Constraint Programming Search

Eric MONFROY

Eric.Monfroy@inf.utfsm.cl

UTFSM, Valparaíso, Chile and LINA, Nantes, France

Objectives

- recap : CSPs and solving CSPs
- notion of search trees
- discuss various search mechanism (for enumeration)
 - backtrack
 - forward checking
 - partial look ahead (maintenaing arc consistency –MAC)
 - full look ahead (maintenaing arc consistency –MAC)
 - discuss search mechanism for constrained optimization
 - discuss search heuristics

Search trees

CSP (recap)

A constraint satisfaction problem (CSP) is defined by :

- a sequence of variables $X = x_1, \ldots, x_n$ with *domains* D_1, \ldots, D_n (associated to the variables)
- a set of constraints C_1, \ldots, C_l , each C_i on a sub-sequence Y_i of X

A *solution of the CSP* is a *n*-tuple *d* such that :

- $d \in D_1 \times \cdots \times D_n$
- and for each $i, d[Y_i] \in C_i$

Constraint propagation (recap)

replace a CSP by a CSP which is :

- equivalent (same set of solutions)
- "smaller" (domains are reduced)
- "simpler" (constraints are reduced)
- constraint propagation mechanism : repeatedly reduce domains or constraints
- incomplete solver

Constraint solving framework (recap)

solve(CSP) : while not finished do pre-process constraint propagation if happy then finished=true else split part-of search endif endwhile

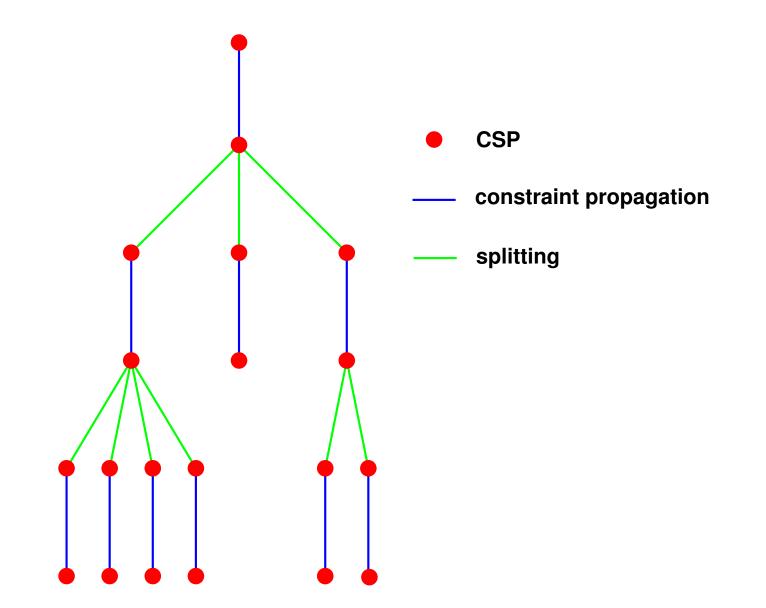
where part-of search consists in calls to the solve function

Remark : part-of search is one of the mechanisms defining search

the solving process can be seen as a *search tree* s.t. :

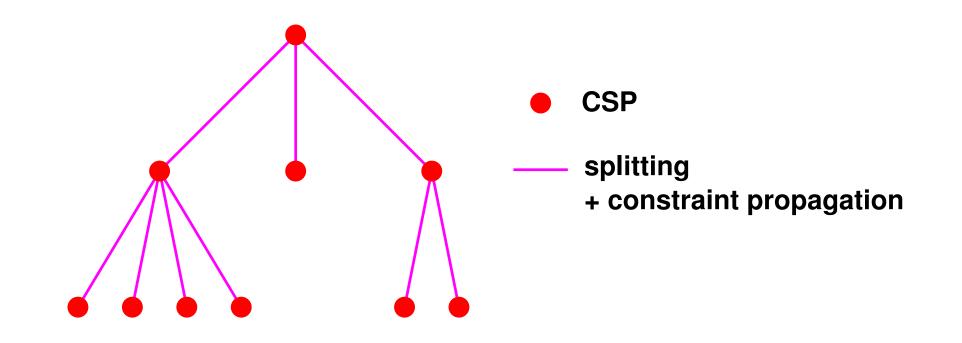
- nodes are CSPs
- the root is the initial CSP
- an arc is either :
 - a constraint propagation phase
 - or split phase

Search trees (2)



Search trees (3)

constraint propagation and splitting are often joined to reduce trees an arc is a split followed by constraint propagation



Search trees (4)

- several search trees to solve a CSP, depending on
 - constraint propagation
 - search-part
 - splitting :
 - ordering of variables
 - type of splitting (enumeration, bisection, ...)
 - value selected (in case of enumeration)
- solutions with different search trees :
 - same solutions when look for all
 - can be different when look for ONE solution
- efficiency and memory : huge differences

Search algorithms

Place n queens on a $n \times n$ board so that they do not attack each other Modelling :

• Variables : c_1, \ldots, c_n

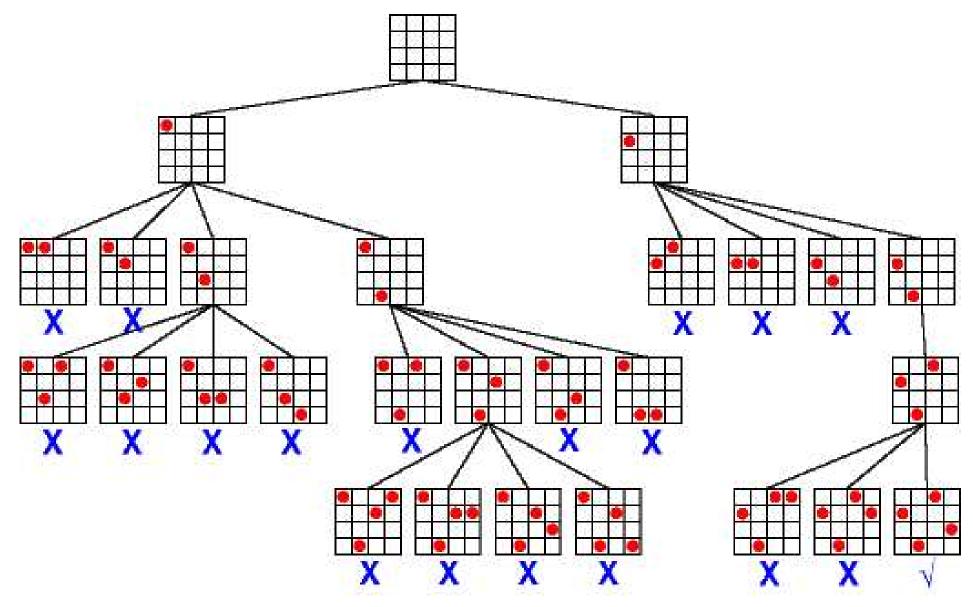
one per column : the value of c_i represents the line where the queen is in the column

- **Domains** : [1..*n*]
- Constraints : for $i \in [1..n-1)$ and $j \in i+1..n$]
 - not two queens on the same line : $x_i \neq x_j$
 - not 2 queens on the same SW-NE diagonal : $x_i \neq x_j + j i$
 - not 2 queens on the same NW-SE diagonal : $x_i \neq x_j + i j$

Backtracking (a la Prolog)

- no constraint propagation phase
- full enumeration during a splitting phase (since no propagation)
- generally : depth-first, left-first search
 (i.e., exploration of the search tree)

4-queens by backtracking

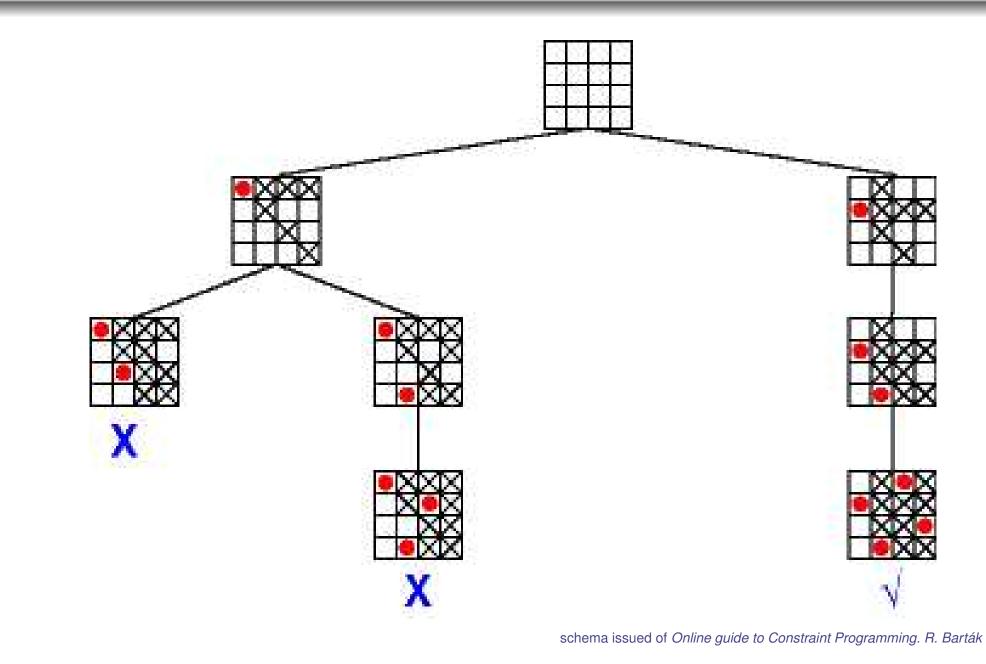


schema issued of Online guide to Constraint Programming. R. Barták

Forward checking

- split : enumeration
- constraint propagation :
 - first time :
 - generally, complete propagation (AC-like algorithm)
 - in the loop :
 - after each instanciation of a variable x : remove from each variable y (not yet instanciated) values inconsistent w.r.t. constraints containing x and y

4-queens by forward checking



Partial look ahead

Partial look ahead

- split : enumeration
- constraint propagation :
 - first time :
 - generally, directed or complete propagation (directional or AC-like algorithm)
 - in the loop :

directional arc-consistency

i.e., propagation directed by variable ordering (no fixed point)

Full look ahead

Full look ahead (or Maintaining Arc consistency = MAC)

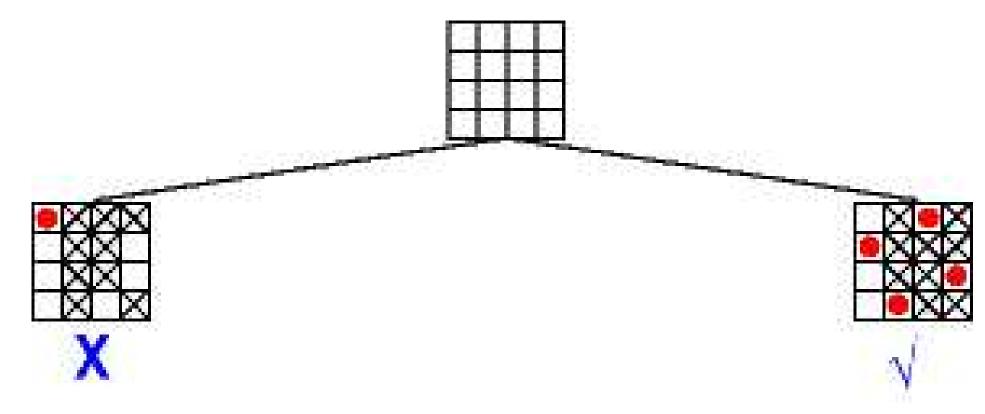
- split : enumeration
- constraint propagation :
 - first time :

generally, complete propagation (AC-like algorithm)

• in the loop :

arc-consistency (or hyper-arc consistency) (fixed point of reductions)

4-queens by full look ahead



schema issued of Online guide to Constraint Programming. R. Barták

Constrained optimization

Constrained optimization problems

Optimisation = minimization or maximization

find

$$\max f(x_1, \dots, x_n) \quad \text{maximization problem}$$

or
$$\min f(x_1, \dots, x_n) \quad \text{minimization problem}$$

under the constraints

$$\begin{pmatrix} c_1(x_1^1, \dots, x_{k_1}^1) \\ \dots \\ c_m(x_1^m, \dots, x_{k_m}^m) \end{pmatrix}$$

a smuggler has a 9 unit capacity knapsack. He wants to smuggle : whisky, perfume, and cigarette packs. We have :

Product	volume (in units)	profit
whisky	4	15€
perfume	3	10€
cigarettes	2	7€

a travel is interesting if the smuggler gains at least $30 \in$. What should he carry? Modelling :

- let W, P, C be the number of bottles of whisky, parfum and packs of cigarettes
- constraint on capacity : $4W + 3P + 2C \leq 9$
- constraint on profit : $15W + 10P + 7C \ge 30$

Knapsack problem (3)

program :

1goal(W,P,C):-

- 2 [W, P, C]::[0..9],
- $3 \quad 4 \times W + 3 \times P + 2 \times C \# = < 9$,
- 4 $15 \times W + 10 \times P + 7 \times C \# >= 30$,
- 5 labeling([W,P,C]).

answers :

- bound consistency : $W \in [0, 2], P \in [0, 3], C \in [0, 4]$
- enumeration : (W, P, C) = (0, 1, 3), (W, P, C) = (0, 3, 0), (W, P, C) = (1, 1, 1), (W, P, C) = (2, 0, 0)

Knapsack problem (4)

Solution maximizing the profit?

```
1goal(W,P,C):-
```

- 2 [W,P,C]::[0..9],
- $3 \quad 4 * W + 3 * P + 2 * C \# = < 9,$
- 4 $15 \times W + 10 \times P + 7 \times C \# \ge 30$,
- 5 labeling([W,P,C]).

```
6
```

7 maxgoal:-

- 8 Profit #= 15*W + 10*P + 7*C,
- 9 Loss #= -Profit,
- 10 minimize(goal(W,P,C),Loss),

```
write([W,P,C,Profit]).
```

Solution: Profit = 32, with (W, P, C) = (1, 1, 1)

branch and bound procedure : to maximize Profit

- search for a first solution : Pr_1
- add the constraint $Profit > Pr_1$
- update current bound and best bound
- backtrack
- at the end, re-computation with the best bound

adding the constraint Profit > Pr_1 → pruning solutions with worse profit

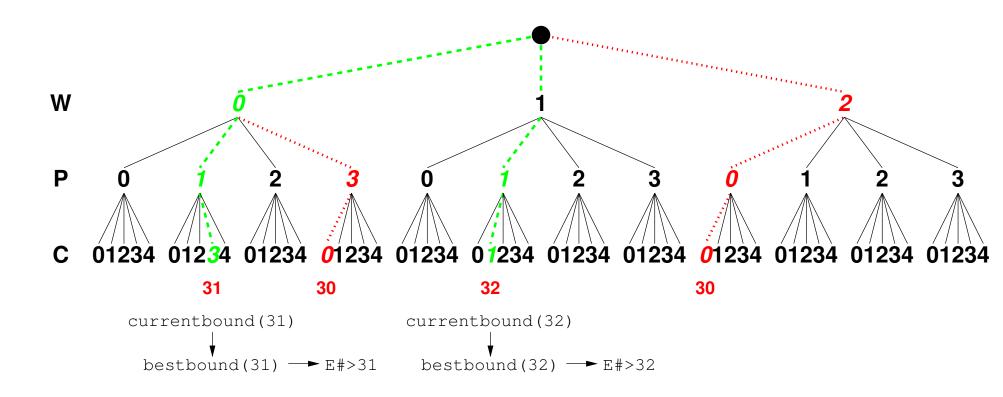
Back on the smuggler (1)

detailed solution in ECL^iPS^e :

- 1 [eclipse 30]: maxgoal.
- 2 Found a solution with cost -31
- 3 Found a solution with cost -32
- 4 [1, 1, 1, 32]
- 5 Yes (0.00s cpu)

Back on the smuggler (2)

before enumeration : $W \in [0, 2], P \in [0, 3], C \in [0, 4]$



maximize/2

```
1 maximize (G, E) :-
                                          1 apply_new_bound (_) .
 2
           get_min_value(G,E,M),
                                          2 apply_new_bound(E):-
 3
           E #= M,
                                          3
                                                    retract(currentbound(B)),
 4
           call(G).
                                          4
                                                    asserta(bestbound(B)),
 5
                                          5
                                                    E #> B,
 6 get_min_value(G,E,_):-
                                          6
                                                    apply new bound (E).
           apply_new_bound(E),
 7
                                          7
           once(G),
 8
                                          8 record better bound(E):-
 9
           record_better_bound(E),
                                          9
                                                     (retract(bestbound())
10
           fail.
                                         10
                                                       -> true ; true),
11
12 get min value( , ,M):-
                                         11
                                                    asserta(currentbound(E)).
           retract(bestbound(M)).
13
14
```

save the best solution and the current solution as facts the goal G must instanciate E !

Search heuristics

Search heuristics

- not relevant for solutions
 (except when looking for ONE solution)
- crucial for efficiency
- heuristics at several levels :
 - variable to split
 - splitting mechanism (bisection, enumeration, ...)
 - where to split (bisection)
 - values of variables (for enumeration)
- combination of heuristics

(e.g., mix selection with several criteria)

- select the variable with the smallest domain (fail first)
- select the variable with the largest domain (reduce first)
- select the most constrained variable
 - most important variable in the problem
 - biggest number of possible reductions (most constrained)

Value selection (enumeration)

- select the smallest value
- select the largest value
- select the middle value