Constraint Programming

Search

Eric MONFROY

Eric.Monfroy@inf.utfsm.cl

UTFSM, Valparaiso, Chile and LINA, Nantes, France

» recap : CSPs and solving CSPs
» notion of search trees
» discuss various search mechanism (for enumeration)
» backtrack
» forward checking
» partial look ahead (maintenaing arc consistency —MAC)
» full look ahead (maintenaing arc consistency —MAC)
s discuss search mechanism for constrained optimization

» discuss search heuristics

Search trees

A constraint satisfaction problem (CSP) is defined by :

» a sequence of variables X = x,...,z, with domains
D+, ..., D, (associated to the variables)

» aset of constraints (1, ..., (Y, each C; on a sub-sequence
Y, of X

A solution of the CSP is a n-tuple d such that :
s deDy x---xD,
» and for each ¢, d|Y;| € C;

» replace a CSP by a CSP which is :

s €equivalent (same set of solutions)
s “smaller” (domains are reduced)
s “simpler” (constraints are reduced)

» constraint propagation mechanism :
repeatedly reduce domains or constraints

» incomplete solver

solve(CSP) :
while not finished do
pre-process
constraint propagation
If happy
then finished=true
else split
part-of search
endif
endwhile

where part-of search consists in calls to the solve function

Remark : part-of search is one of the mechanisms defining search

the solving process can be seen as a search tree s.t. :
» nodes are CSPs
» the root is the initial CSP

an arcis either:

s a constraint propagation phase
s or split phase

®
® CSP
—— constraint propagation
® —— splitting
[

constraint propagation and splitting are often joined to reduce trees

an arc is a split followed by constraint propagation

® CSP

[—— splitting
+ constraint propagation

» several search trees to solve a CSP, depending on
s constraint propagation
s Search-part
s Splitting :
s ordering of variables
s type of splitting (enumeration, bisection, ...)
« value selected (in case of enumeration)
» solutions with different search trees :
s Same solutions when look for all

s can be different when look for ONE solution

» efficiency and memory : huge differences
L Gonstain Programming Seareh .

Search algorithms

Place n queens on a n x n board so that they do not attack each other
Modelling :

» Variables : cy,....c,

one per column : the value of ¢; represents the line where the
qgueen is in the column

» Domains : [1..n]

Constraints :foric [1.n—1)and j € i + 1..n]
s not two queens on the same line : z; # z;
s not 2 queens on the same SW-NE diagonal : z; # x; +j — ¢

s not 2 queens on the same NW-SE diagonal : z; # x; +7 — j

NO constraint propagation phase

» full enumeration during a splitting phase
(since no propagation)

» generally : depth-first, left-first search
(i.e., exploration of the search tree)

4-queens by backtracking

]
BE & @ B B = B
] & 00 = %
. 0] T]
X Z X X A
o |8 | @ & & B 8] | @ O @ =
] = []
b L) 16 g &
] @]] =@]
X X X X X X X
1-11'.!1'-.1 ‘Ii'i'.l
C|]
® = DEEREOEC)]]
X X X X X X y

schema issued of Online guide to Constraint Programming. R. Bartak

Constraint Programming Search — p. 1

Forward checking
» split : enumeration

» constraint propagation :

» first time :
generally, complete propagation (AC-like algorithm)

s Inthe loop:

after each instanciation of a variable = : remove from
each variable y (not yet instanciated) values inconsistent
w.r.t. constraints containing x and y

e e

L I8
| L]

B
]
]

T

schema issued of Online guide to Constraint Programming. R. Bartak

Partial look ahead
» split : enumeration

» constraint propagation :

s firsttime :

generally, directed or complete propagation (directional
or AC-like algorithm)

s Inthe loop :
directional arc-consistency

l.e., propagation directed by variable ordering
(no fixed point)

Full look ahead
(or Maintaining Arc consistency = MAC)

» split : enumeration

» constraint propagation :
s first time :
generally, complete propagation (AC-like algorithm)
s Inthe loop :

arc-consistency (or hyper-arc consistency)
(fixed point of reductions)

L]

B

L i
F

schema issued of Online guide to Constraint Programming. R. Bartak

Constrained optimization

Optimisation = minimization or maximization

find
max f(x1,...,T,) maximization problem

or min f(xq,...,x,) minimization problem

under the constraints

ci(xg,. ,:I:,lﬁ)
Cm (27, afCZlm)

a smuggler has a 9 unit capacity knapsack. He wants to
smuggle : whisky, perfume, and cigarette packs. We have :

Product volume (in units) profit

whisky 4 15€
perfume 3 10€
cigarettes 2 7€

a travel is interesting if the smuggler gains at least 30 € .

What should he carry ?

Modelling :

» let W, P,C be the number of bottles of whisky, parfum and
packs of cigarettes

» constraint on capacity : 4W + 3P +2C' <9

»# constraint on profit : 15W + 10P + 7C' > 30

program :

1goal (W,P,C) :—

2 [(W,P,C]::[0..9],

3 4xW + 3%P + 2+xC #=< 9,

4 15xW + 10xP + 7%C #>= 30,
5 labeling([W,P,C]) .

answers :
» bound consistency : W € [0,2], P € [0,3],C € |0, 4]

» enumeration : (W, P,C') = (0,1, 3), (W, P,C) = (0, 3,0),
(W, P,C) = (1,1,1), (W, P,C) = (2,0,0)

Solution maximizing the profit ?

1goal (W,P,C) :—

2 [W,P,C]::[0..9],

3 4xW + 3xP + 2xC #=< 9,

4 15«W + 10xP + 7xC #>= 30,

5 labeling([W,P,C]).

6

7maxgoal : -

8 Profit #= 15xW + 10+xP + 7xC,
9 Loss #= -Profit,

10 minimize (goal (W,P,C), Loss),

11 write ([W,P,C,Profit]) .

Solution : Profit = 32, with (w,P,C)=(1,1,1)

branch and bound procedure : to maximize Profit
» search for a first solution : Prq
» add the constraint Profit > Pryq
» update current bound and best bound
® backtrack

» at the end, re-computation with the best bound

adding the constraint Profit > Prq
- pruning solutions with worse profit

detailed solution in ECL'PS¢ :

1 [eclipse 30]: maxgoal.

2 Found a solution with cost —-31
3 Found a solution with cost —-32
a+ [1, 1, 1, 32]

5 Yes (0.00s cpu)

before enumeration : W € [0,2], P € |0, 3],C € |0, 4]

W
P
C
31 30 32 30
currentbound (31) currentbound (32)
bestbound (31) — E#>31 bestbound (32) — E#>32

1l maximize (G,E) :— 1 apply_new_bound (_) .

2 get_min_value (G,E, M), 2 apply_new_bound (E) : -

3 E #= M, 3 retract (currentbound (B)),
4 call (G) . 4 asserta (bestbound (B)),

) . 5 E #> B

6 get_min_value (G,E,_) :— c apply éew bound (E)

7 apply_new_bound(E), y - - ’

8 once (G),

9 recordibetter_bound(E), 8 record _better bound(E) :—
10 fail. 9 (retract (bestbound (_))
11 10 -> true ; true),
12 get_min_value(_,_,M) :— 11 asserta (currentbound (E)) .
13 retract (bestbound (M)) .
14

save the best solution and the current solution as facts
the goal G must instanciate £ !

Search heuristics

» not relevant for solutions
(except when looking for ONE solution)

» crucial for efficiency

» heuristics at several levels :
s variable to split
s splitting mechanism (bisection, enumeration, ...)
s Where to split (bisection)

» Vvalues of variables (for enumeration)

» combination of heuristics

(e.g., mix selection with several criteria)
L ot Progemming Search —p.

» select the variable with the smallest domain
(fail first)

» select the variable with the largest domain
(reduce first)

» Sselect the most constrained variable

» most important variable in the problem
s biggest number of possible reductions (most constrained)

» select the smallest value
» select the largest value

» select the middle value

	Objectives
	Search trees
	CSP (recap)
	Constraint propagation (recap)
	Constraint solving framework (recap)
	Search trees (1)
	Search trees (2)
	Search trees (3)
	Search trees (4)
	Search algorithms
	n-Queens (recap)
	Backtracking (a la Prolog)
	4-queens by backtracking
	Forward checking
	4-queens by forward checking
	Partial look ahead
	Full look ahead
	4-queens by full look ahead
	Constrained optimization
	Constrained optimization problems
	Example: knapsack problem (1)
	Knapsack problem (2)
	Knapsack problem (3)
	Knapsack problem (4)
	Maximization
	Back on the smuggler (1)
	Back on the smuggler (2)
	code {maximize/2}
	Search heuristics
	Search heuristics
	Variable selection
	Value selection (enumeration)

