From complex values to objects

A database perspective eNF2

Guillaume Raschia — Nantes Université
Last update: October 4, 2022

eNF2 = Extended NF2 Model

eNF? Data Model - Extend NF2 model by introducing

- various type constructors and
Classes - allowing their free combination

- Type constructors:

Hierarchy & Subtyping - set {.}: create a set type of nested type

- tuple (.): tuple type of nested type
Identifiers & Relationships - list (.): list type of nested type

- bag {.[}: bag—multi-set—type of nested type
As a Last Thought - array [.],: array type of nested type

- map (.—.): key/value dictionary type of nested types

- First two are already available in RM and NF?

The eNF? Data Model (cont'd)

The Evolution of Data Models

b.tw. of sort comparison

- Relational Model 7:=(A4;:dom,..., Ay:dom)
- NF? T:=dom | (Ay:7,..., Ag:7) | {7}

- eNF? T:=dom | (A1:7,.. , Ay | {7} | (D) | [7]n | {7} | (T —=7)

Flavors by restrictions, such like nested relations for NF?

Comparison of Type Constructors

Type Dupl. Bounded Order Access by
Set {.} X X X Iterator
Bag {.[} v X X Iterator
Map (.—.) 4 X 4 Key
List (.) v X v Index/lIter.
Array [.],, v v v Index
Tuple (.) v v v Name

- All but tuple type constructors are collection data types

- Tuple type constructor is a composite data type

Type Constructors

-4} O e A} (=) aka. Parametrizable Data Types
- Construction based on the input data type (inner dot)

- Define their own operations for access and modification
- Similar to pre-defined parametrizable data types of programming languages
- Genericsin Java java.util
- Templates in C++
- Duck typing in Python
- Type inference in OCaml

Type Constructors in SQL

+ MULTISET
- ROW
- ARRAY

SQL ARRAY Type Constructor

- Introduced within SQL-99

CREATE TABLE Contacts(
Name VARCHAR(40),
PhoneNumbers VARCHAR(20) ARRAY[4],
Addresses AddressType ARRAY[3]);

SQL ARRAY Type Constructor (cont’d)

- Alternative access to elements by unnesting of collection

SELECT Name, Tel.=*

FROM Contacts,
UNNEST(Contacts.PhoneNumbers) WITH ORDINALITY
AS Tel(Phone, Position)

WHERE Name='Doe';

Further operations

- size CARDINALITY()

- concatenation | |

SQL ARRAY Type Constructor (cont’d)

- Array type constructor with record insertion
- Access to elements by index &

INSERT INTO Contacts
VALUES('Doe',
ARRAY['1234"','5678"'],
ARRAY[ROW('50 Otages', 'Nantes', '44000')]);

UPDATE Contacts
SET PhoneNumbers[3]='91011"
WHERE Name='Doe';

Classes

(Yet Another) Popular Restriction of eNF?

Class

The outermost type constructor is a tuple

- A complex value conforms to sort 7 of an object structure: it is an instance of
its class

- Type constructors are building blocks: tuple, set, list, array, bag, dictionary
- eNF? is the reference model
- Implementation in SQL3 b.t.w. of User-Defined Types

Encapsulated Object vs. Row

- Bars is an unary relation: tuples are objects (with 2 components)
- Grant access privilege to the components

- Type constructor

INSERT INTO Bars
VALUES BarType('Le Flesselles',
AddressType('50 Otages',
"Nantes',
"44000'));

User-Defined Types in SQL3

UDT's occur at two levels:

- Columns of relations
- Tuples of relations

CREATE TYPE AddressType AS (Street CHAR(50),
City CHAR(50),
Zip CHAR(5));

CREATE TYPE BarType AS (Name CHAR(20),
Addr AddressType);

CREATE TABLE Bars OF BarType (PRIMARY KEY (Name));

12

Encapsulated Object vs. Row (cont’d)

- Observer A() and Mutator A(v) for each attribute A

- Calls to implicit getters and setters, redefinition allowed

UPDATE Bars
SET Bars.Addr.Street('Allée Flesselles')
WHERE Bars.Name = 'Le Flesselles';

SELECT B.Name, B.Addr FROM Bars B;

Excerpt of the result set:
BarType('Le Flesselles’ AddressType (‘Allée Flesselles’ 'Nantes’, '44000'))

A Word About eNF? in Oracle

- Supports a majority of standard features as part of its object-relational
extension—since 8i
- Multi-set type constructor as NESTED TABLE type
- Array type constructor as VARRAY type
- Object (and Tuple) type constructor as OBJECT type

- Uses different syntax than ANSI/ISO SQL standard...

15

Alternative Languages

Practical definition of object structures

OR-Databases
OR-Databases
00-Databases

Relational Databases

- DDL part of SQL3

- DDL part of [your favorite or-dbms]
- Object Description Language (ODL)
- Entity/Relationship (E/R) Model

- Unified Modeling Language (UML) 00-PL
- (00-)PL 0-R Mapping to Rel. Databases

Object Behavior

Method := signature + body
Operation that applies to objects of a given type

- f(z) is invoked by sending a message to object o: 0.f(3)
- Method

- returns single value (may be a collection)

- is typically written in general-purpose PL

- could have unexpectable side-effect

- Implementation in SQL3
Disclaimer

Insight into object behavior is out of the scope of this series of slides
Corollary: main focus is the structural part

Example in ODMG ODL

class Bar {
attribute string name;
attribute struct addr {string street,
string city,
int zip} address;
attribute enum lic {full, beer, none} license;
attribute set< string > drinks;

}

- Primitive types: int, real, char, string, bool, and enum
- Composite type: structure
- Collection types: set, array, bag, list, and dictionary

Hierarchy & Subtyping

Multiple Inheritance within ODL

class Person {
attribute string name;
attribute character gender; }

class Teacher extends Person {...}
class Student extends Person {...}

class TeachingFellow extends Teacher, Student {
attribute string degree; }

- How many names and genders for a single TF?!

20

Subtyping within SQL

UNDER clause with NOT FINAL statementin the base type

CREATE TYPE PersonType AS (

Name VARCHAR(20) NOT NULL,
DateOfBirth DATE,
Gender CHAR)

NOT FINAL;

CREATE TYPE StudentType UNDER PersonType AS (
StudentID VARCHAR(10),
Major VARCHAR(20)

DE

CREATE TABLE Student OF StudentType;

Extension in ODL

- Extent declaration: named set of objects of the same type
- Class ~ Schema of a relation
- Extent ~ Instance of a relation

- Optional Key declaration: unicity constraint

class Course (extent Courses
keys id, (dept, title))
Yooolf

SELECT c.id, c.title FROM Courses c
WHERE c.dept="'Computer Science';

- Object Query Language (0QL): SQL-like for pure object db’s
- Alias for extent (c) is mandatory: typical class member ”n

“Subtabling” within SQL

No native extension for types in SQL: create table for each UDT

Table inheritance!

CREATE TABLE Person OF PersonType;
CREATE TABLE Student OF StudentType UNDER Person;

- A Person row matches at most one Student row
- A Student row matches exactly one Person row
- Inherited columns are inserted only into Person table

- Delete Student row deletes matching Person row

22

Basics of Relational Mapping of Class Hierarchy

- Classes are all distinct tables

- Keys must be defined

- The three ways to cope with class hierarchy:
1. E/R-style: one partial table by subclass with key+specific fields
2. 0O-style: one full table by subclass
3. Null-style: all subclasses embedded within one single base table

Example

Person(name, gender) Person(name, gender)
Teacher(name, dpt) Teacher(name, gender, dpt)

(name (
Student(name, major) Student(name, gender, major)

Person(name, gender, dpt, major)

24

“Subtabling” within SQL (cont’d)

- Default: retrieve the extension 7*(Person) with all subtable rows

SELECT P.Name FROM Person P;

- ONLY clause: retrieve the proper extension m(Person)

SELECT P.Name FROM ONLY (Person) P;

Open issues

Multiple-table inheritance? Propagation of referential integrity constraints?
Index? ...

23

ID’s & Relationships

Object Identity

- Persistent objects are given an Object IDentifier (OID)

- Used to manage inter-object references
- OID’s are

- unique among the set of objects stored in the DB
- immutable even on update of the object value
- permanent all along the object lifecycle

- 0ID’s are not based on physical representation/storage of object (i.e., #
ROWID or TID, # @object)

25

Values by Example

In the class-oriented restriction of eNFZ, values ¥ are

- tuple-based complex values:

(01, (title : 'cs123", desc : .))

(09, (title : 'cs987',desc : .)))

(03, (name : 'Doe’, major : ‘cs’, year : ‘junior’, enrol : {01, 02}))
- OID to achieve aliasing: (oq4, 03)

- nil for nullable reference: (o, nil)

27

Ultimate Object Representation

Definition (Object)
An object is a pair (o,9), with o being the OID and 9 is the value

- Object identity is given by the OID

- Object value is not required to be unique

26

Composition Graph

Structural representation of an object as a labeled directed graph
struct(o) := G(V, E)
where

- Vertices V. C OUdom are OID’s and atomic values
- Edges F C V x Ax V are labeled with symbols from A, the set of field names

- Draw an edge (o;, z) whenever z € {o0;, a} occurs in the value of o;, a being an
atomic value in dom

28

Composition Graph (cont’d)

Example for object o3

Doe 01 —» 5123
name major year
cs 03 02 -
\ - desc enrol
junior €s987

Extend to a—cyclic—graph: teacher — dpt — employees

Statement

Object db is mainly a huge persistent relational graph

29

SQL3 References

Principle
If 7 is a type, then REF(7) is a type of references to +

- Weak translation of OID’s into SQL world
- Unlike OID’s, a REF is visible although it is gibberish

CREATE TYPE SellType AS (
bar REF(BarType) SCOPE Bar,
beer REF(BeerType) SCOPE Beer,
price FLOAT);

31

Object Expansion

Definition (Expansion)

Expansion of an object o, denoted expand(o), is the—possibly infinite—tree
obtained by replacing each object by its value recursively

Example of expand(o3)

U3

/N

91

- Infinite expansion: cycle in the composition graph

- Deep equality can be checked from expansion traversal

30

Following REF’s and Dereferencing

CREATE TABLE Sells OF SellType (
REF IS sellID SYSTEM GENERATED,
PRIMARY KEY (bar, beer));

SELECT DEREF(s.beer) AS beer
FROM Sells s
WHERE s.bar->name = ﬂLe Flessellesm;

- It would have required a join or nested query otherwise

32

Translate into Relationships in ODL

- Operate at the type system—class definition—level
- Connect entities/classes/types one with each other
- Binary relationships as partial multi-valued functions

- Decide for the direction: contains or isIncluded or both

ODL example

class Sell {
attribute real price;
relationship Bar theBar;
relationship Beer theBeer;

}

35

0QLl features (cont'd)

- Result type is basically {|(.)[}

- Complex result type can be constructed in query

SELECT DISTINCT struct(e.name,
projects:(
SELECT p.projectId
FROM e.participates_in AS p))
FROM Employees AS e;

- Result type:

{(name:string, projects: {|int]})}

85

OQL features

- Query can include path expressions rather than joins:

SELECT s.beer.name, s.price
FROM Sell
WHERE s.bar.name='Le Flesselles';

- Alternative query

SELECT s.beer.name, s.price
FROM Bar b, b.beerSold s
WHERE b.name='Le Flesselles';

- Collections cannot be further extended by dot notation
- Collections can be part of the FROM clause

34

Epilogue

From Lineland to Spaceland

Object-Oriented paradigm brings to the—relational—data world

- Mashup of:
1. Databases
2. 00 Programming Languages
3. Conceptual/Semantic Modeling

- Practical approaches to contemporary issues
- Lack of strong mathematical foundations

36

00-DBMS vs. OR-DBMS vs. O/R Mapping

Relation as first-class citizen?

- Yes: SQL3

- PostgreSQL, IBM DB2, Oracle, Microsoft SQL Server, Sybase
- No: ODMG ODL+0QL

- db4o, Versant, ObjectStore, ObjectDB, Native Queries, LINQ
- Don't care: PL coupled with (R-)DBMS Mapping Framework

- Hibernate, JPA, DO, Codelgniter, Symfony, Django, EF

38

Impedance Mismatch Revisited

Find a sunset picture taken within a coastal zone by a professional photographer

SELECT p.id

FROM slides p, area a, a.landmarks 1

WHERE sunset (p.picture) AND
p.owner.occupation = 'photographer' AND
a.type = 'coastal' AND
contains (p.caption, l.name) ;

- User-defined functions: sunset() contains()
- Path expression: P.owner.occupation

- Collection as table: area.landmarks

37

