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Constraint Optimization

For Constraint Optimization Problems (COPs), solvers must find a
complete instantiation of the variables such that:

• all constraints are satisfied

• the objective function is optimized

Important: It is not possible to stop at the first found solution

Two related approaches:

• Branch and Bound

• Iterative Optimization
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Branch and Bound

For an objective function f represented by an arithmetic expression, at
each new solution S , add a constraint:

• f < f (S), for minimization

• f > f (S), for maximization

Stop when no more solutions

Remark.
A proof of optimality can be obtained from the last found solution.
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Iterative Optimization

For minimization:

1 compute a lower bound lb of the objective function f

2 add a constraint f = lb to the problem instance, which then
becomes a CSP instance

3 solve the CSP instance
• if a solution is found, it is optimal
• if no solution is found, increase lb and restart

At the end of the process, an optimal solution is obtained.

Remark.
We proceed similarly for maximization.
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Illustration of Iterative Optimization

Suppose that the optimal value of the objective function is 10 and that
we initially compute a lower-bound lb = 5.

CSP Search, with the constraint f = 5 7
CSP Search, with the constraint f = 6 7
CSP Search, with the constraint f = 7 7
CSP Search, with the constraint f = 8 7
CSP Search, with the constraint f = 9 7
CSP Search, with the constraint f = 10 3

7



Illustration of Iterative Optimization

Suppose that the optimal value of the objective function is 10 and that
we initially compute a lower-bound lb = 5.

CSP Search, with the constraint f = 5 7
CSP Search, with the constraint f = 6 7
CSP Search, with the constraint f = 7 7
CSP Search, with the constraint f = 8 7
CSP Search, with the constraint f = 9 7
CSP Search, with the constraint f = 10 3

7



Illustration of Iterative Optimization

Suppose that the optimal value of the objective function is 10 and that
we initially compute a lower-bound lb = 5.

CSP Search, with the constraint f = 5 7
CSP Search, with the constraint f = 6 7
CSP Search, with the constraint f = 7 7
CSP Search, with the constraint f = 8 7
CSP Search, with the constraint f = 9 7
CSP Search, with the constraint f = 10 3

7



Illustration of Iterative Optimization

Suppose that the optimal value of the objective function is 10 and that
we initially compute a lower-bound lb = 5.

CSP Search, with the constraint f = 5 7
CSP Search, with the constraint f = 6 7
CSP Search, with the constraint f = 7 7
CSP Search, with the constraint f = 8 7
CSP Search, with the constraint f = 9 7
CSP Search, with the constraint f = 10 3

7



Illustration of Iterative Optimization

Suppose that the optimal value of the objective function is 10 and that
we initially compute a lower-bound lb = 5.

CSP Search, with the constraint f = 5 7
CSP Search, with the constraint f = 6 7
CSP Search, with the constraint f = 7 7
CSP Search, with the constraint f = 8 7
CSP Search, with the constraint f = 9 7
CSP Search, with the constraint f = 10 3

7



Illustration of Iterative Optimization

Suppose that the optimal value of the objective function is 10 and that
we initially compute a lower-bound lb = 5.

CSP Search, with the constraint f = 5 7
CSP Search, with the constraint f = 6 7
CSP Search, with the constraint f = 7 7
CSP Search, with the constraint f = 8 7
CSP Search, with the constraint f = 9 7
CSP Search, with the constraint f = 10 3

7



Illustration of Iterative Optimization

Suppose that the optimal value of the objective function is 10 and that
we initially compute a lower-bound lb = 5.

CSP Search, with the constraint f = 5 7
CSP Search, with the constraint f = 6 7
CSP Search, with the constraint f = 7 7
CSP Search, with the constraint f = 8 7
CSP Search, with the constraint f = 9 7
CSP Search, with the constraint f = 10 3

7



Illustration of Iterative Optimization

Suppose that the optimal value of the objective function is 10 and that
we initially compute a lower-bound lb = 5.

CSP Search, with the constraint f = 5 7
CSP Search, with the constraint f = 6 7
CSP Search, with the constraint f = 7 7
CSP Search, with the constraint f = 8 7
CSP Search, with the constraint f = 9 7
CSP Search, with the constraint f = 10 3

7



Illustration of Iterative Optimization

Suppose that the optimal value of the objective function is 10 and that
we initially compute a lower-bound lb = 5.

CSP Search, with the constraint f = 5 7
CSP Search, with the constraint f = 6 7
CSP Search, with the constraint f = 7 7
CSP Search, with the constraint f = 8 7
CSP Search, with the constraint f = 9 7
CSP Search, with the constraint f = 10 3

7



Illustration of Iterative Optimization

Suppose that the optimal value of the objective function is 10 and that
we initially compute a lower-bound lb = 5.

CSP Search, with the constraint f = 5 7
CSP Search, with the constraint f = 6 7
CSP Search, with the constraint f = 7 7
CSP Search, with the constraint f = 8 7
CSP Search, with the constraint f = 9 7
CSP Search, with the constraint f = 10 3

7



Illustration of Iterative Optimization

Suppose that the optimal value of the objective function is 10 and that
we initially compute a lower-bound lb = 5.

CSP Search, with the constraint f = 5 7
CSP Search, with the constraint f = 6 7
CSP Search, with the constraint f = 7 7
CSP Search, with the constraint f = 8 7
CSP Search, with the constraint f = 9 7
CSP Search, with the constraint f = 10 3

7



Illustration of Iterative Optimization

Suppose that the optimal value of the objective function is 10 and that
we initially compute a lower-bound lb = 5.

CSP Search, with the constraint f = 5 7
CSP Search, with the constraint f = 6 7
CSP Search, with the constraint f = 7 7
CSP Search, with the constraint f = 8 7
CSP Search, with the constraint f = 9 7
CSP Search, with the constraint f = 10 3

7



Illustration of Iterative Optimization

Suppose that the optimal value of the objective function is 10 and that
we initially compute a lower-bound lb = 5.

CSP Search, with the constraint f = 5 7
CSP Search, with the constraint f = 6 7
CSP Search, with the constraint f = 7 7
CSP Search, with the constraint f = 8 7
CSP Search, with the constraint f = 9 7
CSP Search, with the constraint f = 10 3

7



Illustration of Iterative Optimization

Suppose that the optimal value of the objective function is 10 and that
we initially compute a lower-bound lb = 5.

CSP Search, with the constraint f = 5 7
CSP Search, with the constraint f = 6 7
CSP Search, with the constraint f = 7 7
CSP Search, with the constraint f = 8 7
CSP Search, with the constraint f = 9 7
CSP Search, with the constraint f = 10 3

7



Optimization Types

An objective function can be represented by:

• a variable, as for example in:

minimize x

• a general expression, typically based on arithmetic operators, as for
example in:

minimize x*y + z

• a specialized expression indicating what we must compute:
• a sum
• a minimum
• a maximum
• a number of distinct values
• a tuple, compared lexicographically to others
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Specialized Optimization Expressions

They involve:

• a sequence of variables X

• possibly, a sequence of coefficients C

• an operator that can be sum, product, ...

The semantics is:

• minimize(X ,C , sum) : minimize
∑|X |

i=1 ci × xi

• minimize(X ,C ,minimum) : minimize min
|X |
i=1 ci × xi

• minimize(X ,C ,maximum) : minimize max
|X |
i=1 ci × xi

• minimize(X ,C , nValues) : minimize |{ci × xi : 1 ≤ i ≤ |X |}|
• minimize(X ,C , lex) : minimizelex 〈c1 × x1, c2 × x2, . . . , ck × xk〉

Remark.
Of course, coefficients can be ignored when they are all equal to 1.
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Optimization Illustration in PyCSP3

File Rlfap.py

from pycsp3 import *

domains , variables , constraints , _, _ = data
n = len(variables)

# f[i] is the frequency of the ith radio link
f = VarArray(size=n, dom=lambda i: domains[variables[i]. domain ])

satisfy(
# managing pre -assigned frequencies
[f[i] == v for i, (_, v, mob) in enumerate(variables) if v],

# hard constraints on radio -links
[expr(op , abs(f[i] - f[j]), k) for (i, j, op, k, _) in constraints]

)

if variant("span"):
minimize(

# minimizing the largest frequency
Maximum(f)

)
elif variant("card"):

minimize(
# minimizing the number of used frequencies
NValues(f)

)
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How to implement Branch and Bound?

If the objective is a variable x , then post a constraint x < k.

If the objective is given by a specialized expression, post one of the
following constraints:

• sum

• minimum

• maximum

• nValues

• lex

integrating a condition (�, k), which is (<, k).

Remark.

• k is initially an upper bound of the optimum (possibly, +∞)

• k is modified every time a new solution is found
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Optimization Strategies

Minimization being assumed, Branch and Bound and Iterative
optimization, correspond to two different stategies for guiding
optimization search:

• decreasingly with Branch and Bound, as k is continually reduced

• increasingly with Iterative Optimization, as k is continually
augmented

Why not using a dichotomic process? At any moment, we must know

• the best objective value b that has been obtained so far

• the interval of bounds I = lb..ub where to search.

Then, as long as I is not empty, we run search in lb..(ub − lb)/2:

• if a solution of cost b′ is found, b is updated (with value b′) and I
becomes lb..b′ − 1

• if no solution is found, I becomes (ul − lb)/2 + 1..ub
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Illustration of a Dichotomic Search

Initially, we have b = ⊥ (no solution found) and I = 0..100.

Search in 0..50 7 ⇒ I = 51..100
Search in 51..75 3 b = 72 ⇒ I = 51..71
Search in 51..60 7 ⇒ I = 61..71
Search in 61..65 3 b = 65 ⇒ I = 61..64
Search in 61..62 7 ⇒ I = 63..64
Search in 63..63 7 ⇒ I = 64..64
Search in 64..64 7 ⇒ I = ∅

Optimum proved at 65
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Outline

1 Complete Approaches for Optimization

2 Complete vs Incomplete Approaches

3 Large Neighborhood Search
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Exploration of the Search Tree

The search tree may look like:

with a few solutions represented by green circles here.
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Diversification?
When the problem is too hard to be solved to optimality:

• the search is stopped after a time/backtrack limit

• and the best found solution may not be optimal

Importantly,

• branch and bound usually does not show good diversification

• can even fail to find a single solution
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Iterative Optimization

Iterative Optimization is not adapted at all at solving hard problems.

• the search is only conducted for proving optimality

• consequently, if the search space is too large, iterative optimization
does not find any solution

Remark.
Dichotomic variants may suffer from the same behaviour.
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What to do when a problem is too hard?

On hard problems, should we use complete or incomplete methods?

Complete methods suffer from extensive solving time:

• completeness is a great asset

• but sometimes it is too costly

Incomplete methods can always be controlled:

• they usually find good solutions quickly

• but solutions may not be optimal

• or not known to be (no proof of optimality)
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Constraint-based Local Search

Constraint Programming:

• modeling based on constraints

• constructive approach

• complete search

• solving model: branch and propagate

⇒ finds optimal solutions (but can take too much time)

Constraint-based Local Search:

• modeling based on constraints

• perturbative approach

• incomplete search

• solving model: neighborhoods

⇒ finds good solutions (quickly)
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Local Search

Local Search (LS) proceeds as follows:

• LS handles one complete instantiation:
• called current “solution”
• which is is not optimal or not known to be

• LS iteratively improves the solution:
• by defining the neighborhood of the current solution
• by selecting one of the neighbors
• by accepting it (or not) as the new current solution

• LS searches new solutions close to the current one, hence the name
local search

20



Constraint-based Local Search

Constraint-based Local Search (CBLS) uses the same principle as LS, but
focuses on constraints:

• some hard constraints cannot be violated (in the current solution)

• some soft constraints can be violated

As LS, CBLS tries to iteratively improve the current solution. But it
benefits from:

• information: the way soft constraints are violated

• reduction: propagation on hard constraints and objective function

21



Example

Problem: assign to each node of the following graph a number from 1 to
8 such that:

• each number appears only once

• no two adjacent nodes have consecutive numbers

? ? ? ?

? ?

? ?

CBLS model:

• hard constraint: each number appears only once

• soft constraint(s): no two adjacent nodes have consecutive numbers

• objective: to minimize violations of soft-constraint(s)
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Example

Assume that the initial solution is:

1 7 6 5

4 8

3 2

Note the violation cost: 4, as the number of violated binary constraints

What about the possibles moves?

• neighborhood: defined by swapping the values of two nodes,

• which guarantees that the hard constraint allDifferent remains
satisfied.
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Neighborhood

1 7 6 5

4 8

3 2

7 1 6 5

4 8

3 2

6 7 1 5

4 8

3 2 ...

24



Neighborhood

For each neighbor, we can compute its violation cost:

7 1 6 5

4 8

3 2 ⇒ violation=3

6 7 1 5

4 8

3 2 ⇒ violation=4

. . .
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Local Search and Local Optima

In optimization: global optima are searched for.

Local search may lead to local optima.

• this is due to the local nature of LS

• sophisticated techniques can be used to escape local optima:
• tabu search
• simulated annealing
• . . .
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Hybrization of complete and incomplete methods

Assets of CP

• CP is complete

• CP can intensify efficiently (propagate information)

Assets of LS

• LS is efficient at finding good solutions quickly

• LS can diversify efficiently

Why not having both?
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Hybrization of CP and LS

Strength of CP

Speed of LS

28



Types of Hybrization

Sequential (one time) cooperation:

• CP then LS

CP solutions LS

• CP computes an initial solution, respecting hard-constraints
• LS starts with this solution

• LS then CP

LS solutions CP

• LS computes an initial solution
• CP starts with this solution (or its bound) to prove optimality

Parallel cooperation (CP and LS in parallel)

LS
solutions

solutions

CP

29



Types of Hybrization

Master-Slave cooperation:

• Master CP, slave LS (Integrated LS within a CP search)

CP

LS

• LS improves solutions found by CP:
• LS run after each solution found to return improved bounds
• CP remembers the best solution found

• Master LS, slave CP (Integrated CP inside a LS search)

LS

CP

• CP used to define and explore neighborhoods
• Importance of Neighborhood size

• Large neighborhoods: small path to optimum but costly to explore
• Small neighborhood: long path to optimum but cheap to explore

30



Outline

1 Complete Approaches for Optimization

2 Complete vs Incomplete Approaches

3 Large Neighborhood Search
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Poor Diversification

Weaknesses of CP for hard COPs:

• very poor diversification

• you will never have a chance to reach the right part of the tree.
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Principle of LNS

If stuck too long, jump in the search space.
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Principle of LNS

LNS has always a current solution
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Principle of LNS

When jumping, a subset of variables is selected (the fragment)
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Principle of LNS

Only values in the fragment are allowed to be changed
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Principle of LNS

This process is repeated until the time limit is reached
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Principle of LNS

At each step of LNS:

• A portion of the variables is selected (called the fragment)

• Those variables are relaxed to their initial domain

• The others are frozen to their value in the current solution

• Improving solutions are searched with a limited CP search

Each time a solution is found: a new bound on the objective is added
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Advantages of LNS

Advantages of Large Neighborhood Search:

• good diversification if fragments are well chosen

• intensification done by CP search

• neighborhoods large enough: no metaheuristic needed to avoid local
optima

• no need to design complex feasible neighborhoods: CP is in charge
of feasibility

• scalability of LS

• efficient exploration of neighborhoods with CP: propagation and
heuristics
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No Free Lunch!

LNS is a very powerful optimization technique but

LNS is efficient if its parameters are well defined.
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Parameters of LNS

The parameters of LNS are:

• the fragment selection heuristic: which variables do I relax ?

• the fragment size: how many variables do I relax ?

• the neighborhood exploration limit: how long (in term of time or
backtracks) do I spend exploring the neighborhood ?

Exploration limit and fragment size:

• strongly linked parameters

• the fragment size determines the neighborhood size

• the exploration limit determines the maximal effort to explore the
neighborhood
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Designing a LNS Search

Rule of thumb: a good LNS should never be stopped only by the
exploration limit.

If

• too many variables are relaxed or the exploration limit is too small

Then

• neighborhoods are too sparsely explored

And consequently

• LNS might discard promising neighborhood

• LNS might miss improving solutions
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Fragment Selection

Fragment selection:

• can be random

• can be specific to a problem

• can be generic (while not random)

A good fragment should contain:

• important variables, which more likely allows improving the objective

• related variables, which more likely allows variables to be assigned
differently
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Random Fragment Selection

Random selection is surprisingly good:

• totally generic

• excellent diversification

• intensification from the CP search
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Solution Saving

Recently, a very simple method, closely related to LNS, has been shown
to be quite effective.

During backtrack search, Solution(-based phase) Saving selects in priority
the value in the last found solution.
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