
Constraint Programming

Search
Eric MONFROY

Eric.Monfroy@inf.utfsm.cl

UTFSM, Valparaı́so, Chile and LINA, Nantes, France

Constraint Programming Search – p. 1

Objectives

recap : CSPs and solving CSPs

notion of search trees

discuss various search mechanism (for enumeration)

backtrack

forward checking

partial look ahead (maintenaing arc consistency –MAC)

full look ahead (maintenaing arc consistency –MAC)

discuss search mechanism for constrained optimization

discuss search heuristics

Constraint Programming Search – p. 2

Search trees

Constraint Programming Search – p. 3

CSP (recap)

A constraint satisfaction problem (CSP) is defined by :

a sequence of variables X = x1, . . . , xn with domains
D1, . . . , Dn (associated to the variables)

a set of constraints C1, . . . , Cl, each Ci on a sub-sequence
Yi of X

A solution of the CSP is a n-tuple d such that :

d ∈ D1 × · · · × Dn

and for each i, d[Yi] ∈ Ci

Constraint Programming Search – p. 4

Constraint propagation (recap)

replace a CSP by a CSP which is :

equivalent (same set of solutions)
“smaller” (domains are reduced)
“simpler” (constraints are reduced)

constraint propagation mechanism :
repeatedly reduce domains or constraints

incomplete solver

Constraint Programming Search – p. 5

Constraint solving framework (recap)

solve(CSP) :
while not finished do

pre-process
constraint propagation
if happy

then finished=true
else split

part-of search
endif

endwhile

where part-of search consists in calls to the solve function

Remark : part-of search is one of the mechanisms defining search

Constraint Programming Search – p. 6

Search trees (1)

the solving process can be seen as a search tree s.t. :

nodes are CSPs

the root is the initial CSP

an arc is either :

a constraint propagation phase
or split phase

Constraint Programming Search – p. 7

Search trees (2)

CSP

splitting

constraint propagation

Constraint Programming Search – p. 8

Search trees (3)

constraint propagation and splitting are often joined to reduce trees

an arc is a split followed by constraint propagation

+ constraint propagation

CSP

splitting

Constraint Programming Search – p. 9

Search trees (4)

several search trees to solve a CSP, depending on

constraint propagation

search-part

splitting :

ordering of variables
type of splitting (enumeration, bisection, . . .)
value selected (in case of enumeration)

solutions with different search trees :

same solutions when look for all

can be different when look for ONE solution

efficiency and memory : huge differences
Constraint Programming Search – p. 10

Search algorithms

Constraint Programming Search – p. 11

n-Queens (recap)

Place n queens on a n × n board so that they do not attack each other

Modelling :

Variables : c1, . . . , cn

one per column : the value of ci represents the line where the
queen is in the column

Domains : [1..n]

Constraints : for i ∈ [1..n − 1) and j ∈ i + 1..n]

not two queens on the same line : xi 6= xj

not 2 queens on the same SW-NE diagonal : xi 6= xj + j − i

not 2 queens on the same NW-SE diagonal : xi 6= xj + i − j

Constraint Programming Search – p. 12

Backtracking (a la Prolog)

no constraint propagation phase

full enumeration during a splitting phase
(since no propagation)

generally : depth-first, left-first search
(i.e., exploration of the search tree)

Constraint Programming Search – p. 13

4-queens by backtracking

schema issued of Online guide to Constraint Programming. R. Barták

Constraint Programming Search – p. 14

Forward checking

Forward checking

split : enumeration

constraint propagation :

first time :
generally, complete propagation (AC-like algorithm)

in the loop :
after each instanciation of a variable x : remove from
each variable y (not yet instanciated) values inconsistent
w.r.t. constraints containing x and y

Constraint Programming Search – p. 15

4-queens by forward checking

schema issued of Online guide to Constraint Programming. R. Barták

Constraint Programming Search – p. 16

Partial look ahead

Partial look ahead

split : enumeration

constraint propagation :

first time :
generally, directed or complete propagation (directional
or AC-like algorithm)

in the loop :
directional arc-consistency
i.e., propagation directed by variable ordering
(no fixed point)

Constraint Programming Search – p. 17

Full look ahead

Full look ahead
(or Maintaining Arc consistency = MAC)

split : enumeration

constraint propagation :

first time :
generally, complete propagation (AC-like algorithm)

in the loop :
arc-consistency (or hyper-arc consistency)
(fixed point of reductions)

Constraint Programming Search – p. 18

4-queens by full look ahead

schema issued of Online guide to Constraint Programming. R. Barták

Constraint Programming Search – p. 19

Constrained optimization

Constraint Programming Search – p. 20

Constrained optimization problems

Optimisation = minimization or maximization

find
max f(x1, . . . , xn) maximization problem

or min f(x1, . . . , xn) minimization problem

under the constraints










c1(x
1

1
, . . . , x1

k1
)

. . .

cm(xm
1
, . . . , xm

km

)

Constraint Programming Search – p. 21

Example : knapsack problem (1)

a smuggler has a 9 unit capacity knapsack. He wants to
smuggle : whisky, perfume, and cigarette packs. We have :

Product volume (in units) profit

whisky 4 15¤
perfume 3 10¤
cigarettes 2 7¤

a travel is interesting if the smuggler gains at least 30¤ .

What should he carry ?

Constraint Programming Search – p. 22

Knapsack problem (2)

Modelling :

let W,P,C be the number of bottles of whisky, parfum and
packs of cigarettes

constraint on capacity : 4W + 3P + 2C 6 9

constraint on profit : 15W + 10P + 7C > 30

Constraint Programming Search – p. 23

Knapsack problem (3)

program :
1goal(W,P,C):-
2 [W,P,C]::[0..9],
3 4*W + 3*P + 2*C #=< 9,
4 15*W + 10*P + 7*C #>= 30,
5 labeling([W,P,C]).

answers :

bound consistency : W ∈ [0, 2], P ∈ [0, 3], C ∈ [0, 4]

enumeration : (W,P,C) = (0, 1, 3), (W,P,C) = (0, 3, 0),
(W,P,C) = (1, 1, 1), (W,P,C) = (2, 0, 0)

Constraint Programming Search – p. 24

Knapsack problem (4)

Solution maximizing the profit ?
1 goal(W,P,C):-

2 [W,P,C]::[0..9],

3 4*W + 3*P + 2*C #=< 9,

4 15*W + 10*P + 7*C #>= 30,

5 labeling([W,P,C]).

6

7 maxgoal:-

8 Profit #= 15*W + 10*P + 7*C,

9 Loss #= -Profit,

10 minimize(goal(W,P,C),Loss),

11 write([W,P,C,Profit]).

Solution : Profit = 32, with (W,P,C)=(1,1,1)

Constraint Programming Search – p. 25

Maximization

branch and bound procedure : to maximize Profit

search for a first solution : Pr1

add the constraint Profit > Pr1

update current bound and best bound

backtrack

at the end, re-computation with the best bound

adding the constraint Profit > Pr1

: pruning solutions with worse profit

Constraint Programming Search – p. 26

Back on the smuggler (1)

detailed solution in ECLiPSe :

1 [eclipse 30]: maxgoal.
2 Found a solution with cost -31
3 Found a solution with cost -32
4 [1, 1, 1, 32]
5 Yes (0.00s cpu)

Constraint Programming Search – p. 27

Back on the smuggler (2)

before enumeration : W ∈ [0, 2], P ∈ [0, 3], C ∈ [0, 4]

01234 01234 01234 01234 01234 01234 01234 01234

currentbound(31)

E#>31

currentbound(32)

bestbound(32) E#>32bestbound(31)

1 20

0 1 2 0 1 2 3 0 1 2 3

01234 01234C

P

W

01234 01234

3

30 3031 32

Constraint Programming Search – p. 28

maximize/2

1 maximize(G,E):-
2 get_min_value(G,E,M),
3 E #= M,
4 call(G).
5
6 get_min_value(G,E,_):-
7 apply_new_bound(E),
8 once(G),
9 record_better_bound(E),
10 fail.
11
12 get_min_value(_,_,M):-
13 retract(bestbound(M)).
14

1 apply_new_bound(_).
2 apply_new_bound(E):-
3 retract(currentbound(B)),
4 asserta(bestbound(B)),
5 E #> B,
6 apply_new_bound(E).
7
8 record_better_bound(E):-
9 (retract(bestbound(_))
10 -> true ; true),
11 asserta(currentbound(E)).

save the best solution and the current solution as facts
the goal G must instanciate E !

Constraint Programming Search – p. 29

Search heuristics

Constraint Programming Search – p. 30

Search heuristics

not relevant for solutions
(except when looking for ONE solution)

crucial for efficiency

heuristics at several levels :

variable to split

splitting mechanism (bisection, enumeration, . . .)

where to split (bisection)

values of variables (for enumeration)

combination of heuristics
(e.g., mix selection with several criteria)

Constraint Programming Search – p. 31

Variable selection

select the variable with the smallest domain
(fail first)

select the variable with the largest domain
(reduce first)

select the most constrained variable

most important variable in the problem
biggest number of possible reductions (most constrained)

Constraint Programming Search – p. 32

Value selection (enumeration)

select the smallest value

select the largest value

select the middle value

Constraint Programming Search – p. 33

	Objectives
	Search trees
	CSP (recap)
	Constraint propagation (recap)
	Constraint solving framework (recap)
	Search trees (1)
	Search trees (2)
	Search trees (3)
	Search trees (4)
	Search algorithms
	n-Queens (recap)
	Backtracking (a la Prolog)
	4-queens by backtracking
	Forward checking
	4-queens by forward checking
	Partial look ahead
	Full look ahead
	4-queens by full look ahead
	Constrained optimization
	Constrained optimization problems
	Example: knapsack problem (1)
	Knapsack problem (2)
	Knapsack problem (3)
	Knapsack problem (4)
	Maximization
	Back on the smuggler (1)
	Back on the smuggler (2)
	code {maximize/2}
	Search heuristics
	Search heuristics
	Variable selection
	Value selection (enumeration)

