Architecture des ordinateurs (X311050)

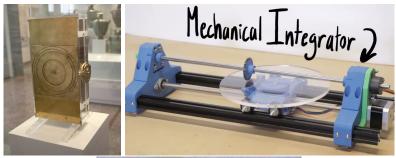
Frédéric Goualard

Laboratoire d'Informatique de Nantes-Atlantique, UMR CNRS 6241 Bureau 112, bât. 11

Frederic. Goualard @univ-nantes. fr

Représentation de l'information

S2NOrdinateur numérique vs. analogique (1/2)



Ordinateur numérique vs. analogique (2/2)

Ordinateur analogique :

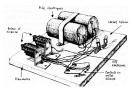
Transformation d'un problème en un autre analogue (exemple : addition de nombres → addition de résistances) résolvable directement et physiquement sur des valeurs continues

Ordinateur numérique :

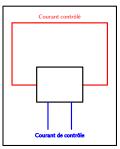
► Transformation d'un problème en une suite d'instructions sans analogie sur des *valeurs discrètes* puis exécution du code

2NOrdi. numérique : représentation des informations

George Boole, Algèbre booléenne, 1847 George Stibitz, model K 1937 (« kitchen ») : Claude Shannon, 1937 John V. Atanasoff, 1937–1942 (ABC)



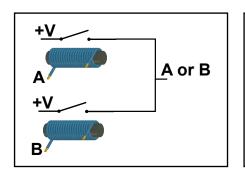
Tube thermionique "lampe à vide" (De Forest, 1907)

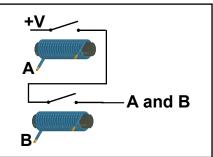


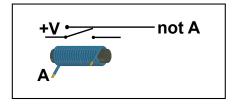
Ordinateur numérique (\neq analogique) : architecture utilisant l'absence ou la présence de courant (relais, tubes ou transistors)

→ 2 états (0 et 1) : représentation binaire

\$2NInterrupteurs et logique binaire







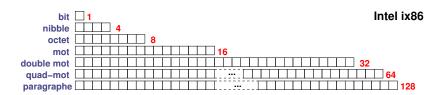
Les nombres binaires

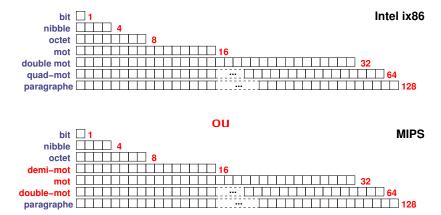
- Deux états internes symbolisés par 0 et 1
- ▶ Informations :

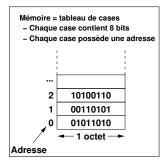
Nom	Valeur
Bit	0 ou 1
Octet	00000000 à 11111111

Multiples définis depuis 1998 :

Nom	Notation	Valeur
1 kibibit	1 Kibit	$2^{10} = 1024$ bits
1 kilobit	1 kbit	$10^3 = 1000$ bits
1 mebioctet	1 MiB/1 Mio	$2^{20} = 1048576$ octets
1 megaoctet	1 MB/1 Mo	$10^6 = 1000000$ octets
1 gibioctet	1 GiB/1 Gio	$2^{30} = 1073741824$ octets
1 gigaoctet	1 GB/1 Go	$10^9 = 1000000000$ octets



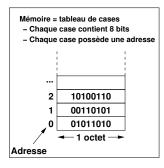




On veut stocker:

- ▶ des entiers positifs (12, 534256, . . .)
- des entiers négatifs (-56, -435345, ...)
- des caractères ('a', 'Z', '5', '+', ...)
- des chaînes de caractères ("bonjour", ...)
- des réels (12.34, -670.5552, . . .)
- des instructions

Mais : Une case contient uniquement des bits



On veut stocker:

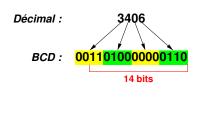
- ▶ des entiers positifs (12, 534256, ...)
- des entiers négatifs (-56, -435345, ...)
- des caractères ('a', 'Z', '5', '+', ...)
- des chaînes de caractères ("bonjour", ...)
- des réels (12.34, -670.5552, . . .)
- des instructions

Mais : Une case contient uniquement des bits

tout coder sous forme d'entiers positifs en binaire

\$2N Représentation « décimale codée binaire »

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
XXXX	illégal



- Codage BCD gourmand (12 bits seulement en binaire pour coder 3406)
- Opérations arithmétiques compliquées et pas efficaces
- ► Entrées/sorties facilitées

\$2N Représentation des nombres

Représentation usuelle : 12

$$=1\times10^1+2\times10^0$$

- → Représentation positionnelle :
 - ► Choix d'une base *b* : (ex. : 10, 2, ...)
 - Choix de *b* symboles

Exemples:

Base 2
$$(0,1)$$
: 1100_2 (= $1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 12_{10}$)

Base 3 « Toons » :

$$1 \times 3^3 + 2 \times 3^2 + 1 \times 3^1 + 0 \times 3^0 = 48$$

S2N Représentation positionnelle

Expression d'un nombre a en base b :

$$\begin{split} a_b &= (a_n a_{n-1} \dots a_2 a_1 a_0. a_{-1} a_{-2} \dots a_{-m})_b \\ &= a_n b^n + \dots + a_2 b^2 + a_1 b + a_0 + a_{-1} b^{-1} + \dots a_{-m} b^{-m} \end{split}$$

 a_n : chiffre le plus significatif a_{-m} : chiffre le moins significatif

Exemples:

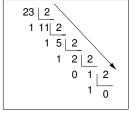
$$\begin{array}{lll} 98_{10} & = 9*10^{1} + 8*10^{0} \\ 101_{2} & = 1*2^{2} + 0*2^{1} + 1*2^{0} \\ 136_{8} & = 1*8^{2} + 3*8^{1} + 6*8^{0} \\ 3\textbf{\textit{A}}_{16} & = 72_{8} \\ 110.01_{2} & = 1*2^{2} + 1*2^{1} + 0*2^{0} + 0*2^{-1} + 1*2^{-2} \\ & = 6.25_{10} \end{array}$$

Avec
$$A_{16} = 10_{10}$$
, $B_{16} = 11_{10}$, ...

\$2NChangement de base : exemple

Passage de 23₁₀ en base 10, 2, 3?

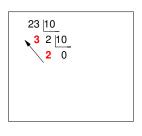
Division par 10, 2, 3 itérées.

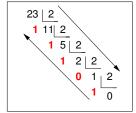


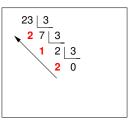
S2N Changement de base : exemple

Passage de 23₁₀ en base 10, 2, 3?

Division par 10, 2, 3 itérées.







Résultat :
$$(23) = 23_{10} = 10111_2 = 212_3$$

\$2NChangement de base

Passage de la représentation de u en base r à sa représentation en base R?

$$u = (x_{k-1}x_{k-2}...x_0)_r$$

= $(X_{K-1}X_{K-2}...X_0)_R$

Représentation de Horner :

$$u = (X_{K-1}R^{K-1} + X_{K-2}R^{K-2} + \dots + X_0)_r$$

= $(R(\dots R(R \times 0 + X_{K-1}) + X_{K-2}) + X_{K-3}) \dots) + X_0)_r$

en exprimant toutes les constantes et en faisant toutes les opérations dans la base r.

 \Rightarrow Algorithme : divisions itérées par R en base r

S2NCode de Gray

Choix d'un ordre pour entiers binaires tel que chaque élément diffère par un seul bit du suivant et du précédent :

Code de Gray E	RGC	Ordre naturel	Nombre
1 0 15	000	000	0
2	001	001	1
3	011	010	2
12 1000	010	011	3
	110	100	4
11110	111	101	5
001 6 10 101 101 101 101 101 101 101 101	101	110	6
7 8 9 1101 1000 1000	100	111	7

- Ordre non unique (Binary Reflected Gray Code)
- ▶ Utilisation : roue codeuse, tableau de Karnaugh, code de correction d'erreur, . . .

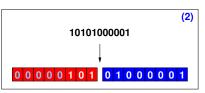
S2NCodage des entiers positifs (non-signés)

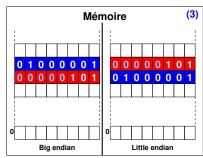
Stockage d'un entier positif en mémoire :

- 1. Représentation du nombre en binaire
- Découpage de la représentation binaire en octets
- 3. Stockage de chaque octet consécutivement

```
1345 2 (1)

1 672 2
0 336 2
0 168 2
0 42 2
0 21 2
1 10 2
0 5 2
1 2 2
1 0 1 2
1 0 1 2
Représentation binaire de 1345 : 10101000001
```

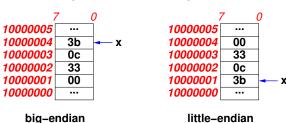




S2NBig endian vs. little endian

- Architecture ix86 : adressage par octet little-endian
- Stockage d'infos sur plus d'un octet :
 - ▶ msb (*Most Significant Byte*) à l'adresse la plus petite
 - ⇒ big-endian
 - ▶ lsb (*Least Significant Byte*) à l'adresse la plus petite
 - → little-endian

unsigned long int x = 3345467; $\{ => x = 0x00330c3b; \}$



Les entiers positifs (non-signés)

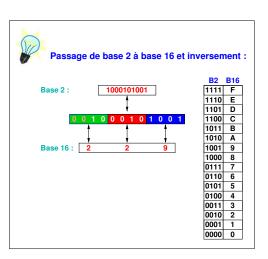
Entiers représentables sur 1 octet :

Base 2	В	ase 1	0 B	ase 1	6
111111111		255		FF	
11111110		254		FE	
00010001		17		11	
00010000		16		10	
00001111		15		0F	
00001110		14		0E	
00001101		13		0D	
00001100		12		0C	
00001011		11		0B	
00001010		10		0A	
00001001		9		09	
00001000		8		08	
00000111		7		07	
00000110		6		06	
00000101		5		05	
00000100		4		04	
00000011		3		03	
00000010		2		02	
00000001		1		01	
00000000		0		00	

S2NLes entiers positifs (non-signés)

Entiers représentables sur 1 octet :

Base 2	Base 10	Base 1
11111111	255	FF
11111110	254	FE
00010001	17	11
00010000	16	10
00001111	15	0F
00001110	14	0E
00001101	13	0D
00001100	12	0C
00001011	11	0B
00001010	10	0A
00001001	9	09
00001000	8	08
00000111	7	07
00000110	6	06
00000101	5	05
00000100	4	04
00000011	3	03
00000010	2	02
00000001	1	01
00000000	0	00



Entiers non-signés : ensemble d'entiers positifs

Entiers signés : ensemble d'entiers positifs et négatifs

Comment représenter des entiers négatifs?

Entiers non-signés : ensemble d'entiers positifs

Entiers signés : ensemble d'entiers positifs et négatifs

Comment représenter des entiers négatifs?

Convention de recodage des chaînes de bits

- Magnitude signée
- Complément à 1
- Complément à 2
- Biaisée

S2N Représentation par magnitude signée

Dans un entier de k bits, le bit de poids fort code le signe :

- \triangleright 0 = positif
- ▶ 1 = négatif

Exemples (sur 8 bits) :

- $+25_{10} = 00011001_2$
- $-25_{10} = 10011001_2$

Inconvénient = deux représentations pour 0 :

- $+0_{10}=00000000_2$
- $-0_{10}=10000000_2$

Sur 8 bits: -127..+127

Dans un entier de k bits, le bit de poids fort code le signe :

- \triangleright 0 = positif
- ▶ 1 = négatif

Exemples (sur 8 bits):

- $+25_{10} = 00011001_2$
- $-25_{10} = 10011001_2$

Inconvénient = deux représenta

- \rightarrow +0₁₀=00000000₂
- $-0_{10}=10000000_2$

Sur 8 bits: -127..+127

chaîne de bits	non signé	agnitu signée	
1111	15	-7	
1110	14	-6	
1101	13	-5	
1100	12	-4	
1011	11	-3	
1010	10	-2	
1001	9	-1	
1000	8	-0	
0111	7	7	
0110	6	6	
0101	5	5	
0100	4	4	
0011	3	3	
0010	2	2	
0001	1	1	
0000	0	0	

S2NComplément à 1

Le bit de poids fort correspond au signe :

- ▶ 0 = positif
- ▶ 1 = négatif

Un nombre négatif s'obtient en complémentant bit à bit sa valeur absolue avec 1 (cf. complément à 9 de la *Pascaline*)

Exemple : représentation de -25_{10} sur 8 bits :

- $25_{10} = 00011001_2$ 11111111
- ► D'où : ______00011001 = _____11100110

Deux représentations pour $0:00000000_2$ et 111111111_2 Nombres représentés sur 8 bits : -127..+127

Le bit de poids fort correspond au signe:

- ▶ 0 = positif
- ► 1 = négatif

Un nombre négatif s'obtient en complabsolue avec 1 (cf. complément à 9 d Exemple : représentation de -25_{10} su

- \triangleright 25₁₀ = 00011001₂
 - 11111111
- D'où : _ _ 00011001 = 11100110

Deux représentations pour 0 : 000000 Nombres représentés sur 8 bits : -127.

chaîne de bits	non complément signé à 1				
1111	15		-0		
1110	14		-1		
1101	13		-2		
1100	12		-3		
1011	11		-4		
1010	10		-5		
1001	9		-6		
1000	8		-7		
0111	7		7		
0110	6		6		
0101	5		5		
0100	4		4		
0011	3		3		
0010	2		2		
0001	1		1		
0000	0		0		

S2N Complément à 2

Le bit de poids fort indique le signe :

- \triangleright 0 = positif
- ▶ 1 = négatif

Un nombre négatif s'obtient en ajoutant 1 au complément à 1 de sa valeur absolue (et inversement).

Exemple : représentation de -25_{10} ?

- $+25_{10}=00011001_2$
- ightharpoonup Complément à 1 de $+25_{10} = 11100110_2$
- Ajout de 1 : $11100110_2 + 1 = 11100111_2$

Une seule représentation pour 0 : 00000000₂ Nombres représentés sur 8 bits : -128..+127

S2N Complément à 2

Le bit de poids fort indique le s

- ▶ 0 = positif
- ▶ 1 = négatif

Un nombre négatif s'obtient en valeur absolue (et inversement) Exemple : représentation de -2

- $+25_{10}=00011001_2$
- ightharpoonup Complément à 1 de $+25_{10}$
- ► Ajout de 1 : 11100110₂+1

Une seule représentation pour 0 Nombres représentés sur 8 bits

chaî de b	-	non signé	cor	nplém à 2	ent
111	1	15		-1	
111	0	14		-2	
110	1	13		-3	
110	0	12		-4	
101	1	11		-5	
101	0	10		-6	
100	1	9		-7	
100	0	8		-8	
011	1	7		7	
011	0	6		6	
010	1	5		5	
010	0	4		4	
001	1	3		3	
001	0	2		2	
000	1	1		1	
000	0	0		0	

de sa

Représentation des nombres négatifs par ajout d'un biais les rendant positifs.

Le biais est ajouté aussi aux nombres positifs

Exemple : codage sur 8 bits avec un biais de 127

- -12_{10} est codé par -12 + 127 = 115 i.e. 01110011_2
- ightharpoonup 30₁₀ est codé par 30 + 127 = 157 i.e. 10011101₂

Nombres représentés sur 8 bits avec biais de 127 : -127..128

Représentation des nombres négrendant positifs.

Le biais est ajouté aussi aux no

Exemple: codage sur 8 bits ave

- $ightharpoonup -12_{10}$ est codé par -12+
- ightharpoonup 30₁₀ est codé par 30 + 127

Nombres représentés sur 8 bits

chaîne de bits	non signé	lage a	
1111	15	8	
1110	14	7	
1101	13	6	
1100	12	5	
1011	11	4	
1010	10	3	
1001	9	2	
1000	8	1	
0111	7	0	
0110	6	-1	
0101	5	-2	
0100	4	-3	
0011	3	-4	
0010	2	-5	
0001	1	-6	
0000	0	-7	

			S	igne +	. (complén	nent	complé	ment	repre	ésenta	tion
binaire	e d	lécima	al ma	gnitu	de	à 1		à	2	·b	iaisée	
				_								
0000		0		0		0		0			-7	
0001		1		1		1		1			-6	
0010		2		2		2		2			-5	
0011		3		3		3		3			-4	
0100		4		4		4		4			-3	
0101		5		5		5		5			-2	
0110		6		6		6		6			-1	
0111		7		7		7		6			0	
1000		8		-0		-7		-8	;		1	
1001		9		-1		-6		–7	•		2	
1010		10		-2		-5		-6	,		3	
1011		11		-3		_4		-5	,		4	
1100		12		-4		-3		_4			5	
1101		13		-5		-2		-3			6	
1110		14		-6		-1		-2			7	
1111		15		-7		-0		-1			8	
				_								

(biais = 7)

binaire		e c	lécima	signe - agnitu	nplém à 1	ent co	mplém à 2	ent r	eprésent biaisé	
	0000		0	0	0		0		-7	
	0001		1	1	1		1		-6	
	0010		2	2	2		2		-5	
	0011		3	3	3		3		_4	
	0100		4	4	4		4		-3	
	0101		5	5	5		5		-2	
	0110		6	6	6		6		-1	
	0111		7	7	7		7		0	
	1000		8	-0	-7		-8		1	
	1001		9	-1	-6		-7		2	
	1010		10	-2	-5		-6		3	h
	1011		11	-3	-4		-5		4	
	1100		12	-4	-3		-4		5	
	1101		13	-5	-2		-3		6	
	1110		14	-6	-1		-2		7	
	1111		15	-7	-0		-1		8	

(biais = 7)

Quelle est la valeur de la chaîne de bits : 1010?

\$2N Représentation des caractères et chaînes

Plusieurs formats pour représenter des caractères (imprimables et de contrôle) sous forme binaire :

- ► EBCDIC (Extended Binary-Coded Decimal Interchange Code)
 - Représentation sur 8 bits (256 caractères possibles)
 - Utilisé autrefois sur les mainframes IBM
- ► ASCII (American Standard Code for Information Interchange)
 - Représentation sur 7 bits (pas d'accents)
 - ASCII étendu : sur 8 bits (plusieurs possibilités. Ex. : ISO 8859-1)
- Unicode : encodage sur 8–48 bits (ex. : UTF-8) pour représenter tous les caractères de toutes les langues

Chaîne de caractères : suite de caractères stockés consécutivement en mémoire (terminateurs?)

S2NExemple : table ISO 8859-1, aka Latin 1

ISO-8859-1																
	x0	x1	x2	хЗ	x4	x5	х6	x7	x8	х9	хA	хB	хC	хD	хE	хF
0x	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	[FF]	CR	SO	SI
1x	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	US
2x	SP	!		#	\$	%	&		()	*	+	,	-		/
3x	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4x	@	Α	В	С	D	Е	F	G	Н	- 1	J	K	L	М	N	0
5x	Р	Q	R	S	Т	U	V	W	х	Υ	Z]	١	1	^	_
6x	`	а	b	С	d	е	f	g	h	i	j	k	- 1	m	n	0
7x	р	q	r	s	t	u	v	w	х	у	z	{	Ι	}	~	DEL
8x	PAD	НОР	ВРН	NBH	IND	NEL	SSA	ESA	HTS	HTJ	VTS	PLD	PLU	RI	552	553
9x	DCS	PU1	PU2	STS	ССН	MW	SPA	EPA	SOS	SGCI	SCI	CSI	ST	OSC	PM	APC
Ax	NBSP	i	¢	£	п	¥	1	§	-	©	a	«	_		®	-
Вх	0	±	2	3	,	μ	9			1	0	>>	1/4	1/2	3/4	٤
Сх	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	ì	ĺ	Î	Ï
Dx	Đ	Ñ	Ò	Ó	ô	ő	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	ß
Ex	à	á	â	ā	ä	å	æ	ç	è	é	ê	ë	ì	í	î	ï
Fx	õ	ñ	ò	ó	ô	ō	ö	÷	ø	ù	ú	û	ü	ý	þ	ÿ

Standard:

- Code point
- Encodage

Encodage UTF-8:

Domaine	01	O ₂	O ₃	04
[U+0000, U+007F]	0xxxxxxx			
[U+0080, U+07FF]	110xxxxx	10xxxxxx		
[U+0800,U+FFFF]	1110xxxx	10xxxxxx	10xxxxxx	
[U+10000,U+10FFFF]	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx

Code point de «é» : U+00E9

→ 110000 11 1010 1001

→ 0xC3 0xa9

 \rightsquigarrow "é" avec l'encodage 8859-1

Opérations $+, -, \times, \div$ sur :

- Nombres non-signés
- Nombres signés *en complément à 2*

Le calcul se fait indépendamment de l'interprétation des chaînes de bits

S2NAddition binaire entière

L'addition se fait classiquement avec les règles :

$$0+0=0 \\ 0+1=1 \\ 1+0=1 \\ 1+1=0 \quad \text{avec retenue de 1}$$

Exemples:

Résultat sur 9 bits :

- Non signé : dépassement de capacité
- ► Signé : pas de signification

Soustraction binaire entière

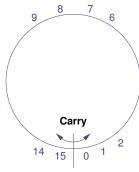
La soustraction suit les règles suivantes :

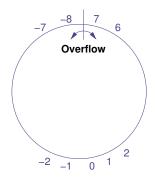
$$egin{array}{lll} 0-0=0 \\ 0-1=1 & \mbox{et on prend 1 à gauche} \\ 1-0=1 \\ 1-1=0 \end{array}$$

Exemples:

On peut aussi faire une addition avec le complément à 2 du deuxième opérande.

S2N Carry vs. Overflow





Non signé		Signé	
1110	14	1110	-2
+ 1011	11	+ 1011	-5
11001	25>15	11001	-7

Non signe	é	Signé	
0111	7	0111	7
+ 0001	1	+ 0001	- 1
1000	8	1000	-8

Détection :Opérandes de même signe
Résultat de signe différent

S2 Multiplication binaire entière

La multiplication suit les règles suivantes :

$$0 \times 0 = 0$$

 $0 \times 1 = 0$
 $1 \times 0 = 0$
 $1 \times 1 = 1$

Exemple:

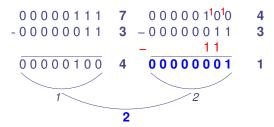
On peut aussi faire des additions itérées

2 Division binaire entière

Division obtenue par itération de soustractions jusqu'à ce que le résultat de la soustraction soit inférieur au diviseur :

- Quotient = nombre de soustractions
- Reste = résultat de la dernière soustraction

Exemple : division de 7 par 3



Résultat : quotient = 2 et reste = 1

On peut aussi faire comme une division classique en décimal

- Infinité de nombres entiers
 - Mais représentation correcte dans un intervalle
- Infinité de nombres réels
 - Impossibilité de représentation correcte même d'un petit intervalle :

$$\forall a, b \in \mathbb{R} \ \exists c \in \mathbb{R} \ t.q. \ a \leq c \leq b$$

 \Rightarrow Représentation d'un sous-ensemble de $\mathbb Q$

\$2NCalcul sur les réels (2)

Nombres en virgule fixe :

Nombres en virgule flottante (notation scientifique) :

$$101010.10 = 1.0101010 \times 2^5$$
$$0.00100011 = 1.00011 \times 2^{-3}$$

→ Usage de l'arithmétique en virgule flottante majoritaire

\$2NChangement de base pour les nombres réels

Passage d'un nombre réel de base 10 vers base 2 en virgule fixe :

- Partie entière : comme pour les entiers
- Partie décimale : multiplications itérées par 2

Exemple: conversion de 14.375₁₀ en base 2?

- ▶ $14_{10} = 1110_2$ (divisions itérées par 2)
- \triangleright 0.375₁₀ = ???₂

$$\begin{array}{cccc} 0.375 & \times 2 & = 0 + 0.75 \\ 0.75 & \times 2 & = 1 + 0.5 \\ 0.5 & \times 2 & = 1 + 0.0 \end{array}$$

Résultat : $14.375_{10} = 1110.011_2$

\$2N Vers la norme IEEE 754

1936 : machines Z de K. Zuse

60's-70's: Design des FPUs = anarchie totale

Portabilité nulle

ightharpoonup Peu de propriétés $(a = b \Leftrightarrow a - b = 0)$

1976 : création du i8087 par Intel (best arithmetic)

→ Rapport Kahan–Coonen–Stone

1985 : Rapport K-C-S devient la norme *IEEE 754*

Aujourd'hui : norme implantée de fait sur tous les ordinateurs (sauf

certains Cray).

S2N Représentation des flottants

Nombre flottant x en binaire :

- un bit de signe s
- un exposant E
- un signifiant m

$$x = (-1)^s \times m \cdot 2^E$$

Représentations équivalentes :

- (a) 0.0000111010 · 2⁰
- (b) $0.000000111010 \cdot 2^2$
- (c) $1.110100 \cdot 2^{-5}$

Taille de signifiant fixée \Rightarrow forme c plus précise

Représentation IEEE 754 (1)

- Représentation normalisée (forme c);
- Toujours un 1 avant la virgule ⇒ pas codé (hidden bit)

$$m=1.00101 \longrightarrow f=00101$$

exposants négatifs et positifs : codage par biais :

$$\mathsf{E} \longrightarrow \mathsf{e} = \mathsf{E} + \mathsf{biais}$$

Intérêt : comparaison lexicographique

```
single (1,8,23)
double (1,11,52)
ix87 reg. (1,15,64)
```

S	е	f
1	10101010101	10101010101010100101
G.		70 1 6 1 1

Signe Exposant biaisé Partie fractionnaire

Représentation IEEE 754 (2)

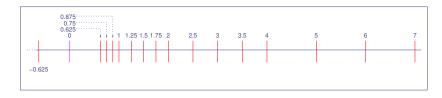
Exemple : format tiny sur 5 bits (1,2,2) de biais 1 : Nombres positifs représentables :

S2NReprésentation IEEE 754 (3)



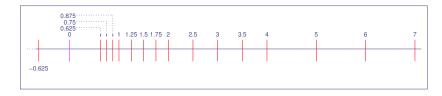
► Pas de codage pour 0

S2NReprésentation IEEE 754 (3)



- Pas de codage pour 0
 - Réserver 0 00 00 et 1 00 00 pour ± 0 (perte de ± 0.5)

S2NReprésentation IEEE 754 (3)

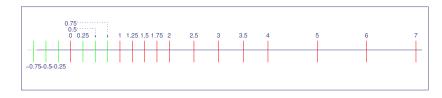


- Pas de codage pour 0
 - Réserver 0 00 00 et 1 00 00 pour ± 0 (perte de ± 0.5)
- ► Grand trou autour de 0

S2N Représentation IEEE 754 (3)

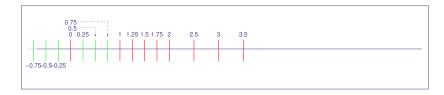
- Pas de codage pour 0
 - Réserver 0 00 00 et 1 00 00 pour ± 0 (perte de ± 0.5)
- Grand trou autour de 0
 - Réserver e = 0 pour les nombres dénormalisés
 - → Plus de hidden bit à 1

Représentation IEEE 754 (3)



- Pas de codage pour 0
 - Réserver 0 00 00 et 1 00 00 pour ± 0 (perte de ± 0.5)
- Grand trou autour de 0
 - Réserver e = 0 pour les nombres dénormalisés
 - → Plus de hidden bit à 1
- Notions d'infinis mathématiques et de résultat indéfini :

Représentation IEEE 754 (3)



- Pas de codage pour 0
 - Réserver 0 00 00 et 1 00 00 pour ± 0 (perte de ± 0.5)
- Grand trou autour de 0
 - Réserver e = 0 pour les nombres dénormalisés
 - → Plus de hidden bit à 1
- Notions d'infinis mathématiques et de résultat indéfini :
 - ightharpoonup Réserver e=3

S2N Représentation IEEE 754 (4)

Interprétation des bits :

$$\left\{ \begin{array}{ll} \mathsf{e} = 3, & \mathsf{f} \neq 0 & : \mathsf{v} = \! \mathsf{NaN} \\ \mathsf{e} = 3, & \mathsf{f} = 0 & : \mathsf{v} = (-1)^{\mathsf{s}} \times \infty \\ 0 < \mathsf{e} < 3 & : \mathsf{v} = (-1)^{\mathsf{s}} \times (1.\mathsf{f}) \cdot 2^{\mathsf{e} - 1} \\ \mathsf{e} = 0, & \mathsf{f} \neq 0 & : \mathsf{v} = (-1)^{\mathsf{s}} \times (0.\mathsf{f}) \cdot 2^0 \\ \mathsf{e} = 0, & \mathsf{f} = 0 & : \mathsf{v} = (-1)^{\mathsf{s}} \times 0 \end{array} \right.$$

00000	0.5	00000	0
00001	0.625	00001	0.25
00010	0.75	00010	0.5
00011	0.875	00011	0.75
00100	1	00100	1
00101	1.25	00101	1.25
00110	1.5	00110	1.5
00111	1.75	00111	1.75
01000	2	01000	2
01001	2.5	01001	2.5
01010	3	01010	3
01011	3.5	01011	3.5
01100	4	01100	+00
01101	5	01101	NaN
01110	6	01110	NaN
01111	7	01111	NaN

S2NNaNs et infinis

Not a Number : cas indéfinis (non ordonnés)

Infinis:
$$\begin{cases} 1/+\infty & = +0 \\ 1/-\infty & = -0 \\ 1/-0 & = -\infty \\ 1/0 & = +\infty \end{cases}$$

x + y	NaN	$-\infty$	0	$+\infty$
NaN	✓	✓	√	✓
$-\infty$	✓			✓
0	✓			
$+\infty$	✓	✓		

x - y	NaN	$-\infty$	0	$+\infty$
NaN	✓	✓	√	✓
$-\infty$	✓	✓		
0	✓			
$+\infty$	✓			✓

\sqrt{x}						
NaN	✓	$x \times y$	NaN	$-\infty$	0	$+\infty$
$-\infty$	✓	NaN	✓	✓	√	√
x < 0	✓	$-\infty$	✓		✓	
0		0	✓	✓		✓
$+\infty$		$+\infty$	✓		✓	

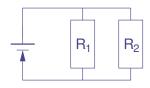
x/y	NaN	$-\infty$	0	$+\infty$
NaN	✓	✓	√	✓
$-\infty$	✓	✓		✓
0	✓		✓	
$+\infty$	✓	✓		✓

Cas spéciaux pour les opérateurs non définis par la norme IEEE 754 :

X	exp(x)	log(x)	sin(x)	cos(x)	tan(x)	acos(x)	asin(x)	atan(x)
NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
$-\infty$	0.0	NaN	NaN	NaN	NaN			
x < -745.13	0.0							
x < -1						NaN	NaN	
x < 0		NaN						
0		$-\infty$						
x > 1						NaN	NaN	
x > 709.78	$+\infty$							
$+\infty$	$+\infty$	$+\infty$	NaN	NaN	NaN			

Source : librairie fdlibm sur les doubles

Calculer la résistance totale du circuit :



Formule:

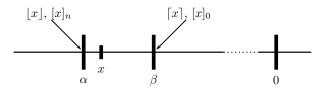
$$T = \frac{1}{1/R_1 + 1/R_2}$$

Cas où l'une des résistances est nulle?

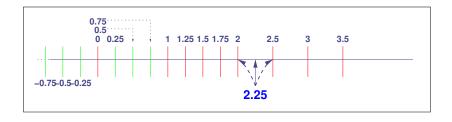
Résistance totale nulle

- lacktriangle Ensemble des flottants ${\mathbb F}$ non clos pour les opérations de base
- conversion exacte décimal/binaire pas toujours possible

```
 \Rightarrow \text{Fonctions d'arrondi :} \\ \begin{cases} \lfloor x \rfloor & \text{arrondi vers } -\infty \\ \lceil x \rceil & \text{arrondi vers } +\infty \\ \lceil x \rceil_0 & \text{arrondi vers 0} \\ \lceil x \rceil_n & \text{arrondi au plus proche pair} \end{cases}
```



\$2NOpérations de base



- ▶ Opérations $\{+, -, \times, /, \sqrt{}\}$: arrondi correct suivant le mode courant (erreur < 1 ulp.);
 - Exemple : 2.0 + 0.25 = 2.25 arrondi à 2 ou 2.5

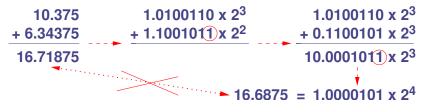
\$2NOpérations de base

- ▶ Opérations $\{+, -, \times, /, \sqrt{}\}$: arrondi correct suivant le mode courant (erreur < 1 ulp.);
 - Exemple : 2.0 + 0.25 = 2.25 arrondi à 2 ou 2.5
- ▶ fonctions transcendantales : aucune garantie
 - ightharpoonup Exemple: sin(2.0) = 0.90929 arrondi vers 0.75 ou 1.5

\$2NAddition en nombres flottants

- Addition possible si et seulement si les opérandes ont même exposant
- Exposants différents ⇒ décalage du nombre de plus petit exposant

Exemple:

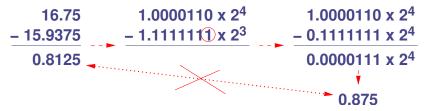


Attention: bit de garde

\$2N Soustraction en nombres flottants

- Soustraction possible si et seulement si les opérandes ont même exposant
- Exposants différents ⇒ décalage du nombre de plus petit exposant

Exemple:

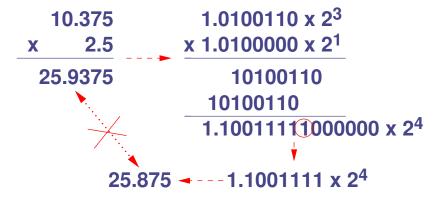


Attention: bit de garde

S2N Multiplication en nombres flottants

Multiplication des signifiants et ajout des exposants

Exemple:



- Procédure plus compliquée
- Parfois implémentée par utilisation de la méthode de Newton

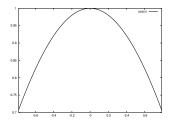
S2NAutres fonctions sur les flottants

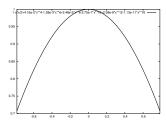
- Fonctions cos, sin, exp, . . . :
 - Utilisation d'approximations polynomiales
 - Implémentation dans une librairie (e.g. en C)
 - ▶ Implémentation codée dans l'unité arithmétique flottante

Exemple : Pour
$$x \in [-\frac{\pi}{4}, \frac{\pi}{4}]$$
:

$$\cos x \approx 1 - \frac{x^2}{2} + 4.16 \cdot 10^{-2} x^4 - 1.38 \cdot 10^{-3} x^6$$

$$+2.48\cdot 10^{-5} x^8 - 2.75\cdot 10^{-7} x^{10} + 2.08\cdot 10^{-9} x^{12} - 1.13\cdot 10^{-11} x^{16}$$





- Absorption.
 Addition opérandes de magnitudes différentes :

$$1.345 \cdot 10^5 + 1.45 \cdot 10^1 = 1.345 \cdot 10^5$$

Alignement \Rightarrow chiffres significatifs de 1.45 · 10¹ éliminés.

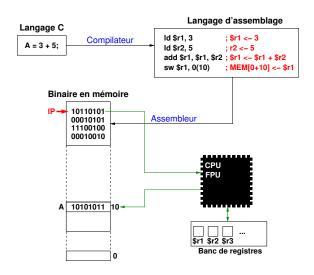
- Cancellation bénigne. Voir arrondis.
- Cancellation catastrophique.
 Soustraction opérandes entachés d'erreurs :

$$a = 1.22, b = 3.34, c = 2.28, b^2 - 4ac = 11.2 - 11.1 = .1 \neq .0292$$

$$x \oplus y = y \oplus x$$
 (commutativité de l'addition)
 $x \otimes y = y \otimes x$ (commutativité de la multiplication)
 $x \oplus (y \oplus z) \neq (x \oplus y) \oplus z$ (non associativité)
 $x \otimes (y \oplus z) \neq x \otimes y \oplus x \otimes z$ (non distributivité)

 \Rightarrow ordre des calculs pas indifférent. (e.g. $\sum_{i=1}^{n} x_i$)

S2NCodage des instructions machine (1)



S2N Codage des instructions machine (2)

Deux types d'architecture :

	RISC	CISC
	Reduced Instruction Set Computer	Complex Instruction Set Computer
Nb. d'instr.	Peu	Beaucoup
Taille d'instr.	Fixe	Variable
Arité des instr.	Fixe	Variable
Adressage	Peu	Beaucoup

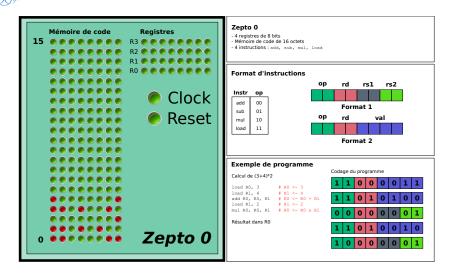
- ► RISC (Sparc, MIPS) : instructions simples et rapides
 - Optimisations faciles
 - Programmes complexes longs
- CISC (ix86): instructions plus ou moins complexes
 - ► Programmes plus petits
 - Optimisation plus difficiles

S2NTypes de jeux d'instructions

$$A \leftarrow 3 + 5$$
?

Machine à pile	Machine à accumulateur	Machine à registres
PUSH X	LOAD X	LOAD R _i , X
$top(pile) \leftarrow X$	$acc \leftarrow X$	$R_i \leftarrow X$
POP X	STORE X	STORE R _i , X
$X \leftarrow top(pile)$	$X \leftarrow acc$	$X \leftarrow R_i$
ADD	ADD X	ADD R_i , R_j , R_k
$POP t_2$; $POP t_1$	$acc \leftarrow acc + X$	$R_i \leftarrow R_j + R_k$
$PUSH t_1 + t_2$		
push 3	load 3	load R1, 3
push 5	add 5	load R2, 5
add	store A	add R3, R1, R2
рор А		store R3, A

S2NCodage des instructions



Circuit du Zepto-0