardinality(X ,{M,D,N,B,O},L,U) is such that:

• L = {1, 1, 1, 0, 0}
• U = {2, 2, 1, 2, 2}.

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

16



AC Filtering for cardinality

Example.
For simplicity, we only reason here on Monday. Our variables X represent
the agents, and we have ∀x ∈ X , dom(x) = {M,D,N,B,O}.
The constraint cardinality(X ,{M,D,N,B,O},L,U) is such that:

• L = {1, 1, 1, 0, 0}
• U = {2, 2, 1, 2, 2}.

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

16



AC Filtering for cardinality

Example.
For simplicity, we only reason here on Monday. Our variables X represent
the agents, and we have ∀x ∈ X , dom(x) = {M,D,N,B,O}.
The constraint cardinality(X ,{M,D,N,B,O},L,U) is such that:

• L = {1, 1, 1, 0, 0}
• U = {2, 2, 1, 2, 2}.

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

16



AC Filtering for cardinality

Example.
For simplicity, we only reason here on Monday. Our variables X represent
the agents, and we have ∀x ∈ X , dom(x) = {M,D,N,B,O}.
The constraint cardinality(X ,{M,D,N,B,O},L,U) is such that:

• L = {1, 1, 1, 0, 0}
• U = {2, 2, 1, 2, 2}.

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

16



AC Filtering for cardinality

Example.
For simplicity, we only reason here on Monday. Our variables X represent
the agents, and we have ∀x ∈ X , dom(x) = {M,D,N,B,O}.
The constraint cardinality(X ,{M,D,N,B,O},L,U) is such that:

• L = {1, 1, 1, 0, 0}
• U = {2, 2, 1, 2, 2}.

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

Peter

Paul

Mary

John

Bob

Mike

Julia

M(1,2)

D(1,2)

N(1,1)

B(0,2)

O(0,2)

16



AC Filtering for sum :
∑r

i=1 cixi ≥ L

Domains of variables
w , x , y and z

dom

w x y z
1 1 2 2
2 2 3 3
3 3 4 4

Constraint cwxyz : w + 2x + 4y + 5z ≥ 42

Domains of variables
w , x , y et z
after AC filtering of cwxyz

dom

w x y z
1 1 2 2
2 2 3 3
3 3 4 4

Complexity?

17



AC Filtering for sum :
∑r

i=1 cixi ≥ L

Domains of variables
w , x , y and z

dom

w x y z
1 1 2 2
2 2 3 3
3 3 4 4

Constraint cwxyz : w + 2x + 4y + 5z ≥ 42

Domains of variables
w , x , y et z
after AC filtering of cwxyz

dom

w x y z
1 1 2 2
2 2 3 3
3 3 4 4

Complexity?

17



AC Filtering for sum :
∑r

i=1 cixi ≥ L

Domains of variables
w , x , y and z

dom

w x y z
1 1 2 2
2 2 3 3
3 3 4 4

Constraint cwxyz : w + 2x + 4y + 5z ≥ 42

Domains of variables
w , x , y et z
after AC filtering of cwxyz

dom

w x y z
1 1 2 2
2 2 3 3
3 3 4 4

Complexity?

17



AC Filtering for sum :
∑r

i=1 cixi ≥ L

Domains of variables
w , x , y and z

dom

w x y z
1 1 2 2
2 2 3 3
3 3 4 4

Constraint cwxyz : w + 2x + 4y + 5z ≥ 42

Domains of variables
w , x , y et z
after AC filtering of cwxyz

dom

w x y z
1 1 2 2
2 2 3 3
3 3 4 4

Complexity?

17



AC Filtering for sum :
∑r

i=1 cixi 6= L

Domains of variables
w , x , y and z

dom

w x y z
1 1 1 1

2 2

Constraint cwxyz : w + x + y + z 6= 5

Domains of variables
w , x , y and z
after AC filtering of cwxyz

dom

w x y z
1 1 1 1

2 2

18



AC Filtering for sum :
∑r

i=1 cixi 6= L

Domains of variables
w , x , y and z

dom

w x y z
1 1 1 1

2 2

Constraint cwxyz : w + x + y + z 6= 5

Domains of variables
w , x , y and z
after AC filtering of cwxyz

dom

w x y z
1 1 1 1

2 2

18



AC Filtering for sum :
∑r

i=1 cixi 6= L

Domains of variables
w , x , y and z

dom

w x y z
1 1 1 1

2 2

Constraint cwxyz : w + x + y + z 6= 5

Domains of variables
w , x , y and z
after AC filtering of cwxyz

dom

w x y z
1 1 1 1

2 2

18



AC Filtering for sum :
∑r

i=1 cixi 6= L

Domains of variables
w , x , y and z

dom

w x y z
1 1 1 1

2

Constraint cwxyz : w + x + y + z 6= 5

Domains of variables
w , x , y and z
after AC filtering of cwxyz

dom

w x y z
1 1 1 1

2

Complexity?

19



AC Filtering for sum :
∑r

i=1 cixi 6= L

Domains of variables
w , x , y and z

dom

w x y z
1 1 1 1

2

Constraint cwxyz : w + x + y + z 6= 5

Domains of variables
w , x , y and z
after AC filtering of cwxyz

dom

w x y z
1 1 1 1

2

Complexity?

19



AC Filtering for sum :
∑r

i=1 cixi 6= L

Domains of variables
w , x , y and z

dom

w x y z
1 1 1 1

2

Constraint cwxyz : w + x + y + z 6= 5

Domains of variables
w , x , y and z
after AC filtering of cwxyz

dom

w x y z
1 1 1 1

2

Complexity?

19



AC Filtering for sum :
∑r

i=1 cixi 6= L

Domains of variables
w , x , y and z

dom

w x y z
1 1 1 1

2

Constraint cwxyz : w + x + y + z 6= 5

Domains of variables
w , x , y and z
after AC filtering of cwxyz

dom

w x y z
1 1 1 1

2

Complexity?

19



AC Filtering for sum : U ≥∑r
i=1 cixi ≥ L

Domains of variables
w , x , y and z

dom

w x y z
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

Constraint cwxyz : 82 ≥ 27w + 37x + 45y + 53z ≥ 80

Domains of variables
w , x , y and z
after AC filtering of cwxyz

dom

w x y z
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

20



AC Filtering for sum : U ≥∑r
i=1 cixi ≥ L

Domains of variables
w , x , y and z

dom

w x y z
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

Constraint cwxyz : 82 ≥ 27w + 37x + 45y + 53z ≥ 80

Domains of variables
w , x , y and z
after AC filtering of cwxyz

dom

w x y z
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

20



AC Filtering for sum : U ≥∑r
i=1 cixi ≥ L

Domains of variables
w , x , y and z

dom

w x y z
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

Constraint cwxyz : 82 ≥ 27w + 37x + 45y + 53z ≥ 80

Domains of variables
w , x , y and z
after AC filtering of cwxyz

dom

w x y z
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

20



AC Filtering for sum : U ≥∑r
i=1 cixi ≥ L

Possibility of using dynamic programming:

• construction of a graph (Knapsack)

• reduction of the graph

• use of a constraint mdd from the reduced graph

Warning.
Pseudo-polynomial Complexity O(rU2)

Example.
Illustration of this approach with:

• the constraint 12 ≥ 2x1 + 3x2 + 4x3 + 5x4 ≥ 10

• where the domain of each variable is {0, 1}.

21



AC Filtering for sum : U ≥∑r
i=1 cixi ≥ L

Possibility of using dynamic programming:

• construction of a graph (Knapsack)

• reduction of the graph

• use of a constraint mdd from the reduced graph

Warning.
Pseudo-polynomial Complexity O(rU2)

Example.
Illustration of this approach with:

• the constraint 12 ≥ 2x1 + 3x2 + 4x3 + 5x4 ≥ 10

• where the domain of each variable is {0, 1}.

21



AC Filtering for sum : U ≥∑r
i=1 cixi ≥ L

Possibility of using dynamic programming:

• construction of a graph (Knapsack)

• reduction of the graph

• use of a constraint mdd from the reduced graph

Warning.
Pseudo-polynomial Complexity O(rU2)

Example.
Illustration of this approach with:

• the constraint 12 ≥ 2x1 + 3x2 + 4x3 + 5x4 ≥ 10

• where the domain of each variable is {0, 1}.

21



Example

Knapsack
Graph

0 1 2 3 4i

0

1

2

3

4

5

6

7

8

9

10

11

12

b

2 3 4 5ci

0 1 2 3 4i

0

1

2

3

4

5

6

7

8

9

10

11

12

b

5ci

Reduced
Knapsack
Graph

22



AC Filtering for or (meta-constraint)

Constructive Disjunction
Enforcing AC on a meta-constraint or(c1,c2) can be achieved by
constructive disjunction: for each variable x , dom(x) is the union of the
domains of x obtained after AC filtering on c1 and AC filtering on c2.

Example.
Let x be a variable such that dom(x) = {1, 2, 3} and the meta-constraint
or(x = 1,x = 2).

AC on x = 1 yields dom1(x) = {1}
AC on x = 2 yields dom2(x) = {2}

AC on or(x = 1,x = 2) reduces dom(x) to dom1(x) ∪ dom2(x) = {1, 2}

23



AC Filtering for or (meta-constraint)

Constructive Disjunction
Enforcing AC on a meta-constraint or(c1,c2) can be achieved by
constructive disjunction: for each variable x , dom(x) is the union of the
domains of x obtained after AC filtering on c1 and AC filtering on c2.

Example.
Let x be a variable such that dom(x) = {1, 2, 3} and the meta-constraint
or(x = 1,x = 2).

AC on x = 1 yields dom1(x) = {1}
AC on x = 2 yields dom2(x) = {2}

AC on or(x = 1,x = 2) reduces dom(x) to dom1(x) ∪ dom2(x) = {1, 2}

23



AC Filtering for and (meta-constraint)

Proposition
AC on the conjunction and(c1,c2) is with respect to AC enforced
independently on c1 and c2:

• generally stronger,

• equivalent when |scp(c1) ∩ scp(c2)| ≤ 1

Example
Let x and y two variables such that dom(x) = dom(y) = {1, 2, 3} and
the meta-constraint and(x 6= y ,x ≤ y).

• AC on x 6= y as well as AC on x ≤ y have no effect

• AC on and(x 6= y ,x ≤ y) permits to have:
• dom(x) reduced to {1, 2}
• dom(y) reduced to {2, 3}

24



AC Filtering for and (meta-constraint)

Proposition
AC on the conjunction and(c1,c2) is with respect to AC enforced
independently on c1 and c2:

• generally stronger,

• equivalent when |scp(c1) ∩ scp(c2)| ≤ 1

Example
Let x and y two variables such that dom(x) = dom(y) = {1, 2, 3} and
the meta-constraint and(x 6= y ,x ≤ y).

• AC on x 6= y as well as AC on x ≤ y have no effect

• AC on and(x 6= y ,x ≤ y) permits to have:
• dom(x) reduced to {1, 2}
• dom(y) reduced to {2, 3}

24



Outline

1 Filtering Domains with Constraints

2 Principle of Constraint Propagation

25



Constraint Propagation

Definition
A constraint network P is AC iff each constraint of P is AC.

Definition
Computing the AC-closure of a constraint network P is the fact of
removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute
the AC-closure?

NO because when some values are filtered out by a constraint, this can
give new opportunities to other constraints to filter again.

The process that involves executing filtering operations, by solliciting
constraints in turn, until a fixed point is reached is called constraint
propagation.

26



Constraint Propagation

Definition
A constraint network P is AC iff each constraint of P is AC.

Definition
Computing the AC-closure of a constraint network P is the fact of
removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute
the AC-closure?

NO because when some values are filtered out by a constraint, this can
give new opportunities to other constraints to filter again.

The process that involves executing filtering operations, by solliciting
constraints in turn, until a fixed point is reached is called constraint
propagation.

26



Constraint Propagation

Definition
A constraint network P is AC iff each constraint of P is AC.

Definition
Computing the AC-closure of a constraint network P is the fact of
removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute
the AC-closure?

NO because when some values are filtered out by a constraint, this can
give new opportunities to other constraints to filter again.

The process that involves executing filtering operations, by solliciting
constraints in turn, until a fixed point is reached is called constraint
propagation.

26



Constraint Propagation

Definition
A constraint network P is AC iff each constraint of P is AC.

Definition
Computing the AC-closure of a constraint network P is the fact of
removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute
the AC-closure?

NO because when some values are filtered out by a constraint, this can
give new opportunities to other constraints to filter again.

The process that involves executing filtering operations, by solliciting
constraints in turn, until a fixed point is reached is called constraint
propagation.

26



Constraint Propagation

Definition
A constraint network P is AC iff each constraint of P is AC.

Definition
Computing the AC-closure of a constraint network P is the fact of
removing all arc-inconsistent of P (when considering any constraint of P).

May we sollicit each constraint once (for filtering) in order to compute
the AC-closure?

NO because when some values are filtered out by a constraint, this can
give new opportunities to other constraints to filter again.

The process that involves executing filtering operations, by solliciting
constraints in turn, until a fixed point is reached is called constraint
propagation.

26



Constraint Propagation Algorithm

Algorithm 4: constraintPropagationOn(P: CN): Boolean

Q ← ctrs(P)
while Q 6= ∅ do

pick and delete c from Q
Xevt ← c .filter() // Xevt denotes the set of variables with

reduced domains (after filtering by means of c)
if ∃x ∈ Xevt such that dom(x) = ∅ then

return false // global inconsistency detected

foreach c ′ ∈ ctrs(P) such that c ′ 6= c and Xevt ∩ scp(c ′) 6= ∅ do
add c ′ to Q

return true

Remark.
If each call c .filter() enforces AC on c , then the algorithm computes the
AC-closure of P.

27



Constraint Propagation Algorithm

Algorithm 5: constraintPropagationOn(P: CN): Boolean

Q ← ctrs(P)
while Q 6= ∅ do

pick and delete c from Q
Xevt ← c .filter() // Xevt denotes the set of variables with

reduced domains (after filtering by means of c)
if ∃x ∈ Xevt such that dom(x) = ∅ then

return false // global inconsistency detected

foreach c ′ ∈ ctrs(P) such that c ′ 6= c and Xevt ∩ scp(c ′) 6= ∅ do
add c ′ to Q

return true

Remark.
If each call c .filter() enforces AC on c , then the algorithm computes the
AC-closure of P.

27



Domino Problem

The instance domino-6 is represented by the following CN P:

• vars(P) = {
x0 with dom(x0) = {0, 1, 2, 3, 4, 5},
x1 with dom(x1) = {0, 1, 2, 3, 4, 5},
x2 with dom(x2) = {0, 1, 2, 3, 4, 5},
x3 with dom(x3) = {0, 1, 2, 3, 4, 5},
x4 with dom(x4) = {0, 1, 2, 3, 4, 5},
x5 with dom(x5) = {0, 1, 2, 3, 4, 5}

}
• ctrs(P) = {

x0 = x1,
x1 = x2,
x2 = x3,
x3 = x4,
x4 = x5,
(x0 = x5 + 1 ∧ x0 < 5) ∨ (x0 = x5 ∧ x0 = 5)

}

28



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on domino-6

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

x5

x4x3x2x1

x0

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

29



Constraint Propagation on queens-4

For the 4-queens instance, we have:

• vars(P) = {
xa with dom(xa) = {1, 2, 3, 4},
xb with dom(xb) = {1, 2, 3, 4},
xc with dom(xc) = {1, 2, 3, 4},
xd with dom(xd) = {1, 2, 3, 4}

}
• ctrs(P) = {

xa 6= xb ∧ |xa − xb| 6= 1,
xa 6= xc ∧ |xa − xc | 6= 2,
xa 6= xd ∧ |xa − xd | 6= 3,
xb 6= xc ∧ |xb − xc | 6= 1,
xb 6= xd ∧ |xb − xd | 6= 2,
xc 6= xd ∧ |xc − xd | 6= 1

}

Exercice
After taking the decision xa = 1,
what is the AC-closure of P?

1

2

3

4

ba c d

30



Constraint Propagation on queens-4

For the 4-queens instance, we have:

• vars(P) = {
xa with dom(xa) = {1, 2, 3, 4},
xb with dom(xb) = {1, 2, 3, 4},
xc with dom(xc) = {1, 2, 3, 4},
xd with dom(xd) = {1, 2, 3, 4}

}
• ctrs(P) = {

xa 6= xb ∧ |xa − xb| 6= 1,
xa 6= xc ∧ |xa − xc | 6= 2,
xa 6= xd ∧ |xa − xd | 6= 3,
xb 6= xc ∧ |xb − xc | 6= 1,
xb 6= xd ∧ |xb − xd | 6= 2,
xc 6= xd ∧ |xc − xd | 6= 1

}

Exercice
After taking the decision xa = 1,
the AC-closure of P is:

1

2

3

4

ba 
 d

30



Exercice
Let P be the following CN:

• vars(P) = {
x1 with dom(x1) = {1, 2, 3},
x2 with dom(x2) = {1, 2, 3},
x3 with dom(x3) = {1, 2, 3},
x4 with dom(x4) = {1, 2, 3}

}
• ctrs(P) = {

x1 6= x2,
x2 + x3 ≤ x1,
x2 + x4 ≥ 2 ∗ x1,

}

Simulate the process of constraint propagation on P (that is to say,
compute the AC-closure of P).

31


	Filtering Domains with Constraints
	Principle of Constraint Propagation

