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eNF²

The eNF2 Data Model

eNF2 = Extended NF2 Model

• Extend NF2 model by introducing
• various type constructors and
• allowing their free combination

• Type constructors:
• set {.}: create a set type of nested type
• tuple h.i: tuple type of nested type
• list (.): list type of nested type
• bag {|.|}: bag—multi-set—type of nested type
• array [.]n : array type of nested type
• map (.! .): key/value dictionary type of nested types

• First two are already available in RM and NF2
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The eNF2 Data Model (cont’d)

The Evolution of Data Models
b.t.w. of sort comparison

• Relational Model ⌧ := hA1 :dom, . . . ,Ak :domi
• NF2 ⌧ := dom | hA1 :⌧, . . . ,Ak :⌧i | {⌧}
• eNF2 ⌧ := dom | hA1 :⌧, . . . ,Ak :⌧i | {⌧} | (⌧) | [⌧ ]n | {|⌧ |} | (⌧!⌧)

Flavors by restrictions, such like nested relations for NF2
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Type Constructors

• h.i {.} (.) [.]n {|.|} (.! .) a.k.a. Parametrizable Data Types
• Construction based on the input data type (inner dot)
• Define their own operations for access and modification
• Similar to pre-defined parametrizable data types of programming languages

• Generics in Java java.util
• Templates in C++
• Duck typing in Python
• Type inference in OCaml
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Comparison of Type Constructors

Type Dupl. Bounded Order Access by

Set {.} 8 8 8 Iterator
Bag {|.|} 4 8 8 Iterator
Map (.! .) 4 8 8 Key
List (.) 4 8 4 Index/Iter.
Array [.]n 4 4 4 Index

Tuple h.i 4 4 4 Name

• All but tuple type constructors are collection data types
• Tuple type constructor is a composite data type
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Type Constructors in SQL

• MULTISET
• ROW
• ARRAY
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SQL ARRAY Type Constructor

• Introduced within SQL-99

CREATE TABLE Contacts(
Name VARCHAR(40),
PhoneNumbers VARCHAR(20) ARRAY[4],
Addresses AddressType ARRAY[3] );

8

SQL ARRAY Type Constructor (cont’d)

• Array type constructor with record insertion
• Access to elements by index k

INSERT INTO Contacts
VALUES( 'Doe',

ARRAY['1234','5678'],
ARRAY[ROW('50 Otages', 'Nantes', '44000')]);

UPDATE Contacts
SET PhoneNumbers[3]='91011'
WHERE Name='Doe';
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SQL ARRAY Type Constructor (cont’d)

• Alternative access to elements by unnesting of collection

SELECT Name, Tel.*
FROM Contacts,

UNNEST( Contacts.PhoneNumbers ) WITH ORDINALITY
AS Tel(Phone, Position)

WHERE Name='Doe';

Further operations

• size CARDINALITY()
• concatenation ||
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Classes



(Yet Another) Popular Restriction of eNF2

Class
The outermost type constructor is a tuple

• A complex value conforms to sort ⌧ of an object structure: it is an instance of
its class

• Type constructors are building blocks: tuple, set, list, array, bag, dictionary
• eNF2 is the reference model
• Implementation in SQL3 b.t.w. of User-Defined Types
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User-Defined Types in SQL3

UDT’s occur at two levels:

• Columns of relations
• Tuples of relations

CREATE TYPE AddressType AS ( Street CHAR(50),
City CHAR(50),
Zip CHAR(5) );

CREATE TYPE BarType AS ( Name CHAR(20),
Addr AddressType );

CREATE TABLE Bars OF BarType ( PRIMARY KEY (Name) );
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Encapsulated Object vs. Row

• Bars is an unary relation: tuples are objects (with 2 components)
• Grant access privilege to the components
• Type constructor

INSERT INTO Bars
VALUES BarType( 'Le Flesselles',

AddressType( '50 Otages',
'Nantes',
'44000' ) );
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Encapsulated Object vs. Row (cont’d)

• Observer A() and Mutator A(v) for each attribute A
• Calls to implicit getters and setters, redefinition allowed

UPDATE Bars
SET Bars.Addr.Street('Allée Flesselles')
WHERE Bars.Name = 'Le Flesselles';

SELECT B.Name, B.Addr FROM Bars B;

Excerpt of the result set:
BarType( ’Le Flesselles’, AddressType (’Allée Flesselles’, ’Nantes’, ’44000’) )
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A Word About eNF2 in Oracle

• Supports a majority of standard features as part of its object-relational
extension—since 8i

• Multi-set type constructor as NESTED TABLE type
• Array type constructor as VARRAY type
• Object (and Tuple) type constructor as OBJECT type

• Uses different syntax than ANSI/ISO SQL standard…
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Object Behavior

Method := signature + body
Operation that applies to objects of a given type

• f (x) is invoked by sending a message to object o: o.f (3)
• Method

• returns single value (may be a collection)
• is typically written in general-purpose PL
• could have unexpectable side-effect

• Implementation in SQL3

Disclaimer
Insight into object behavior is out of the scope of this series of slides
Corollary: main focus is the structural part
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Alternative Languages

Practical definition of object structures

• DDL part of SQL3 OR-Databases
• DDL part of [your favorite or-dbms] OR-Databases
• Object Description Language (ODL) OO-Databases
• Entity/Relationship (E/R) Model Relational Databases
• Unified Modeling Language (UML) OO-PL
• (OO-)PL O-R Mapping to Rel. Databases
• …
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Example in ODMG ODL

class Bar {
attribute string name;
attribute struct addr {string street,

string city,
int zip} address;

attribute enum lic {full, beer, none} license;
attribute set< string > drinks;

}

• Primitive types: int, real, char, string, bool, and enum
• Composite type: structure
• Collection types: set, array, bag, list, and dictionary
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Hierarchy & Subtyping

Subtyping within SQL

UNDER clause with NOT FINAL statement in the base type

CREATE TYPE PersonType AS (
Name VARCHAR(20) NOT NULL,
DateOfBirth DATE,
Gender CHAR)

NOT FINAL;

CREATE TYPE StudentType UNDER PersonType AS (
StudentID VARCHAR(10),
Major VARCHAR(20)

);

CREATE TABLE Student OF StudentType;
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Multiple Inheritance within ODL

class Person {
attribute string name;
attribute character gender; }

class Teacher extends Person {...}
class Student extends Person {...}

class TeachingFellow extends Teacher, Student {
attribute string degree; }

• How many names and genders for a single TF?!
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Extension in ODL

• Extent declaration: named set of objects of the same type
• Class ⇠ Schema of a relation
• Extent ⇠ Instance of a relation

• Optional Key declaration: unicity constraint

class Course ( extent Courses
keys id, (dept, title) )

{...};

SELECT c.id, c.title FROM Courses c
WHERE c.dept='Computer Science';

• Object Query Language (OQL): SQL-like for pure object db’s
• Alias for extent (c) is mandatory: typical class member 21



“Subtabling” within SQL

No native extension for types in SQL: create table for each UDT

Table inheritance!

CREATE TABLE Person OF PersonType;
CREATE TABLE Student OF StudentType UNDER Person;

• A Person row matches at most one Student row
• A Student row matches exactly one Person row
• Inherited columns are inserted only into Person table
• Delete Student row deletes matching Person row
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“Subtabling” within SQL (cont’d)

• Default: retrieve the extension ⇡⇤(Person) with all subtable rows

SELECT P.Name FROM Person P;

• ONLY clause: retrieve the proper extension ⇡(Person)

SELECT P.Name FROM ONLY (Person) P;

Open issues
Multiple-table inheritance? Propagation of referential integrity constraints?
Index? …
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Basics of Relational Mapping of Class Hierarchy

• Classes are all distinct tables
• Keys must be defined
• The three ways to cope with class hierarchy:

1. E/R-style: one partial table by subclass with key+specific fields
2. OO-style: one full table by subclass
3. Null-style: all subclasses embedded within one single base table

Example

Person(name, gender) Person(name, gender)
Teacher(name, dpt) Teacher(name, gender, dpt)
Student(name, major) Student(name, gender, major)

Person(name, gender, dpt, major)
24

ID’s & Relationships



Object Identity

• Persistent objects are given an Object IDentifier (OID)
• Used to manage inter-object references
• OID’s are

• unique among the set of objects stored in the DB
• immutable even on update of the object value
• permanent all along the object lifecycle

• OID’s are not based on physical representation/storage of object (i.e., 6=
ROWID or TID, 6=@object)
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Ultimate Object Representation

Definition (Object)
An object is a pair (o,#), with o being the OID and # is the value

• Object identity is given by the OID
• Object value is not required to be unique
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Values by Example

In the class-oriented restriction of eNF2, values # are

• tuple-based complex values:
(o1, htitle : ’cs123’,desc : ’...’i)
(o2, htitle : ’cs987’,desc : ’...’i)
(o3, hname : ’Doe’,major : ’cs’, year : ’junior’, enrol : {o1, o2}i)

• OID to achieve aliasing: (o4, o3)

• nil for nullable reference: (o5,nil)
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Composition Graph

Structural representation of an object as a labeled directed graph

struct(o) := G(V ,E)

where

• Vertices V ⇢ O [ dom are OID’s and atomic values
• Edges E ✓ V ⇥A⇥V are labeled with symbols from A, the set of field names
• Draw an edge (oi , x) whenever x 2 {oj , a} occurs in the value of oi , a being an
atomic value in dom
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Composition Graph (cont’d)

Example for object o3

o3

Doe

cs

junior

o1

o2

cs123

...

cs987...

name major year
title desc enrol

Extend to a—cyclic—graph: teacher ! dpt ! employees

Statement
Object db is mainly a huge persistent relational graph
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Object Expansion

Definition (Expansion)
Expansion of an object o, denoted expand(o), is the—possibly infinite—tree
obtained by replacing each object by its value recursively

Example of expand(o3)

#3

#2#1

• Infinite expansion: cycle in the composition graph
• Deep equality can be checked from expansion traversal
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SQL3 References

Principle
If ⌧ is a type, then REF(⌧) is a type of references to ⌧

• Weak translation of OID’s into SQL world
• Unlike OID’s, a REF is visible although it is gibberish

CREATE TYPE SellType AS (
bar REF(BarType) SCOPE Bar,
beer REF(BeerType) SCOPE Beer,
price FLOAT );
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Following REF’s and Dereferencing

CREATE TABLE Sells OF SellType (
REF IS sellID SYSTEM GENERATED,
PRIMARY KEY (bar, beer) );

SELECT DEREF(s.beer) AS beer
FROM Sells s
WHERE s.bar->name = ’Le Flesselles’;

• It would have required a join or nested query otherwise
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Translate into Relationships in ODL

• Operate at the type system—class definition—level
• Connect entities/classes/types one with each other
• Binary relationships as partial multi-valued functions
• Decide for the direction: contains or isIncluded or both

ODL example

class Sell {
attribute real price;
relationship Bar theBar;
relationship Beer theBeer;

}
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OQL features

• Query can include path expressions rather than joins:

SELECT s.beer.name, s.price
FROM Sell
WHERE s.bar.name='Le Flesselles';

• Alternative query

SELECT s.beer.name, s.price
FROM Bar b, b.beerSold s
WHERE b.name='Le Flesselles';

• Collections cannot be further extended by dot notation
• Collections can be part of the FROM clause
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OQL features (cont’d)

• Result type is basically {|h.i|}
• Complex result type can be constructed in query

SELECT DISTINCT struct( e.name,
projects:(

SELECT p.projectId
FROM e.participates_in AS p) )

FROM Employees AS e;

• Result type:

{hname :string,projects :{|int|}i}
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Epilogue



From Lineland to Spaceland

Object-Oriented paradigm brings to the—relational—data world

• Mashup of:
1. Databases
2. OO Programming Languages
3. Conceptual/Semantic Modeling

• Practical approaches to contemporary issues
• Lack of strong mathematical foundations
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Impedance Mismatch Revisited

Find a sunset picture taken within a coastal zone by a professional photographer

SELECT p.id
FROM slides p, area a, a.landmarks l
WHERE sunset (p.picture) AND

p.owner.occupation = 'photographer' AND
a.type = 'coastal' AND
contains (p.caption, l.name) ;

• User-defined functions: sunset() contains()
• Path expression: P.owner.occupation
• Collection as table: area.landmarks
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OO-DBMS vs. OR-DBMS vs. O/R Mapping

Relation as first-class citizen?

• Yes: SQL3
• PostgreSQL, IBM DB2, Oracle, Microsoft SQL Server, Sybase

• No: ODMG ODL+OQL
• db4o, Versant, ObjectStore, ObjectDB, Native Queries, LINQ

• Don’t care: PL coupled with (R-)DBMS Mapping Framework
• Hibernate, JPA, JDO, CodeIgniter, Symfony, Django, EF
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