
From complex values to objects
A database perspective

Guillaume Raschia — Nantes Université
Last update: October 4, 2022

1

Contents

eNF² Data Model

Classes

Hierarchy & Subtyping

Identifiers & Relationships

As a Last Thought

2

eNF²

The eNF2 Data Model

eNF2 = Extended NF2 Model

• Extend NF2 model by introducing
• various type constructors and
• allowing their free combination

• Type constructors:
• set {.}: create a set type of nested type
• tuple h.i: tuple type of nested type
• list (.): list type of nested type
• bag {|.|}: bag—multi-set—type of nested type
• array [.]n : array type of nested type
• map (.! .): key/value dictionary type of nested types

• First two are already available in RM and NF2

3

The eNF2 Data Model (cont’d)

The Evolution of Data Models
b.t.w. of sort comparison

• Relational Model ⌧ := hA1 :dom, . . . ,Ak :domi
• NF2 ⌧ := dom | hA1 :⌧, . . . ,Ak :⌧i | {⌧}
• eNF2 ⌧ := dom | hA1 :⌧, . . . ,Ak :⌧i | {⌧} | (⌧) | [⌧]n | {|⌧ |} | (⌧!⌧)

Flavors by restrictions, such like nested relations for NF2

4

Type Constructors

• h.i {.} (.) [.]n {|.|} (.! .) a.k.a. Parametrizable Data Types
• Construction based on the input data type (inner dot)
• Define their own operations for access and modification
• Similar to pre-defined parametrizable data types of programming languages

• Generics in Java java.util
• Templates in C++
• Duck typing in Python
• Type inference in OCaml

5

Comparison of Type Constructors

Type Dupl. Bounded Order Access by

Set {.} 8 8 8 Iterator
Bag {|.|} 4 8 8 Iterator
Map (.! .) 4 8 8 Key
List (.) 4 8 4 Index/Iter.
Array [.]n 4 4 4 Index

Tuple h.i 4 4 4 Name

• All but tuple type constructors are collection data types
• Tuple type constructor is a composite data type

6

Type Constructors in SQL

• MULTISET
• ROW
• ARRAY

7

SQL ARRAY Type Constructor

• Introduced within SQL-99

CREATE TABLE Contacts(
Name VARCHAR(40),
PhoneNumbers VARCHAR(20) ARRAY[4],
Addresses AddressType ARRAY[3]);

8

SQL ARRAY Type Constructor (cont’d)

• Array type constructor with record insertion
• Access to elements by index k

INSERT INTO Contacts
VALUES('Doe',

ARRAY['1234','5678'],
ARRAY[ROW('50 Otages', 'Nantes', '44000')]);

UPDATE Contacts
SET PhoneNumbers[3]='91011'
WHERE Name='Doe';

9

SQL ARRAY Type Constructor (cont’d)

• Alternative access to elements by unnesting of collection

SELECT Name, Tel.*
FROM Contacts,

UNNEST(Contacts.PhoneNumbers) WITH ORDINALITY
AS Tel(Phone, Position)

WHERE Name='Doe';

Further operations

• size CARDINALITY()
• concatenation ||

10

Classes

(Yet Another) Popular Restriction of eNF2

Class
The outermost type constructor is a tuple

• A complex value conforms to sort ⌧ of an object structure: it is an instance of
its class

• Type constructors are building blocks: tuple, set, list, array, bag, dictionary
• eNF2 is the reference model
• Implementation in SQL3 b.t.w. of User-Defined Types

11

User-Defined Types in SQL3

UDT’s occur at two levels:

• Columns of relations
• Tuples of relations

CREATE TYPE AddressType AS (Street CHAR(50),
City CHAR(50),
Zip CHAR(5));

CREATE TYPE BarType AS (Name CHAR(20),
Addr AddressType);

CREATE TABLE Bars OF BarType (PRIMARY KEY (Name));

12

Encapsulated Object vs. Row

• Bars is an unary relation: tuples are objects (with 2 components)
• Grant access privilege to the components
• Type constructor

INSERT INTO Bars
VALUES BarType('Le Flesselles',

AddressType('50 Otages',
'Nantes',
'44000'));

13

Encapsulated Object vs. Row (cont’d)

• Observer A() and Mutator A(v) for each attribute A
• Calls to implicit getters and setters, redefinition allowed

UPDATE Bars
SET Bars.Addr.Street('Allée Flesselles')
WHERE Bars.Name = 'Le Flesselles';

SELECT B.Name, B.Addr FROM Bars B;

Excerpt of the result set:
BarType(’Le Flesselles’, AddressType (’Allée Flesselles’, ’Nantes’, ’44000’))

14

A Word About eNF2 in Oracle

• Supports a majority of standard features as part of its object-relational
extension—since 8i

• Multi-set type constructor as NESTED TABLE type
• Array type constructor as VARRAY type
• Object (and Tuple) type constructor as OBJECT type

• Uses different syntax than ANSI/ISO SQL standard…

15

Object Behavior

Method := signature + body
Operation that applies to objects of a given type

• f (x) is invoked by sending a message to object o: o.f (3)
• Method

• returns single value (may be a collection)
• is typically written in general-purpose PL
• could have unexpectable side-effect

• Implementation in SQL3

Disclaimer
Insight into object behavior is out of the scope of this series of slides
Corollary: main focus is the structural part

16

Alternative Languages

Practical definition of object structures

• DDL part of SQL3 OR-Databases
• DDL part of [your favorite or-dbms] OR-Databases
• Object Description Language (ODL) OO-Databases
• Entity/Relationship (E/R) Model Relational Databases
• Unified Modeling Language (UML) OO-PL
• (OO-)PL O-R Mapping to Rel. Databases
• …

17

Example in ODMG ODL

class Bar {
attribute string name;
attribute struct addr {string street,

string city,
int zip} address;

attribute enum lic {full, beer, none} license;
attribute set< string > drinks;

}

• Primitive types: int, real, char, string, bool, and enum
• Composite type: structure
• Collection types: set, array, bag, list, and dictionary

18

Hierarchy & Subtyping

Subtyping within SQL

UNDER clause with NOT FINAL statement in the base type

CREATE TYPE PersonType AS (
Name VARCHAR(20) NOT NULL,
DateOfBirth DATE,
Gender CHAR)

NOT FINAL;

CREATE TYPE StudentType UNDER PersonType AS (
StudentID VARCHAR(10),
Major VARCHAR(20)

);

CREATE TABLE Student OF StudentType;
19

Multiple Inheritance within ODL

class Person {
attribute string name;
attribute character gender; }

class Teacher extends Person {...}
class Student extends Person {...}

class TeachingFellow extends Teacher, Student {
attribute string degree; }

• How many names and genders for a single TF?!

20

Extension in ODL

• Extent declaration: named set of objects of the same type
• Class ⇠ Schema of a relation
• Extent ⇠ Instance of a relation

• Optional Key declaration: unicity constraint

class Course (extent Courses
keys id, (dept, title))

{...};

SELECT c.id, c.title FROM Courses c
WHERE c.dept='Computer Science';

• Object Query Language (OQL): SQL-like for pure object db’s
• Alias for extent (c) is mandatory: typical class member 21

“Subtabling” within SQL

No native extension for types in SQL: create table for each UDT

Table inheritance!

CREATE TABLE Person OF PersonType;
CREATE TABLE Student OF StudentType UNDER Person;

• A Person row matches at most one Student row
• A Student row matches exactly one Person row
• Inherited columns are inserted only into Person table
• Delete Student row deletes matching Person row

22

“Subtabling” within SQL (cont’d)

• Default: retrieve the extension ⇡⇤(Person) with all subtable rows

SELECT P.Name FROM Person P;

• ONLY clause: retrieve the proper extension ⇡(Person)

SELECT P.Name FROM ONLY (Person) P;

Open issues
Multiple-table inheritance? Propagation of referential integrity constraints?
Index? …

23

Basics of Relational Mapping of Class Hierarchy

• Classes are all distinct tables
• Keys must be defined
• The three ways to cope with class hierarchy:

1. E/R-style: one partial table by subclass with key+specific fields
2. OO-style: one full table by subclass
3. Null-style: all subclasses embedded within one single base table

Example

Person(name, gender) Person(name, gender)
Teacher(name, dpt) Teacher(name, gender, dpt)
Student(name, major) Student(name, gender, major)

Person(name, gender, dpt, major)
24

ID’s & Relationships

Object Identity

• Persistent objects are given an Object IDentifier (OID)
• Used to manage inter-object references
• OID’s are

• unique among the set of objects stored in the DB
• immutable even on update of the object value
• permanent all along the object lifecycle

• OID’s are not based on physical representation/storage of object (i.e., 6=
ROWID or TID, 6=@object)

25

Ultimate Object Representation

Definition (Object)
An object is a pair (o,#), with o being the OID and # is the value

• Object identity is given by the OID
• Object value is not required to be unique

26

Values by Example

In the class-oriented restriction of eNF2, values # are

• tuple-based complex values:
(o1, htitle : ’cs123’,desc : ’...’i)
(o2, htitle : ’cs987’,desc : ’...’i)
(o3, hname : ’Doe’,major : ’cs’, year : ’junior’, enrol : {o1, o2}i)

• OID to achieve aliasing: (o4, o3)

• nil for nullable reference: (o5,nil)

27

Composition Graph

Structural representation of an object as a labeled directed graph

struct(o) := G(V ,E)

where

• Vertices V ⇢ O [dom are OID’s and atomic values
• Edges E ✓ V ⇥A⇥V are labeled with symbols from A, the set of field names
• Draw an edge (oi , x) whenever x 2 {oj , a} occurs in the value of oi , a being an
atomic value in dom

28

Composition Graph (cont’d)

Example for object o3

o3

Doe

cs

junior

o1

o2

cs123

...

cs987...

name major year
title desc enrol

Extend to a—cyclic—graph: teacher ! dpt ! employees

Statement
Object db is mainly a huge persistent relational graph

29

Object Expansion

Definition (Expansion)
Expansion of an object o, denoted expand(o), is the—possibly infinite—tree
obtained by replacing each object by its value recursively

Example of expand(o3)

#3

#2#1

• Infinite expansion: cycle in the composition graph
• Deep equality can be checked from expansion traversal

30

SQL3 References

Principle
If ⌧ is a type, then REF(⌧) is a type of references to ⌧

• Weak translation of OID’s into SQL world
• Unlike OID’s, a REF is visible although it is gibberish

CREATE TYPE SellType AS (
bar REF(BarType) SCOPE Bar,
beer REF(BeerType) SCOPE Beer,
price FLOAT);

31

Following REF’s and Dereferencing

CREATE TABLE Sells OF SellType (
REF IS sellID SYSTEM GENERATED,
PRIMARY KEY (bar, beer));

SELECT DEREF(s.beer) AS beer
FROM Sells s
WHERE s.bar->name = ’Le Flesselles’;

• It would have required a join or nested query otherwise

32

Translate into Relationships in ODL

• Operate at the type system—class definition—level
• Connect entities/classes/types one with each other
• Binary relationships as partial multi-valued functions
• Decide for the direction: contains or isIncluded or both

ODL example

class Sell {
attribute real price;
relationship Bar theBar;
relationship Beer theBeer;

}

33

OQL features

• Query can include path expressions rather than joins:

SELECT s.beer.name, s.price
FROM Sell
WHERE s.bar.name='Le Flesselles';

• Alternative query

SELECT s.beer.name, s.price
FROM Bar b, b.beerSold s
WHERE b.name='Le Flesselles';

• Collections cannot be further extended by dot notation
• Collections can be part of the FROM clause

34

OQL features (cont’d)

• Result type is basically {|h.i|}
• Complex result type can be constructed in query

SELECT DISTINCT struct(e.name,
projects:(

SELECT p.projectId
FROM e.participates_in AS p))

FROM Employees AS e;

• Result type:

{hname :string,projects :{|int|}i}

35

Epilogue

From Lineland to Spaceland

Object-Oriented paradigm brings to the—relational—data world

• Mashup of:
1. Databases
2. OO Programming Languages
3. Conceptual/Semantic Modeling

• Practical approaches to contemporary issues
• Lack of strong mathematical foundations

36

Impedance Mismatch Revisited

Find a sunset picture taken within a coastal zone by a professional photographer

SELECT p.id
FROM slides p, area a, a.landmarks l
WHERE sunset (p.picture) AND

p.owner.occupation = 'photographer' AND
a.type = 'coastal' AND
contains (p.caption, l.name) ;

• User-defined functions: sunset() contains()
• Path expression: P.owner.occupation
• Collection as table: area.landmarks

37

OO-DBMS vs. OR-DBMS vs. O/R Mapping

Relation as first-class citizen?

• Yes: SQL3
• PostgreSQL, IBM DB2, Oracle, Microsoft SQL Server, Sybase

• No: ODMG ODL+OQL
• db4o, Versant, ObjectStore, ObjectDB, Native Queries, LINQ

• Don’t care: PL coupled with (R-)DBMS Mapping Framework
• Hibernate, JPA, JDO, CodeIgniter, Symfony, Django, EF

38

