Constraint Programming:

Global Constraints and Reified
Constraints

Eric MONFROY

Eric.Monfroy@inf.utfsm.cl

UTFSM, Valparaiso, Chile and LINA, Nantes, France

» reified constraints
s why are they useful ?
s Important modelling and solving efficiency
s some well-known examples
» Qlobal constraints :
s why are they useful ?
s Important modelling and solving efficiency

s some well-known examples

Reified constraints

form of the constraint :
01 < 02

where (', and C5 are two constraints.

Semantics : the constraint C'; is equivalent to the constraint (s,
l.e., C1 and C5 have the same truth value

o (' is violated iff C, is violated
o () is satisfiable iff C, is

» otherwise, C; < (s is suspended and woken-up when one
of the variables of C'; or (5 is modified.

» implementation : difficult

» must be able to test whether a constraint is “implied” by the
store of constraints
— notion of entailment

» In practice :
reification limited to some “primitives” constraints

alsoexistsas:Cy —

constraint of the form :
Cl #<:> CQ

where (', and (), are two arithmetic constraints.

semantics :
o (' iIsviolated iff (5 is
o () is satisfiable iff C5 is

» otherwise, C # <=> () is suspended and woken-up as
soons as the domain of one of the variables of C'; or (s Is
modified.

constraint of the form :
B #<=> (C

where B is a Boolean variable (domain [0, 1]) and C'is a
constraint

semantics : verified if the equivalence is verified (the constraint
C' can be violated)

o Bis0iff C is false
o Bis 1iff Cistrue
s if C'is unknown, B € {0,1}

Example of use : either

1% Cl true or C2Z2 true, but not both
2elther (C1l,C2) :—

3 Bl #<=> C1,
4 B2 #<=> C2,
5 Bl + B2 #=1.

Example of use : absolute value

1% AbsT 1s either +T or -T
2abs (T, AbsT) :—

3 T #>= 0 #<=> AbsT #= T,
4 T #< 0 #<=> AbsT #= -T.

Example of use : absolute value 2

1% AbsT 1s either +T or -T
2abs (T, AbsT) :—

3 T #>= 0 #<=> B,

4 AbsT #= 2+xBxT -T.

Global constraints

Motivations :

» reduce the gap between constraints issued from modelling,
and constraints available in the language

» to ease formulating complexe global conditions that are not
easily formulated with the structures of the language

» to increase domain reduction capacity
(stronger consistency, problem of (n,k)-consistencies)

Setting up :

» constraints that appear often in practice
(all_diff, cycle, ...)

» constraints that are the key-point of a type of application
(specific flow constraint, max-flow, ...)

» need specific algorithm for domain reduction

— efficiency, and thus usefulness depending on the
algorithm

sequencing problem :

speaker beginning end

John 3
Mary
Gregory
Suzan
Paul
Helen

— WD W
o~ PO P,H~,O

» asingle room
» each talk last one hour
— sequencing of presentations ?

Modelling
» avariable = the “hour” of a speach
» no overlapping of speaches = not 2 talks at the same time

s Je[3,6],M € [3,4],G € [2,5],
S € 2,4], P € [3,4],H € [1,6],
alldiff([J, M, G, S, P, H])

formulation by conjunction of disequations :

» costly (=1 constraints)

o Inefficient
r1 € {1,2}, 29 € {1,2}, 23 € {1, 2}, alldiff(|zq, 22, 23])

enforcing arc consistency -» generally, no reduction
In the previous example :
» arc consistency (binary) : no reduction

» bound consistency (n-ary) : not consistent

M = 4 and P = 3 (or vice-versa), 3 must be deleted from J
- reduction

let K be a set of variables, and | K| the cardinamity of K. Consider :

dom(K) = (] D

r, €K
Theorem[from Hall, 1935] the constraint a11diff(zy,...,z,) over the
variables x4, ..., x, with domains D1, ..., D,, has a solution iff there does not
exists a sub-set K C {z1,...,x,} s.1.:
[K| > |dom(K)|

Idea : if there exists a set K s.t. |K| = |[dom(K)|, we know that the variables
of K will use all the values from dom(K)

- these values can be removed from variables not in K

Examples (previous example) : K = {M,S, P} and K = {M, P}

Hall interval Given the variables x4, ..., z,, with domains
D+,...,D, and an interval I, letvars(/) = {z; | D; C I}.
The interval I is a Hall interval iff |I| = |vars([])|.

Proposition the constraint a11diff(xy,...,z,) is bound
consistent w.rt. Dy, ..., D, iff

» for each interval I, |vars(I)| < |1,

» and if for each Hall interval .J and each variable z;, we have :
either D; C J,or {min D;, max D;} N J = &

Process in 2 phases : update of left bounds and update of right bounds
ordering of variables : increasing ordering on right bounds
determining Hall intervals

» modification of right bounds

Mary = =
Suzan
Paul @
Gregory : : : :
John
Helen

1 update_min(x=x_1...x_n)
2 begin
3 sort (x)

4 for i=1 to n do

5 min[i]=min(x[1i])
6 max[i]=max(x[1])
7 done

8 for i=1 to n do

9 Insert (1)
10 done
11 end

12
13 IncrMin(a, b, 1)
14 % [a,b] Intervalle de Hall

15 begin

16 for j=i+1 to n do

17 if min[j] >= a then
18 x[3] #>= b+l

19 fi

20 done

21 end

1 Insert (1)
2 begin

3 uli]=min[i]

4 for jJ=1 to i-1 do

5 if min[j]l<min[i] then

o ulJjl++

7 if ul[j]>max[i] then Fail
8 if ul[jl=max[i] then

9 IncrMin (min[Jj],max[]], 1)
10 fi
11 else
12 uli]++
13 fi
14 done

15 if ul[i]l>max[1i] then Fail
16 if ul[i]l=max[1i] then

17 IncrMin(min[i],max[1], 1)
18 fi
19 end

primitive algorithm in O(n?). a refined version in O(nlogn)

alldiff/2 : graph

possibility to enforce a stronger consistency (hyper-arc
consistency) by searching a maximum coupling in the graph of
the values of the problem

John Mary Gregory Suzan Paul Helen

complexity : O(m+/n), m the number of arcs in the graph

Constraint Programming: Global Constraints and Reified Constraints — p. 2
!

» graph : bipartite (values, variables)

» coupling : not two arcs on the same node

» maximum : the coupling cannot be extended

» If a variable is not connected : insatisfiable constraint

» If a value is not connected : several solutions

» element(k,|cy,...,cnl, 7).
the variable x must be equal to ¢,

® atmost (N, List, V)
at most N variables of .i st must be equal to the value v

» gcec(|xy, .- xnl, v, vkl g1, -5 Qr))
the number of variables from [x4, ..., x,] that have the value

v; must be equal to g;
(generalization of a11diff)

» cycle(n,|[S1, .-, Sm])-
the list |sq, ..., s,,] must be a permutation of {1,...,m}
constituting n distinct cycles :

s Vie[l,m]:1<s;, <m

s SiF S ViFE]

s let C; be a set of integers defined by :
s 1€ C;

P iijCithenSj c C}
(so, n distinct sets are defined)

o Example : cycle(3,1[1,3,4,2,6,5]).
4 in 3rd position, thus an arc from 3 to 4, ...

@

1

AN

Travelling salesman problem :

» n sites must be visited exactly once
» there are k travelling salesmen
» distances c;; between sites ¢ and j are known

— find the round of each salesman which minimizes the total
covered distance

Modelling : z; is the site to visit after the site ¢, y,; the cost
(distance) from i.

min Yy ",y
st. z;e{l,...,n}, forie {1,... n}
Y; € {czl, ., Cin}t, fOri e {1 N}

element(z;, [ci1, ..., Cinl, ¥i), forz e{l,...,n}
cycle(k, [x1,...,x,])

» {ci1,...,cin} 2 cost from city ¢ to the n other cities
k :number of cycles needed (number of travelling salesmen)
® 11,...,xz, .Setofcities

» element(z;, [ci1, ..., cinl,yi) - the cost from city ¢ to city x; (i.e., y;)
Is an element of the list of costs from city ¢ to another city

» cycle(k,|z1,...,xy,]) : all cities must be visited in £ distinct cycles

» min) ", y; : money, money !!!the total cost to visit all cities must
be minimized

cumulative([O1,...,0u],[D1,..., Dyl |R1,..., Ryl L)
the constraint is verified iff

\V/iENZ Z Rng

j10;<i<0;+D;—1

interprétation : allocation of a single resource

s |Oq,...,0,,] : starting date of the m tasks

s |Dy,...,D,] :duration of the m tasks

» |Ry,..., R,;] : number of resource units required for each
task

o L :total number of resource units available at each moment

there are 13 resource units available at each moment

we have the following tasks :

task t1 1o t3 tg4 15 tg 17
duration 16 6 13 7 5 18 4
resourceunits 2 9 3 7 10 1 11

Question : for all the tasks, find starting and ending dates that
minimize the total time of resource utilization

1 schedule (LO, End) :—

2 LO = [01,02,03,04,
3 05,006,077,

4 LD = [1l6,06,13,7,

5 5,18,417,

6 LR = 12,9,3,7,10,
7 1,117,

8 LE = [El,E2,E3,E4,
9 E5,E6,E7],
10 End in 1..30,

11 domain (LO, 1, 30),
12 domain (LE, 1, 30),
13 01 + 1l6 #= EI1,

14 02 + 6 #= E2,

15 03 + 13 #= E3,

< o U b w N

04 + 7 #= EA4,
05 + 5 #= E5,
06 + 18 #= Eo,

o7 + 4 #= E7,

maximum (End, LE) ,
cumulative (LO, LD, LR, 13),
minimize (labeling (LO) , Enc

1:-1ib (fd), lib(fd_global), lib (cumulative) .
2

3 schedule (LO, End) :—

4 % starting time

5 LO = [01,02,03,04,05,06,07],

6

7 %duration of tasks

s LD = [l6,6,13,7,5,18,4],

9

10 % resources needed by each task
1 LR = 1[2,9,3,7,10,1,117,

12

13 % ending times

14 LE = [El,E2,E3,E4,E5,E6,E7],

15

16 % time allowed

17 End:: [1..30],

18 LO:: [1..30],

19 LE:: [1..30],

O J o U b w DD

e e e e e e
g4 o0 O W N P O

% endling time 1s starting time + duration
Ol + 1lo #= EI1,

02 + 6 #= E2,
O3 + 13 #= E3,
04 + 7 #= EA4,
O5 + 5 #= E5,
06 + 18 #= Eo,
O7 + 4 #= ET,

[¢)

% constraint End to be the maximum element in the list
maxlist (LE,End),

% start, duration, resource units, resource limits
cumulative (LO, LD, LR,13),

$ find the values that minize LO
minimize (labeling (LO),End) .

1 [eclipse 22]: schedule (LO,E).
2Found a solution with cost 28
3Found a solution with cost 27
4 Found a solution with cost 23
5

6LO = [1, 17, 10, 10, 5, 5, 1]
T7E = 23

8Yes (0.07s cpu)

	Objectives
	Reified constraints
	Reified constraints (1)
	Reified constraints (2)
	Reified constraints (ECLiPSe)
	reified constraints (GNU Prolog)
	Reified constraints: example
	Reified constraints: example
	Reified constraints: example
	Global constraints
	Global constraints
	Global constraints
	code {alldiff/2}: example (1)
	code {alldiff/2}: example (2)
	code {alldiff/2}
	code {alldiff/2}: Hall
	code {alldiff/2}: Hall interval
	code {alldiff/2}: mechanism
	code {alldiff/2}: algorithm (based on Hall)
	code {alldiff/2}: graph
	code {alldiff/2}: idea of algorithm (graph)
	Other global constraints
	code {cycle/2}
	code {cycle/2}
	Example (1)
	Example (1)
	Exemple (2)
	code {cumulative/4}
	Example
	Program (GNU Prolog)
	Program (eclipse {})
(1)
	Program (eclipse {})
(2)
	Solution

